Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective and quasi-continuous switching of ferroelectric Chern insulator devices for neuromorphic computing

Abstract

Quantum materials exhibit dissipationless topological edge state transport with quantized Hall conductance, offering notable potential for fault-tolerant computing technologies. However, the development of topological edge state-based computing devices remains a challenge. Here we report the selective and quasi-continuous ferroelectric switching of topological Chern insulator devices, showcasing a proof-of-concept demonstration in noise-immune neuromorphic computing. We fabricate this ferroelectric Chern insulator device by encapsulating magic-angle twisted bilayer graphene with doubly aligned h-BN layers and observe the coexistence of the interfacial ferroelectricity and the topological Chern insulating states. The observed ferroelectricity exhibits an anisotropic dependence on the in-plane magnetic field. By tuning the amplitude of the gate voltage pulses, we achieve ferroelectric switching between any pair of Chern insulating states in the presence of a finite magnetic field, resulting in 1,280 ferroelectric states with distinguishable Hall resistance levels on a single device. Furthermore, we demonstrate deterministic switching between two arbitrary levels among the record-high number of ferroelectric states. This unique switching capability enables the implementation of a convolutional neural network resistant to external noise, utilizing the quantized Hall conductance levels of the Chern insulator device as weights. Our study provides a promising avenue towards the development of topological quantum neuromorphic computing, where functionality and performance can be drastically enhanced by topological quantum materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of DA-MATBG devices.
Fig. 2: In-plane magnetic field dependence of remnant polarization.
Fig. 3: Ferroelectric Chern insulators and selective switching.
Fig. 4: Quasi-continuous ferroelectric switching.
Fig. 5: Selective switching between quasi-continuous resistance levels.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available in the supplementary data files. All source data can be acquired from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Wu, S., Zhang, Z., Watanabe, K., Taniguchi, T. & Andrei, E. Y. Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nat. Mater. 20, 488–494 (2021).

    CAS  PubMed  Google Scholar 

  2. Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    CAS  PubMed  Google Scholar 

  3. Nuckolls, K. P. et al. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 588, 610–615 (2020).

    CAS  PubMed  Google Scholar 

  4. Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 588, 66–70 (2020).

    CAS  PubMed  Google Scholar 

  5. Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    CAS  PubMed  Google Scholar 

  6. Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).

    CAS  PubMed  Google Scholar 

  8. Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    CAS  Google Scholar 

  9. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    CAS  Google Scholar 

  10. Niu, R. et al. Giant ferroelectric polarization in a bilayer graphene heterostructure. Nat. Commun. 13, 6241 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    CAS  PubMed  Google Scholar 

  12. Klein, D. R. et al. Electrical switching of a bistable moiré superconductor. Nat. Nanotechnol. 18, 331–335 (2023).

    CAS  PubMed  Google Scholar 

  13. von Klitzing, K. et al. 40 years of the quantum Hall effect. Nat. Rev. Phys. 2, 397–401 (2020).

    Google Scholar 

  14. Andrei Bernevig, B., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    PubMed  Google Scholar 

  15. Li, Q. et al. Tunable quantum criticalities in an isospin extended Hubbard model simulator. Nature 609, 479–484 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  PubMed  Google Scholar 

  17. Cao, Y. et al. Nematicity and competing orders in superconducting magic-angle graphene. Science 372, 264–271 (2021).

    CAS  PubMed  Google Scholar 

  18. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    CAS  PubMed  Google Scholar 

  19. Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).

    CAS  PubMed  Google Scholar 

  20. Polshyn, H. et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. Phys. 15, 1011–1016 (2019).

    CAS  Google Scholar 

  21. Saito, Y., Ge, J., Watanabe, K., Taniguchi, T. & Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 16, 926–930 (2020).

    CAS  Google Scholar 

  22. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    CAS  PubMed  Google Scholar 

  23. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS  PubMed  Google Scholar 

  24. Pierce, A. T. et al. Unconventional sequence of correlated Chern insulators in magic-angle twisted bilayer graphene. Nat. Phys. 17, 1210–1215 (2021).

    CAS  Google Scholar 

  25. Rozen, A. et al. Entropic evidence for a Pomeranchuk effect in magic-angle graphene. Nature 592, 214–219 (2021).

    CAS  PubMed  Google Scholar 

  26. Saito, Y. et al. Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene. Nat. Phys. 17, 478–481 (2021).

    CAS  Google Scholar 

  27. Saito, Y. et al. Isospin Pomeranchuk effect in twisted bilayer graphene. Nature 592, 220–224 (2021).

    CAS  PubMed  Google Scholar 

  28. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    CAS  PubMed  Google Scholar 

  29. Tschirhart, C. L. et al. Imaging orbital ferromagnetism in a moiré Chern insulator. Science 372, 1323–1327 (2021).

    CAS  PubMed  Google Scholar 

  30. Wong, D. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).

    CAS  PubMed  Google Scholar 

  31. Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).

    CAS  PubMed  Google Scholar 

  32. Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    CAS  PubMed  Google Scholar 

  34. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    CAS  PubMed  Google Scholar 

  35. Beechem, T. E., Ohta, T., Diaconescu, B. & Robinson, J. T. Rotational disorder in twisted bilayer graphene. ACS Nano 8, 1655–1663 (2014).

    CAS  PubMed  Google Scholar 

  36. Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    CAS  PubMed  Google Scholar 

  37. Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).

    CAS  PubMed  Google Scholar 

  38. Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174–1180 (2019).

    CAS  Google Scholar 

  39. Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    CAS  PubMed  Google Scholar 

  40. Kazmierczak, N. P. et al. Strain fields in twisted bilayer graphene. Nat. Mater. 20, 956–963 (2021).

    CAS  PubMed  Google Scholar 

  41. Streda, P. Quantised Hall effect in a two-dimensional periodic potential. J. Phys. C 15, L1299 (1982).

    CAS  Google Scholar 

  42. Li, C. et al. Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat. Commun. 9, 2385 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Choi, S. et al. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater. 17, 335–340 (2018).

    CAS  PubMed  Google Scholar 

  44. Kim, H., Mahmoodi, M. R., Nili, H. & Strukov, D. B. 4K-memristor analog-grade passive crossbar circuit. Nat. Commun. 12, 5198 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018).

    Google Scholar 

  46. Zidan, M. A. et al. A general memristor-based partial differential equation solver. Nat. Electron. 1, 411–420 (2018).

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key R and D Program of China under grant 2023YFF1203600 (S.-J.L.), the National Natural Science Foundation of China (12322407 (B.C.), 62122036 (S.-J.L.), 62034004 (F.M.), 61921005 (F.M.) and 12074176 (B.C.)), the National Key R&D Program of China under grant 2023YFF0718400 (B.C.), the Leading-edge Technology Program of Jiangsu Natural Science Foundation BK20232004 (F.M.), the Strategic Priority Research Program of the Chinese Academy of Sciences XDB44000000 (F.M.) and the Innovation Program for Quantum Science and Technology (F.M.). F.M. and S.-J.L. acknowledge support from the AIQ Foundation and the e-Science Center of Collaborative Innovation Center of Advanced Microstructures. The microfabrication centre of the National Laboratory of Solid State Microstructures (NLSSM) is also acknowledged for their technical support. We thank J. Liu and L. Yang for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

F.M., B.C. S.-J.L. and M.C. conceived the idea and designed the experiments. F.M., B.C. and S.-J.L. supervised the whole project. Y.X. and M.C. fabricated the devices. M.C. performed the measurements. Z.Y. and M.C. conducted the neural network simulation. M.C., F.C., Q.L. and J.X. provided assistance in the experiments. X.-Z.L. and W.-Y.H. provided a phenomenological model of magnetoelectric effect. M.W. provided a sliding-ferroelectric model. T.T. and K.W. provided h-BN samples. M.C., B.C., S.-J.L. and F.M. co-wrote the manuscript.

Corresponding authors

Correspondence to Bin Cheng, Shi-Jun Liang or Feng Miao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Jihang Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, discussion, Tables 1 and 2, and Sections 1–10.

Source data

Source Data Fig. 1

Source data.

Source Data Fig. 2

Source data.

Source Data Fig. 3

Source data.

Source Data Fig. 4

Source data.

Source Data Fig. 5

Source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Xie, Y., Cheng, B. et al. Selective and quasi-continuous switching of ferroelectric Chern insulator devices for neuromorphic computing. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01698-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01698-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing