Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Terahertz phonon engineering with van der Waals heterostructures

Abstract

Phonon engineering at gigahertz frequencies forms the foundation of microwave acoustic filters1, acousto-optic modulators2 and quantum transducers3,4. Terahertz phonon engineering could lead to acoustic filters and modulators at higher bandwidth and speed, as well as quantum circuits operating at higher temperatures. Despite their potential, methods for engineering terahertz phonons have been limited due to the challenges of achieving the required material control at subnanometre precision and efficient phonon coupling at terahertz frequencies. Here we demonstrate the efficient generation, detection and manipulation of terahertz phonons through precise integration of atomically thin layers in van der Waals heterostructures. We used few-layer graphene as an ultrabroadband phonon transducer that converts femtosecond near-infrared pulses to acoustic-phonon pulses with spectral content up to 3 THz. A monolayer WSe2 is used as a sensor. The high-fidelity readout was enabled by the exciton–phonon coupling and strong light–matter interactions. By combining these capabilities in a single heterostructure and detecting responses to incident mechanical waves, we performed terahertz phononic spectroscopy. Using this platform, we demonstrate high-Q terahertz phononic cavities and show that a WSe2 monolayer embedded in hexagonal boron nitride can efficiently block the transmission of terahertz phonons. By comparing our measurements to a nanomechanical model, we obtained the force constants at the heterointerfaces. Our results could enable terahertz phononic metamaterials for ultrabroadband acoustic filters and modulators and could open new routes for thermal engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Terahertz phononic spectroscopy with van der Waals heterostructures.
Fig. 2: Determination of the phonon propagation speed in hBN.
Fig. 3: Terahertz phononic cavity and Fabry-Pérot modes.
Fig. 4: Terahertz reflection and transmission spectra and one-dimensional mass–spring model simulation.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.

References

  1. Narayanamurti, V., Störmer, H. L., Chin, M. A., Gossard, A. C. & Wiegmann, W. Selective transmission of high-frequency phonons by a superlattice: the ‘dielectric’ phonon filter. Phys. Rev. Lett. 43, 2012–2016 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Kittlaus, E. A. et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nat. Photonics 15, 43–52 (2021).

    Article  ADS  CAS  Google Scholar 

  3. Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

    Article  CAS  Google Scholar 

  4. Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Slayton, R. M. & Nelson, K. A. Picosecond acoustic transmission measurements. I. Transient grating generation and detection of acoustic responses in thin metal films. J. Chem. Phys. 120, 3908–3918 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Choi, J. D., Feurer, T., Yamaguchi, M., Paxton, B. & Nelson, K. A. Generation of ultrahigh-frequency tunable acoustic waves. Appl. Phys. Lett. 87, 081907 (2005).

  8. Maznev, A. A. et al. Propagation of THz acoustic wave packets in GaN at room temperature. Appl. Phys. Lett. 112, 061903 (2018).

    Article  ADS  Google Scholar 

  9. Sun, C.-K., Liang, J.-C. & Yu, X.-Y. Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields. Phys. Rev. Lett. 84, 179–182 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Huynh, A. et al. Subterahertz phonon dynamics in acoustic nanocavities. Phys. Rev. Lett. 97, 115502 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Pascual Winter, M. F. et al. Selective optical generation of coherent acoustic nanocavity modes. Phys. Rev. Lett. 98, 265501 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Chou, T.-H. et al. Long mean free paths of room-temperature THz acoustic phonons in a high thermal conductivity material. Phys. Rev. B 100, 094302 (2019).

    Article  ADS  CAS  Google Scholar 

  13. Maznev, A. A. et al. Lifetime of sub-THz coherent acoustic phonons in a GaAs-AlAs superlattice. Appl. Phys. Lett. 102, 041901 (2013).

  14. Chen, I.-J. et al. Graphene-to-substrate energy transfer through out-of-plane longitudinal acoustic phonons. Nano Lett. 14, 1317–1323 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Ge, S. et al. Coherent longitudinal acoustic phonon approaching THz frequency in multilayer molybdenum disulphide. Sci. Rep. 4, 5722 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jeong, T. Y. et al. Coherent lattice vibrations in mono- and few-layer WSe2. ACS Nano 10, 5560–5566 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Greener, J. D. G. et al. Coherent acoustic phonons in van der Waals nanolayers and heterostructures. Phys. Rev. B 98, 075408 (2018).

    Article  ADS  CAS  Google Scholar 

  18. Soubelet, P. et al. The lifetime of interlayer breathing modes of few-layer 2H-MoSe2 membranes. Nanoscale 11, 10446–10453 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, P.-J., Tsai, P.-C., Yang, Z.-S., Lin, S.-Y. & Sun, C.-K. Revealing the interlayer van der Waals coupling of bi-layer and tri-layer MoS2 using terahertz coherent phonon spectroscopy. Photoacoustics 28, 100412 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zalalutdinov, M. K. et al. Acoustic cavities in 2D heterostructures. Nat. Commun. 12, 3267 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. George, P. A. et al. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 8, 4248–4251 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Hafez, H. A. et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature 561, 507–511 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).

    Article  ADS  Google Scholar 

  24. Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. Waldecker, L. et al. Rigid band shifts in two-dimensional semiconductors through external dielectric screening. Phys. Rev. Lett. 123, 206403 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Florian, M. et al. The dielectric impact of layer distances on exciton and trion binding energies in van der Waals heterostructures. Nano Lett. 18, 2725–2732 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Yoon, Y. et al. Charge transfer dynamics in MoSe2/hBN/WSe2 heterostructures. Nano Lett. 22, 10140–10146 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Serrano, J. et al. Vibrational properties of hexagonal boron nitride: inelastic X-ray scattering and ab initio calculations. Phys. Rev. Lett. 98, 095503 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Stenger, I. et al. Low frequency Raman spectroscopy of few-atomic-layer thick hBN crystals. 2D Mater. 4, 031003 (2017).

    Article  Google Scholar 

  30. Jiménez-Riobóo, R. J. et al. In- and out-of-plane longitudinal acoustic-wave velocities and elastic moduli in h-BN from Brillouin scattering measurements. Appl. Phys. Lett. 112, 051905 (2018).

    Article  ADS  Google Scholar 

  31. Lynch, R. W. & Drickamer, H. G. Effect of high pressure on the lattice parameters of diamond, graphite, and hexagonal boron nitride. J. Chem. Phys. 44, 181–184 (1966).

    Article  ADS  CAS  Google Scholar 

  32. Bosak, A. et al. Elasticity of hexagonal boron nitride: inelastic X-ray scattering measurements. Phys. Rev. B 73, 041402 (2006).

    Article  ADS  Google Scholar 

  33. Green, J. F., Bolland, T. K. & Bolland, J. W. Theoretical elastic behavior for hexagonal boron nitride. J. Chem. Phys. 64, 656–662 (1976).

    Article  ADS  CAS  Google Scholar 

  34. Ohba, N., Miwa, K., Nagasako, N. & Fukumoto, A. First-principles study on structural, dielectric, and dynamical properties for three BN polytypes. Phys. Rev. B 63, 115207 (2001).

    Article  ADS  Google Scholar 

  35. Jiang, P., Qian, X., Yang, R. & Lindsay, L. Anisotropic thermal transport in bulk hexagonal boron nitride. Phys. Rev. Mater. 2, 064005 (2018).

    Article  CAS  Google Scholar 

  36. Legrand, R., Huynh, A., Jusserand, B., Perrin, B. & Lemaître, A. Direct measurement of coherent subterahertz acoustic phonons mean free path in GaAs. Phys. Rev. B 93, 184304 (2016).

    Article  ADS  Google Scholar 

  37. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  ADS  Google Scholar 

  38. Ziman, J. M. Electrons and Phonons (Oxford Univ. Press, 2001);

  39. Volokitin, A. I., Persson, B. N. J. & Ueba, H. Enhancement of noncontact friction between closely spaced bodies by two-dimensional systems. Phys. Rev. B 73, 165423 (2006).

    Article  ADS  Google Scholar 

  40. Lee, M., Vink, R. L. C., Volkert, C. A. & Krüger, M. Noncontact friction: role of phonon damping and its nonuniversality. Phys. Rev. B 104, 174309 (2021).

    Article  ADS  CAS  Google Scholar 

  41. Zhao, Y. et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 13, 1007–1015 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Wu, H. et al. Probing the interfacial coupling in ternary van der Waals heterostructures. npj 2D Mater. Appl. 6, 87 (2022).

    Article  CAS  Google Scholar 

  43. Liang, L. et al. Low-frequency shear and layer-breathing modes in Raman scattering of two-dimensional materials. ACS Nano 11, 11777–11802 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Lui, C. H. et al. Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Lett. 12, 5539–5544 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Lui, C. H. & Heinz, T. F. Measurement of layer breathing mode vibrations in few-layer graphene. Phys. Rev. B 87, 121404 (2013).

    Article  ADS  Google Scholar 

  46. Jaffe, G. R. et al. Thickness-dependent cross-plane thermal conductivity measurements of exfoliated hexagonal boron nitride. ACS Appl. Mater. Interfaces 15, 12545–12550 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Na, Y. S. et al. Irreversible conductive filament contacts for passivated van der Waals heterostructure devices. Adv. Funct. Mater. 32, 2207351 (2022).

    Article  CAS  Google Scholar 

  48. Rooney, A. P. et al. Observing imperfection in atomic interfaces for van der Waals heterostructures. Nano Lett. 17, 5222–5228 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    Article  ADS  CAS  Google Scholar 

  52. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21, 395502 (2009).

    Article  PubMed  Google Scholar 

  53. Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    Article  ADS  Google Scholar 

  54. van Setten, M. J. et al. The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).

    Article  ADS  Google Scholar 

  55. Sabatini, R., Gorni, T. & de Gironcoli, S. Nonlocal van der Waals density functional made simple and efficient. Phys. Rev. B 87, 041108 (2013).

    Article  ADS  Google Scholar 

  56. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  ADS  CAS  Google Scholar 

  57. Wirtz, L. & Rubio, A. The phonon dispersion of graphite revisited. Solid State Commun. 131, 141–152 (2004).

    Article  ADS  CAS  Google Scholar 

  58. Schabel, M. C. & Martins, J. L. Energetics of interplanar binding in graphite. Phys. Rev. B 46, 7185–7188 (1992).

    Article  ADS  CAS  Google Scholar 

  59. Dubay, O. & Kresse, G. Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes. Phys. Rev. B 67, 035401 (2003).

    Article  ADS  Google Scholar 

  60. Ye, L.-H., Liu, B.-G., Wang, D.-S. & Han, R. Ab initio phonon dispersions of single-wall carbon nanotubes. Phys. Rev. B 69, 235409 (2004).

    Article  ADS  Google Scholar 

  61. Mounet, N. & Marzari, N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 71, 205214 (2005).

    Article  ADS  Google Scholar 

  62. Cuscó, R. et al. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: isotopically pure hexagonal boron nitride. Phys. Rev. B 97, 155435 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The pump–probe spectroscopy, data analysis and DFT and DFPT calculations were supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (DE-AC02-05CH11231 within the Nanomachine Program). The monolayer exfoliation and heterostructure stacking were supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (DE-AC02-05CH11231 within the van der Waals Heterostructure Program, KCWF16). Fabrication of the suspended devices was supported by the US Army Research Office (Multidisciplinary University Research Initiative Award W911NF-17-1-0312). S.C. acknowledges support from the Kavli ENSI Heising-Simons Junior Fellowship. W.K., M.H.N. and S.G.L. acknowledge the Texas Advanced Computing Center at the University of Texas at Austin for providing high-performance computing resources. This research also used resources of the National Energy Research Scientific Computing Center, a US Department of Energy, Office of Science User Facility at Lawrence Berkeley National Laboratory, operated under contract DE-AC02-05CH11231. K.W. and T.T. acknowledge support from the Japan Society for the Promotion of Science (KAKENHI grants 21H05233 and 23H02052) and the World Premier International Research Center Initiative, Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. and F.W. conceived the project. F.W., M.F.C. and S.G.L. supervised the project. Y.Y. and C.U. performed the pump–probe measurements. Z.L., Y.Y., R.Q., W.Z., S.C. and Q.F. fabricated and characterized the samples. Y.Y. and Z.L. performed the one-dimensional mass–spring simulations. W.K. and M.H.N. performed the DFT-based simulations. K.W. and T.T. grew the hBN crystals. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Yoseob Yoon or Feng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Fast hot-carrier relaxation in FLG.

a, A near-infrared (NIR) pump-probe spectrum measured in an hBN/WSe2/hBN/FLG heterostructure at 77 K. The pump pulse was at \({E}_{\mathrm{pump}}=1.409\,\mathrm{eV}\) and right-circularly polarized (\({\sigma }^{+}\)). A broadband probe pulse (\({E}_{\text{probe}}=\mathrm{1.55\mbox{--}1.91}\,\text{eV}\)) with the same polarization (\({\sigma }^{+}\)) measures the pump-induced change of the heterostructure reflectance. b, A horizontal line cut at \(E=1.714\,\mathrm{eV}\) shows the optical AC Stark shift at time zero (\(\Delta t=0\)), which follows the pump pulse intensity envelope (FWHM of 230 fs). c, A pump-probe spectrum measured with a left-circularly polarized (\({\sigma }^{-}\)) probe pulse, where the optical a.c. Stark shift signal is absent. The color scale is saturated at the ±30% of the maximum level in a. d, A horizontal line cut at \(E=1.60\,\mathrm{eV}\) shows that the hot-carrier-induced broadband reflectance change of FLG appears and disappears in 370 fs (FWHM).

Extended Data Fig. 2 Phonon-induced exciton energy shift.

a, Pump-probe spectra (\(\Delta R/R\)) measured in an hBN/WSe2/hBN/3LG heterostructure (\({d}_{\text{t-hBN}}=41.0\,\text{nm}\) and \({d}_{\text{b-hBN}}=24.6\,\text{nm}\)) at 77 K. The pump fluence was 250 μJ/cm2. b, Vertical line cuts at t1 = 6.0 ps, t2 = 7.0 ps, and t3 = 7.5 ps are shown in blue circles. The data at \({t}_{1}\) and \({t}_{2}\) are vertically shifted for clarity. By performing transfer-matrix calculations including pump-induced exciton energy shift (\(\Delta E={E}_{\text{pump on}}-{E}_{\text{pump off}}\)), line broadening (\(\Delta \Gamma ={\Gamma }_{\text{pump on}}-{\Gamma }_{\text{pump off}}\)), and oscillator strength change (\(\Delta A={A}_{\text{pump on}}-{A}_{\text{pump off}}\)) as fitting parameters, the fit results (orange lines) and corresponding energy shift values are shown. The exciton energy shift between \({t}_{2}\) and \({t}_{3}\) is |ΔE3 − ΔE2| = 335 μeV.

Extended Data Fig. 3 Saturation of phonon amplitude at high pump fluence.

a, The pump-induced FLG absorption signal of device 3 at \(\Delta t=0\) (similar to that shown in Extended Data Fig. 1d) at pump fluence of 450 μJ/cm2 and 1210 μJ/cm2 show a roughly linear increase of the FLG absorption as a function of pump fluence (weak saturation). b, The peak-to-peak amplitude of the first phonon pulse at Δt = 6.2 ps at pump fluence of 450 μJ/cm2 and 1210 μJ/cm2 show strong saturation at the high pump fluence. The sublinear dependence in a implies that not all pump power is absorbed by FLG, and the stronger sublinear dependence in b implies that not all absorbed power is converted to phonon amplitudes at high pump fluence.

Extended Data Fig. 4 Temperature-dependent phonon oscillation decay.

Phonon oscillations of device 3 at 77 K (a, b) and at 300 K (c, d) with similar pump fluences (300-400 μJ/cm2, lower than the saturation regime). Hann filters are used to remove the d.c. component. Note that the absolute pump fluences cannot be directly compared due to the different local field strengths at the FLG location at these two temperatures. The phonon amplitude lifetimes are calculated by the procedure described in section 4 of Supplementary Information.

Extended Data Fig. 5 Frequency-dependent phonon loss due to surface roughness.

a, For device 3 (WSe2/hBN/5LG, dhBN = 19.6 nm), the fraction of specular reflection after a round trip, \(p\), is plotted as a function of phonon frequency. The gray-filled circles are obtained from the Fourier analysis of phonon pulses. This behavior can be modeled by including both the intrinsic hBN phonon loss and an additional surface-roughness-induced loss. Based on the model described by J. M. Ziman38, the fraction of specular reflection can be expressed as \(p\left(\lambda \right)=\exp \left(-16{{\rm{\pi }}}^{3}{\eta }^{2}/{\lambda }^{2}\right)\), where \(\lambda \) is the phonon wavelength and \(\eta \) is the root-mean-square deviation of the interfacial height from a reference plane. The colored lines show calculated \(p\left(\lambda \right)\) with various \(\eta \) values. It indicates that the surface roughness is below 0.3 Å in device 3. b, For device 1 (WSe2/hBN/3LG, dhBN = 80.2 nm), the fraction of specular reflection after a round trip is plotted in gray-filled circles. The brown line shows the best-fit result with a roughness value of η = 0.91 Å.

Extended Data Fig. 6 1D nanomechanical simulation of devices 1, 3, and 4.

a, Phonon oscillation data (gray line) and the simulation result (brown line) using \({K}_{\text{gh}}=7.3\times {10}^{19}\,\text{N}\,{\text{m}}^{-3}\) and \({K}_{\text{hw}}=3.8\times {10}^{19}\,{\text{N m}}^{-3}\) for device 1. b, Phonon oscillation data (gray line) and the simulation result (brown line) using \({K}_{\text{gh}}=8.8\times {10}^{19}\,\text{N}\,{\text{m}}^{-3}\) and \({K}_{\text{hw}}=4.6\times {10}^{19}\,\text{N}\,{\text{m}}^{-3}\) for device 3. c, Phonon oscillation data (gray line) and the simulation result (brown line) using \({K}_{\text{gh}}=8.1\times {10}^{19}\,\text{N}\,{\text{m}}^{-3}\) and \({K}_{\text{hw}}=4.0\times {10}^{19}\,\text{N}\,{\text{m}}^{-3}\) for device 4. On average, the heterolayer force constant values are \({K}_{\text{gh}}=(8.1\pm 0.4)\times {10}^{19}\,\text{N}\,{\text{m}}^{-3}\) and \({K}_{\text{hw}}=(4.0\pm 0.3)\times {10}^{19}\,\text{N}\,{\text{m}}^{-3}\) across the three devices.

Extended Data Fig. 7 Longer time traces of the data shown in the main text.

a, Phonon oscillation data identical to that in Fig. 1d but with a longer time window (device 1, WSe2/hBN/3LG, dhBN = 80.2 nm, at 77 K). b, Phonon oscillation data identical to that in Fig. 3c (device 3, WSe2/hBN/5LG, dhBN = 19.6 nm, at 77 K) is shown up to 300 ps.

Extended Data Fig. 8 Simulated atomic structure of heterointerface.

a, Simulated atomic structure of the graphene-hBN heterobilayer. b, Simulated atomic structure of the hBN-WSe2 heterobilayer.

Supplementary information

Supplementary Information

Supplementary sections 1–6, Figs. 1–3, Tables 1–4 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, Y., Lu, Z., Uzundal, C. et al. Terahertz phonon engineering with van der Waals heterostructures. Nature (2024). https://doi.org/10.1038/s41586-024-07604-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-024-07604-9

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing