Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strong chiroptical nonlinearity in coherently stacked boron nitride nanotubes

Abstract

Nanomaterials with a large chiroptical response and high structural stability are desirable for advanced miniaturized optical and optoelectronic applications. One-dimensional (1D) nanotubes are robust crystals with inherent and continuously tunable chiral geometries. However, their chiroptical response is typically weak and hard to control, due to the diverse structures of the coaxial tubes. Here we demonstrate that as-grown multiwalled boron nitride nanotubes (BNNTs), featuring coherent-stacking structures including near monochirality, homo-handedness and unipolarity among the component tubes, exhibit a scalable nonlinear chiroptical response. This intrinsic architecture produces a strong nonlinear optical response in individual multiwalled BNNTs, enabling second-harmonic generation (SHG) with a conversion efficiency up to 0.01% and output power at the microwatt level—both excellent figures of merit in the 1D nanomaterials family. We further show that the rich chirality of the nanotubes introduces a controllable nonlinear geometric phase, producing a chirality-dependent SHG circular dichroism with values of −0.7 to +0.7. We envision that our 1D chiral platform will enable novel functions in compact nonlinear light sources and modulators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of coherently stacked BNNTs.
Fig. 2: Giant SHG response in BNNTs.
Fig. 3: HHG response in BNNT.
Fig. 4: Handedness-dependent chiroptical SHG response in BNNTs.
Fig. 5: Theoretical understanding of the chirality-dependent SHG-CD in BNNTs.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are presented within the paper and Supplementary Information. Additional data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Shen, Y. R. The Principles of Nonlinear Optics (Wiley, 1984).

  2. Boyd, R. W. Nonlinear Optics (Academic, 2008).

  3. Haupert, L. M. & Simpson, G. J. Chirality in nonlinear optics. Annu. Rev. Phys. Chem. 60, 345–365 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Lapine, M., Shadrivov, I. V. & Kivshar, Y. S. Colloquium: nonlinear metamaterials. Rev. Mod. Phys. 86, 1093–1123 (2014).

    Article  CAS  Google Scholar 

  5. Keren-Zur, S., Michaeli, L., Suchowski, H. & Ellenbogen, T. Shaping light with nonlinear metasurfaces. Adv. Opt. Photon. 10, 309–353 (2018).

    Article  Google Scholar 

  6. Wang, M. J. et al. Nonlinear chiroptical holography with Pancharatnam–Berry phase controlled plasmonic metasurface. Laser Photon. Rev. 16, 2200350 (2022).

    Article  Google Scholar 

  7. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Koshelev, K., Tonkaev, P. & Kivshar, Y. Nonlinear chiral metaphotonics: a perspective. Adv. Photon. 5, 064001 (2023).

    Article  Google Scholar 

  9. Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

    Article  CAS  Google Scholar 

  10. Yuan, C. Q. et al. Chiral lead halide perovskite nanowires for second-order nonlinear optics. Nano Lett. 18, 5411–5417 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Long, G. K. et al. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 5, 423–439 (2020).

    Article  Google Scholar 

  12. Chen, Y. et al. Multidimensional nanoscopic chiroptics. Nat. Rev. Phys. 4, 113–124 (2021).

    Article  Google Scholar 

  13. Han, Z., Wang, F., Sun, J., Wang, X. & Tang, Z. Recent advances in ultrathin chiral metasurfaces by twisted stacking. Adv. Mater. 35, e2206141 (2022).

    Article  PubMed  Google Scholar 

  14. Fu, X. W. et al. Highly anisotropic second-order nonlinear optical effects in the chiral lead-free perovskite spiral microplates. Nano Lett. 23, 606–613 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Li, Y. L. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Autere, A. et al. Nonlinear optics with 2D layered materials. Adv. Mater. 30, e1705963 (2018).

    Article  PubMed  Google Scholar 

  17. Hong, H. et al. Giant enhancement of optical nonlinearity in two-dimensional materials by multiphoton-excitation resonance energy transfer from quantum dots. Nat. Photon. 15, 510–515 (2021).

    Article  CAS  Google Scholar 

  18. Tenne, R., Margulis, L., Genut, M. & Hodes, G. Polyhedral and cylindrical structures of tungsten disulfide. Nature 360, 444–446 (1992).

    Article  CAS  Google Scholar 

  19. Chopra, N. G. et al. Boron nitride nanotubes. Science 269, 966–967 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Saitoo, R., Dresselhaus, G. & Dresselhaus, M. S. Physical Properties of Carbon Nanotubes (Imperial College Press, 1998).

  21. Xiang, R. et al. One-dimensional van der Waals heterostructures. Science 367, 537–542 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, B. et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Kral, P., Mele, E. J. & Tomanek, D. Photogalvanic effects in heteropolar nanotubes. Phys. Rev. Lett. 85, 1512–1515 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Lucking, M. C., Beach, K. & Terrones, H. Large second harmonic generation in alloyed TMDs and boron nitride nanostructures. Sci. Rep. 8, 10118 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Qian, Q. et al. Chirality-dependent second harmonic generation of MoS2 nanoscroll with enhanced efficiency. ACS Nano 14, 13333–13342 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Xia, H. M. et al. Probing the chiral domains and excitonic states in individual WS2 tubes by second-harmonic generation. Nano Lett. 21, 4937–4943 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Sato, N., Tatsumi, Y. & Saito, R. Circular dichroism of single-wall carbon nanotubes. Phys. Rev. B 95, 155436 (2017).

    Article  Google Scholar 

  28. Yao, F. R. et al. Complete structural characterization of single carbon nanotubes by Rayleigh scattering circular dichroism. Nat. Nanotechnol. 16, 1073–1078 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Leven, I., Guerra, R., Vanossi, A., Tosatti, E. & Hod, O. Multiwalled nanotube faceting unravelled. Nat. Nanotechnol. 11, 1082–1086 (2016).

  30. Yao, K. et al. Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures. Sci. Adv. 7, eabe8691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao, M. et al. Atomically phase-matched second-harmonic generation in a 2D crystal. Light Sci. Appl. 5, e16131 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Du, L. et al. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 3, 193–206 (2021).

    Article  CAS  Google Scholar 

  33. Abdelwahab, I. et al. Giant second-harmonic generation in ferroelectric NbOI2. Nat. Photon. 16, 644–650 (2022).

    Article  CAS  Google Scholar 

  34. Guo, Q. et al. Ultrathin quantum light source with van der Waals NbOCl2 crystal. Nature 613, 53–59 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Yang, D. et al. Spontaneous-polarization-induced photovoltaic effect in rhombohedrally stacked MoS2. Nat. Photon. 16, 469–474 (2022).

    Article  CAS  Google Scholar 

  36. Qin, F. et al. Superconductivity in a chiral nanotube. Nat. Commun. 8, 14465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, Y. J. et al. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature 570, 349–353 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Blase, X., Rubio, A., Louie, S. G. & Cohen, M. L. Stability and band gap constancy of boron nitride nanotubes. Europhys. Lett. 28, 335–340 (1994).

    Article  CAS  Google Scholar 

  39. Golberg, D., Bando, Y., Tang, C. C. & Zhi, C. Y. Boron nitride nanotubes. Adv. Mater. 19, 2413–2432 (2007).

    Article  CAS  Google Scholar 

  40. Cohen, M. L. & Zettl, A. The physics of boron nitride nanotubes. Phys. Today 63, 34–38 (2010).

    Article  CAS  Google Scholar 

  41. Guo, G. Y. & Lin, J. C. Second-harmonic generation and linear electro-optical coefficients of BN nanotubes. Phys. Rev. B 72, 075416 (2005).

    Article  Google Scholar 

  42. Margulis, V. A., Muryumin, E. E. & Gaiduk, E. A. Second-order nonlinear optical response of zigzag BN single-walled nanotubes. Phys. Rev. B 82, 235426 (2010).

    Article  Google Scholar 

  43. Golberg, D., Bando, Y., Bourgeois, L., Kurashima, K. & Sato, T. Insights into the structure of BN nanotubes. Appl. Phys. Lett. 77, 1979–1981 (2000).

  44. Celik-Aktas, A., Zuo, J. M., Stubbins, J. F., Tang, C. & Bando, Y. Structure and chirality distribution of multiwalled boron nitride nanotubes. Appl. Phys. Lett. 86, 133110 (2005).

  45. Tang, C., Bando, Y., Sato, T. & Kurashima, K. A novel precursor for synthesis of pure boron nitride nanotubes. Chem. Commun. 12, 1290–1291 (2002).

    Article  Google Scholar 

  46. Bai, X. D. et al. Deformation-driven electrical transport of individual boron nitride nanotubes. Nano Lett. 7, 632–637 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, K. et al. Direct determination of atomic structure of large-indexed carbon nanotubes by electron diffraction: application to double-walled nanotubes. J. Phys. D 42, 125412 (2009).

    Article  Google Scholar 

  48. Tancogne-Dejean, N. & Rubio, A. Atomic-like high-harmonic generation from two-dimensional materials. Sci. Adv. 4, eaao5207 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tang, H. et al. An on-chip platform for multi-degree-of-freedom control of two-dimensional quantum. Preprint at https://doi.org/10.48550/arXiv.2311.12030 (2023).

  50. Pakdel, A., Zhi, C. Y., Bando, Y., Nakayama, T. & Golberg, D. A comprehensive analysis of the CVD growth of boron nitride nanotubes. Nanotechnology 23, 215601 (2012).

  51. Yang, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510, 522–524 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. An, Q. et al. Direct growth of single-chiral-angle tungsten disulfide nanotubes using gold nanoparticle catalysts. Nat. Mater. 23, 347–355 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFA1403504 (K.L.)), National Natural Science Foundation of China (52025023 (K.L.), 12374167 (H.H.), 51991342 (K.L.), 62305003 (Chaojie Ma) and 92163206 (M.W.)), Guangdong Major Project of Basic and Applied Basic Research (2021B0301030002 (E.W. and K.L.)), Strategic Priority Research Program of Chinese Academy of Sciences (XDB33000000 (K.L.)), China Postdoctoral Science Foundation (2022M710232 (C.L.)) and New Cornerstone Science Foundation through the XPLORER PRIZE (K.L.).

Author information

Authors and Affiliations

Authors

Contributions

K.L. and H.H. supervised and conceived the projects. Chaojie Ma and C.L. performed the SHG and HHG experiments. Chaojie Ma and Chenjun Ma performed the chiroptical measurement. Chenjun Ma, H.H., C.H., J.L. and Z.S. contributed the theoretical calculations. Q.G., M.W., P.G. and X.B. conducted the TEM experiments. M.L., X.S. and W.W. prepared and processed BNNT samples. Q.G., J.Q. and B.Q. conducted the scanning electron microscopy and atomic force microscopy measurements. G.Y., Z.S. and E.W. suggested the optical experiments. All the authors discussed and contributed to writing the paper.

Corresponding authors

Correspondence to Hao Hong or Kaihui Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Qinwei An, Shengxi Huang and Enrique Diez for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Tables 1 and 2, Notes 1–3 and References.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Ma, C., Liu, C. et al. Strong chiroptical nonlinearity in coherently stacked boron nitride nanotubes. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01685-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01685-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing