Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Explainable El Niño predictability from climate mode interactions

Abstract

The El Niño–Southern Oscillation (ENSO) provides most of the global seasonal climate forecast skill1,2,3, yet, quantifying the sources of skilful predictions is a long-standing challenge4,5,6,7. Different sources of predictability affect ENSO evolution, leading to distinct global effects. Artificial intelligence forecasts offer promising advancements but linking their skill to specific physical processes is not yet possible8,9,10, limiting our understanding of the dynamics underpinning the advancements. Here we show that an extended nonlinear recharge oscillator (XRO) model shows skilful ENSO forecasts at lead times up to 16–18��months, better than global climate models and comparable to the most skilful artificial intelligence forecasts. The XRO parsimoniously incorporates the core ENSO dynamics and ENSO’s seasonally modulated interactions with other modes of variability in the global oceans. The intrinsic enhancement of ENSO’s long-range forecast skill is traceable to the initial conditions of other climate modes by means of their memory and interactions with ENSO and is quantifiable in terms of these modes’ contributions to ENSO amplitude. Reforecasts using the XRO trained on climate model output show that reduced biases in both model ENSO dynamics and in climate mode interactions can lead to more skilful ENSO forecasts. The XRO framework’s holistic treatment of ENSO’s global multi-timescale interactions highlights promising targets for improving ENSO simulations and forecasts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different sources of ENSO predictability and associated different global impacts.
Fig. 2: Superior efficacy of the XRO in simulating and reforecasting ENSO.
Fig. 3: Quantifying the increased ENSO forecast skills from the coupled influences outside equatorial Pacific during 1979–2022.
Fig. 4: Delineating contributions to ENSO amplitudes from other climate modes.
Fig. 5: Linking biases in the dynamics captured by the XRO to climate model deficiencies in forecasting ENSO during 1979–2022.

Similar content being viewed by others

Data availability

Datasets used in this paper are freely available. Observational data have links in Supplementary Table 2; NMME: https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/; 3D-Geoformer ENSO AI model forecast: http://msdc.qdio.ac.cn/data/metadata-special-detail?id=1602252663859298305; CESM1 LENS: https://www.cesm.ucar.edu/community-projects/lens/data-sets; CESM2 LENS: https://www.cesm.ucar.edu/community-projects/lens2/data-sets; MPI-ESM LENS: https://esgf-data.dkrz.de/projects/mpi-ge/; CMIP5 outputs: https://esgf-node.llnl.gov/projects/cmip5/; and MIROC6 LENS and CMIP6 outputs: https://esgf-node.llnl.gov/projects/cmip6/. All the map figures (Fig. 1a,c,d and Supplementary Figs. 1, 2 and 14) were generated using Python Cartopy v.0.22.0 (https://doi.org/10.5281/zenodo.1182735) (ref. 114). The source data for figures in the main text are available at https://doi.org/10.5281/zenodo.10951443 (ref. 115).

Code availability

The XRO model code is deposited at https://doi.org/10.5281/zenodo.10681114 (ref. 116). The code to calculate the predictive skill is available at https://github.com/pangeo-data/climpred.

References

  1. McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in earth science. Science 314, 1740–1745 (2006).

    ADS  CAS  PubMed  Google Scholar 

  2. Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018).

    ADS  CAS  PubMed  Google Scholar 

  3. Cai, W. et al. Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00199-z (2021).

  4. Cane, M. A., Zebiak, S. E. & Dolan, S. C. Experimental forecasts of El Niño. Nature 321, 827–832 (1986).

    ADS  Google Scholar 

  5. Barnston, A. G., Tippett, M. K., L’Heureux, M. L., Li, S. & DeWitt, D. G. Skill of real-time seasonal ENSO model predictions during 2002–11: is our capability increasing? Bull. Amer. Meteor. Soc. 93, 631–651 (2012).

    ADS  Google Scholar 

  6. Tang, Y. et al. Progress in ENSO prediction and predictability study. Natl Sci. Rev. 5, 826–839 (2018).

    Google Scholar 

  7. L’Heureux, M. L. et al. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J. et al.) 227–246 (American Geophysical Union, 2020).

  8. Ham, Y.-G., Kim, J.-H. & Luo, J.-J. Deep learning for multi-year ENSO forecasts. Nature 573, 568–572 (2019).

    ADS  CAS  PubMed  Google Scholar 

  9. Zhou, L. & Zhang, R.-H. A self-attention–based neural network for three-dimensional multivariate modeling and its skillful ENSO predictions. Sci. Adv. 9, eadf2827 (2023).

    PubMed  PubMed Central  Google Scholar 

  10. Wang, H., Hu, S. & Li, X. An interpretable deep learning ENSO forecasting model. Ocean Land Atmos. Res. 2, 0012 (2023).

    Google Scholar 

  11. Cai, W. et al. Pantropical climate interactions. Science 363, eaav4236 (2019).

    CAS  PubMed  Google Scholar 

  12. Chiang, J. C. H. & Vimont, D. J. Analogous Pacific and Atlantic Meridional Modes of tropical atmosphere–ocean variability. J. Clim. 17, 4143–4158 (2004).

    ADS  Google Scholar 

  13. Zhang, H., Clement, A. & Nezio, P. D. The South Pacific Meridional Mode: a mechanism for ENSO-like variability. J. Clim. 27, 769–783 (2014).

    ADS  Google Scholar 

  14. Jin, Y. et al. The Indian Ocean weakens ENSO spring predictability barrier: role of the Indian Ocean Basin and dipole modes. J. Clim. 36, 8331–8345 (2023).

    ADS  Google Scholar 

  15. Izumo, T., Vialard, J. & Lengaigne, M. Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat. Geosci. https://doi.org/10.1038/NGEO760 (2010).

  16. Jo, H.-S. et al. Southern Indian Ocean Dipole as a trigger for Central Pacific El Niño since the 2000s. Nat. Commun. 13, 6965 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ham, Y.-G., Kug, J.-S., Park, J.-Y. & Jin, F.-F. Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nature Geosci. 6, 112–116 (2013).

    ADS  CAS  Google Scholar 

  18. Ham, Y.-G., Kug, J.-S. & Park, J.-Y. Two distinct roles of Atlantic SSTs in ENSO variability: North Tropical Atlantic SST and Atlantic Niño. Geophys. Res. Lett. 40, 4012–4017 (2013).

    ADS  Google Scholar 

  19. Ham, Y.-G. et al. Inter-basin interaction between variability in the South Atlantic Ocean and the El Niño/Southern Oscillation. Geophys. Res. Lett. 48, e2021GL093338 (2021).

    ADS  Google Scholar 

  20. Jansen, M. F., Dommenget, D. & Keenlyside, N. Tropical atmosphere–ocean interactions in a conceptual framework. J. Climate 22, 550–567 (2009).

    ADS  Google Scholar 

  21. Frauen, C. & Dommenget, D. Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys. Res. Lett. 39, L02706 (2012).

    ADS  Google Scholar 

  22. Luo, J.-J. et al. Interaction between El Niño and Extreme Indian Ocean Dipole. J. Climate 23, 726–742 (2010).

    ADS  Google Scholar 

  23. Keenlyside, N. S., Ding, H. & Latif, M. Potential of equatorial Atlantic variability to enhance El Nino prediction. Geophys. Res. Lett. 40, 2278–2283 (2013).

    ADS  Google Scholar 

  24. Luo, J.-J., Liu, G., Hendon, H., Alves, O. & Yamagata, T. Inter-basin sources for two-year predictability of the multi-year La Nina event in 2010-2012. Sci. Rep. 7, 2276 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  25. Keenlyside, N. et al. in Interacting Climates of Ocean Basins: Observations, Mechanisms, Predictability, and Impacts (ed. Mechoso, C. R.) 258–292 (Cambridge Univ. Press, 2020).

  26. Exarchou, E. et al. Impact of equatorial Atlantic variability on ENSO predictive skill. Nat. Commun. 12, 1612 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alexander, M. A., Shin, S.-I. & Battisti, D. S. The influence of the trend, basin interactions, and ocean dynamics on tropical ocean prediction. Geophys. Res. Lett. 49, e2021GL096120 (2022).

    ADS  Google Scholar 

  28. Kido, S., Richter, I., Tozuka, T. & Chang, P. Understanding the interplay between ENSO and related tropical SST variability using linear inverse models. Clim. Dyn. 61,1029–1048 (2023).

  29. Stuecker, M. F. et al. Revisiting ENSO/Indian Ocean dipole phase relationships. Geophys. Res. Lett. 44, 2016GL072308 (2017).

    Google Scholar 

  30. Zhang, W., Jiang, F., Stuecker, M. F., Jin, F.-F. & Timmermann, A. Spurious North Tropical Atlantic precursors to El Niño. Nat. Commun. 12, 3096 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, S.-K. et al. On the fragile relationship between El Niño and California rainfall. Geophys. Res. Lett. 45, 907–915 (2018).

    ADS  Google Scholar 

  32. Jeong, H., Park, H.-S., Stuecker, M. F. & Yeh, S.-W. Distinct impacts of major El Niño events on Arctic temperatures due to differences in eastern tropical Pacific sea surface temperatures. Sci. Adv. 8, eabl8278 (2022).

    ADS  PubMed  PubMed Central  Google Scholar 

  33. McPhaden, M. J. A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett. 39, 2012GL051826 (2012).

  34. Choi, J., An, S.-I. & Yeh, S.-W. Decadal amplitude modulation of two types of ENSO and its relationship with the mean state. Clim. Dyn. 38, 2631–2644 (2012).

    Google Scholar 

  35. Zhao, Y., Jin, Y., Capotondi, A., Li, J. & Sun, D. The role of Tropical Atlantic in ENSO predictability barrier. Geophys. Res. Lett. 50, e2022GL101853 (2023).

    ADS  Google Scholar 

  36. Anderson, B. T. On the joint role of subtropical atmospheric variability and equatorial subsurface heat content anomalies in initiating the onset of ENSO events. J. Clim. 20, 1593–1599 (2007).

    ADS  Google Scholar 

  37. Larson, S. M., Pegion, K. V. & Kirtman, B. P. The South Pacific Meridional Mode as a thermally driven source of ENSO amplitude modulation and uncertainty. J. Clim. 31, 5127–5145 (2018).

    ADS  Google Scholar 

  38. Stuecker, M. F. Revisiting the Pacific Meridional Mode. Sci. Rep. 8, 3216 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  39. Park, J.-H. et al. Mid-latitude leading double-dip La Niña. Int. J. Climatol. 41, E1353–E1370 (2021).

    Google Scholar 

  40. Ding, R. et al. Multi-year El Niño events tied to the North Pacific oscillation. Nat. Commun. 13, 3871 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Geng, T. et al. Increased occurrences of consecutive La Niña events under global warming. Nature 619, 774–781 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kug, J.-S. & Kang, I.-S. Interactive feedback between ENSO and the Indian Ocean. J. Climate 19, 1784–1801 (2006).

    ADS  Google Scholar 

  43. Hasan, N. A., Chikamoto, Y. & McPhaden, M. J. The influence of tropical basin interactions on the 2020–2022 double-dip La Niña. Front. Clim. 4, 1001174 (2022).

  44. Iwakiri, T. et al. Triple-Dip La Niña in 2020–23: North Pacific atmosphere drives 2nd year La Niña. Geophys. Res. Lett. 50, e2023GL105763 (2023).

    ADS  Google Scholar 

  45. Zhao, S. et al. Improved predictability of the Indian Ocean dipole using a stochastic dynamical model compared to the North American multimodel ensemble forecast. Weather Forecast. 35, 379–399 (2020).

    ADS  Google Scholar 

  46. Chen, H.-C., Jin, F.-F., Zhao, S., Wittenberg, A. T. & Xie, S. ENSO dynamics in the E3SM-1-0, CESM2, and GFDL-CM4 climate models. J. Clim. 34, 9365–9384 (2021).

    ADS  Google Scholar 

  47. Chen, D., Cane, M. A., Kaplan, A., Zebiak, S. E. & Huang, D. Predictability of El Niño over the past 148 years. Nature 428, 733–736 (2004).

    ADS  CAS  PubMed  Google Scholar 

  48. Liu, T., Song, X., Tang, Y., Shen, Z. & Tan, X. ENSO predictability over the past 137 years based on a CESM ensemble prediction system. J. Clim. 35, 763–777 (2022).

    ADS  Google Scholar 

  49. Weisheimer, A. et al. Variability of ENSO forecast skill in 2-year global reforecasts over the 20th century. Geophys. Res. Lett. 49, e2022GL097885 (2022).

    ADS  PubMed  PubMed Central  Google Scholar 

  50. Lou, J., Newman, M. & Hoell, A. Multi-decadal variation of ENSO forecast skill since the late 1800s. npj Clim. Atmos. Sci. 6, 89 (2023).

    Google Scholar 

  51. Jin, F.-F. et al. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J. et al.) 119–151 (American Geophysical Union, 2020).

  52. Jin, F.-F. An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J. Atmos. Sci. 54, 811–829 (1997).

    ADS  Google Scholar 

  53. Hasselmann, K. Stochastic climate models, Part I. Theory. Tellus 28, 473–485 (1976).

    ADS  Google Scholar 

  54. Frankignoul, C. & Hasselmann, K. Stochastic climate models, Part II. Application to sea-surface temperature anomalies and thermocline variability. Tellus 29, 289–305 (1977).

    ADS  Google Scholar 

  55. Stuecker, M. F. The climate variability trio: stochastic fluctuations, El Niño, and the seasonal cycle. Geosci. Lett. 10, 51 (2023).

    ADS  Google Scholar 

  56. Meinen, C. S. & McPhaden, M. J. Observations of warm water volume changes in the Equatorial Pacific and their relationship to El Niño and La Niña. J. Climate 13, 3551–3559 (2000).

    ADS  Google Scholar 

  57. Richter, I., Stuecker, M. F., Takahashi, N. & Schneider, N. Disentangling the North Pacific Meridional Mode from tropical Pacific variability. npj Clim. Atmos. Sci. 5, 94 (2022).

    Google Scholar 

  58. Klein, S. A., Soden, B. J. & Lau, N. C. Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J. Climate 12, 917–932 (1999).

    ADS  Google Scholar 

  59. Xie, S.-P. et al. Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J. Climate 22, 730–747 (2009).

    ADS  Google Scholar 

  60. Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

    ADS  CAS  PubMed  Google Scholar 

  61. Webster, P. J., Moore, A. M., Loschnigg, J. P. & Leben, R. R. Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401, 356–360 (1999).

    ADS  CAS  PubMed  Google Scholar 

  62. Enfield, D. B. & Mayer, D. A. Tropical Atlantic sea surface temperature variability and its relation to El Nino southern oscillation. J. Geophys. Res.-Oceans 102, 929–945 (1997).

    ADS  Google Scholar 

  63. Zebiak, S. Air-sea interaction in the Equatorial Atlantic Region. J. Clim. 6, 1567–1568 (1993).

    ADS  Google Scholar 

  64. Nnamchi, H. C. et al. Thermodynamic controls of the Atlantic Niño. Nat. Commun. 6, 8895 (2015).

    ADS  CAS  PubMed  Google Scholar 

  65. Rodrigues, R. R., Campos, E. J. D. & Haarsma, R. The impact of ENSO on the South Atlantic Subtropical Dipole mode. J. Clim. 28, 2691–2705 (2015).

    ADS  Google Scholar 

  66. Jin, F.-F., Kim, S. T. & Bejarano, L. A coupled‐stability index for ENSO. Geophys. Res. Lett. 33, (2006).

  67. An, S.-I., Tziperman, E., Okumura, Y. M. & Li, T. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J. et al.) 153–172 (American Geophysical Union, 2020).

  68. An, S.-I. & Jin, F.-F. Nonlinearity and asymmetry of ENSO. J. Climate 17, 2399–2412 (2004).

    ADS  Google Scholar 

  69. Kang, I.-S. & Kug, J.-S. El Niño and La Niña sea surface temperature anomalies: asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res. Atmos. 107, 1–10 (2002).

    Google Scholar 

  70. Choi, K.-Y., Vecchi, G. A. & Wittenberg, A. T. ENSO transition, duration, and amplitude asymmetries: role of the nonlinear wind stress coupling in a conceptual model. J. Climate 26, 9462–9476 (2013).

    ADS  Google Scholar 

  71. Geng, T., Cai, W. & Wu, L. Two types of ENSO varying in tandem facilitated by nonlinear atmospheric convection. Geophys. Res. Lett. 47, e2020GL088784 (2020).

    ADS  Google Scholar 

  72. An, S.-I. et al. Main drivers of Indian Ocean Dipole asymmetry revealed by a simple IOD model. npj Clim. Atmos. Sci. 6, 93 (2023).

    Google Scholar 

  73. Lübbecke, J. F. & McPhaden, M. J. Symmetry of the Atlantic Niño mode. Geophys. Res. Lett. 44, 965–973 (2017).

    ADS  Google Scholar 

  74. Gebbie, G., Eisenman, I., Wittenberg, A. & Tziperman, E. Modulation of westerly wind bursts by sea surface temperature: a semistochastic feedback for ENSO. J. Atmos. Sci. 64, 3281–3295 (2007).

    ADS  Google Scholar 

  75. Jin, F.-F., Lin, L., Timmermann, A. & Zhao, J. Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys. Res. Lett. 34, 2006GL027372 (2007).

  76. Zhao, S., Jin, F.-F. & Stuecker, M. F. Improved predictability of the Indian Ocean dipole using seasonally modulated ENSO forcing forecasts. Geophys. Res. Lett. 46, 9980–9990 (2019).

    ADS  Google Scholar 

  77. Chen, H.-C. & Jin, F.-F. Simulations of ENSO phase-locking in CMIP5 and CMIP6. J. Clim. 34, 5135–5149 (2021).

    ADS  Google Scholar 

  78. Harrell, F. E. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis (Springer, 2001).

  79. Vimont, D. J. Analysis of the Atlantic meridional mode using linear inverse modeling: seasonality and regional influences. J. Clim. 25, 1194–1212 (2012).

    ADS  Google Scholar 

  80. Zhao, Y., Jin, Y., Li, J. & Capotondi, A. The role of extratropical Pacific in crossing ENSO spring predictability barrier. Geophys. Res. Lett. 49, e2022GL099488 (2022).

    ADS  Google Scholar 

  81. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

  82. Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    ADS  Google Scholar 

  83. Hirahara, S., Ishii, M. & Fukuda, Y. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 27, 57–75 (2014).

    ADS  Google Scholar 

  84. Köhl, A. Evaluating the GECCO3 1948–2018 ocean synthesis – a configuration for initializing the MPI-ESM climate model. Q. J. R. Meteorolog. Soc. 146, 2250–2273 (2020).

    ADS  Google Scholar 

  85. Behringer, D. & Xue, Y. Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. In Proc. Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface AMS 84th Annual Meeting (AMS, 2004).

  86. Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean Sci. 15, 779–808 (2019).

    ADS  Google Scholar 

  87. de Boisséson, E., Balmaseda, M. A. & Mayer, M. Ocean heat content variability in an ensemble of twentieth century ocean reanalyses. Clim. Dyn. 50, 3783–3798 (2018).

    Google Scholar 

  88. Yin, Y., Alves, O. & Oke, P. R. An ensemble ocean data assimilation system for seasonal prediction. Mon. Wea. Rev. 139, 786–808 (2011).

    ADS  Google Scholar 

  89. Carton, J. A. & Giese, B. S. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev. 136, 2999–3017 (2008).

    ADS  Google Scholar 

  90. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorolog. Soc. 146, 1999–2049 (2020).

    ADS  Google Scholar 

  91. Xie, P. P. & Arkin, P. A. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc. 78, 2539–2558 (1997).

    ADS  Google Scholar 

  92. Kirtman, B. P. et al. The North American Multimodel Ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal predictio. Bull. Amer. Meteor. Soc. 95, 585–601 (2014).

    ADS  Google Scholar 

  93. Mu, B., Qin, B. & Yuan, S. ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air–sea coupler. Geosci. Model Dev. 14, 6977–6999 (2021).

    ADS  Google Scholar 

  94. Gao, C., Zhou, L. & Zhang, R.-H. A transformer-based deep learning model for successful predictions of the 2021 second-year La Niña condition. Geophys. Res. Lett. 50, e2023GL104034 (2023).

    ADS  Google Scholar 

  95. Kay, J. E. et al. The Community Earth System Model (CESM) Large Ensemble Project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    ADS  Google Scholar 

  96. Rodgers, K. B. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn. 12, 1393–1411 (2021).

    ADS  Google Scholar 

  97. Shiogama, H. et al. MIROC6 Large Ensemble (MIROC6-LE): experimental design and initial analyses. Earth Syst. Dyn. 14, 1107–1124 (2023).

    ADS  Google Scholar 

  98. Maher, N. et al. The Max Planck Institute Grand Ensemble: enabling the exploration of climate system variability. J. Adv. Model. Earth Syst. 11, 2050–2069 (2019).

    ADS  Google Scholar 

  99. Brady, R. X. & Spring, A. climpred: verification of weather and climate forecasts. J. Open Source Softw. 6, 2781 (2021).

    ADS  Google Scholar 

  100. Zhang, Z., Ren, B. & Zheng, J. A unified complex index to characterize two types of ENSO simultaneously. Sci. Rep. 9, 8373 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  101. Stein, K., Timmermann, A., Schneider, N., Jin, F.-F. & Stuecker, M. F. ENSO seasonal synchronization theory. J. Climate 27, 5285–5310 (2014).

    ADS  Google Scholar 

  102. Levine, A. F. Z. & McPhaden, M. J. The annual cycle in ENSO growth rate as a cause of the spring predictability barrier. Geophys. Res. Lett. 42, 5034–5041 (2015).

    ADS  Google Scholar 

  103. Zhao, S., Jin, F.-F. & Stuecker, M. F. Understanding lead times of warm water volumes to ENSO sea surface temperature anomalies. Geophys. Res. Lett. 48, e2021GL094366 (2021).

    ADS  Google Scholar 

  104. Okumura, Y. M., Ohba, M., Deser, C. & Ueda, H. A proposed mechanism for the asymmetric duration of El Niño and La Niña. J. Clim. 24, 3822–3829 (2011).

    ADS  Google Scholar 

  105. DiNezio, P. N. & Deser, C. Nonlinear controls on the persistence of La Niña. J. Climate 27, 7335–7355 (2014).

    ADS  Google Scholar 

  106. Iwakiri, T. & Watanabe, M. Mechanisms linking multi-year La Niña with preceding strong El Niño. Sci. Rep. 11, 17465 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Iwakiri, T. & Watanabe, M. Multiyear ENSO dynamics as revealed in observations, climate model simulations, and the linear recharge oscillator. J. Clim. 35, 7625–7642 (2022).

    Google Scholar 

  108. Kim, J.-W., Yu, J.-Y. & Tian, B. Overemphasized role of preceding strong El Niño in generating multi-year La Niña events. Nat. Commun. 14, 6790 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kim, J.-W. & Yu, J.-Y. Single- and multi-year ENSO events controlled by pantropical climate interactions. npj Clim. Atmos. Sci. 5, 88 (2022).

    Google Scholar 

  110. Chen, H.-C., Jin, F.-F. & Jiang, L. The phase-locking of Tropical North Atlantic and the contribution of ENSO. Geophys. Res. Lett. 48, e2021GL095610 (2021).

    ADS  Google Scholar 

  111. Jiang, F. et al. Resolving the Tropical Pacific/Atlantic interaction vonundrum. Geophys. Res. Lett. 50, e2023GL103777 (2023).

    ADS  Google Scholar 

  112. Trenberth, K. E. The definition of El Niño. Bull. Am. Meteorol. Soc. 78, 2771–2778 (1997).

    ADS  Google Scholar 

  113. Enfield, D. B., Mestas-Nuñez, A. M., Mayer, D. A. & Cid-Serrano, L. How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? J. Geophys. Res. Oceans 104, 7841–7848 (1999).

    ADS  Google Scholar 

  114. Elson, P. et al. SciTools/cartopy v.0.22.0. Zenodo https://doi.org/10.5281/zenodo.1182735 (2023).

  115. Zhao, S. Source data for ‘Explainable El Niño predictability from climate mode interactions’. Zenodo https://doi.org/10.5281/zenodo.10951443 (2024).

  116. Zhao, S. Extended nonlinear recharge oscillator (XRO) model for ‘Explainable El Niño predictability from climate mode interactions’. Zenodo https://doi.org/10.5281/zenodo.10681114 (2024).

Download references

Acknowledgements

S.Z. and F.-F.J. were supported by the US National Science Foundation (NSF) grant no. AGS-2219257 and NOAA’s Climate Program Office’s Modelling, Analysis, Predictions, and Projections (MAPP) Program grant no. NA23OAR2007440. M.F.S. was supported by NSF grant no. AGS-2141728. M.F.S. and S.Z. were supported by NOAA’s Climate Program Office’s MAPP Program grant no. NA20OAR4310445. P.R.T. and S.Z. were supported by National Aeronautics and Space Administration grant no. 80NSSC20K1241. J.-S.K. was supported by the National Research Foundation of Korea grant funded by the Korean government (grant no. NRF-2022R1A3B1077622). M.A.C. was supported by NSF award no. OCE-2219829. This is International Pacific Research Center publication 1620, SOEST contribution 11800 and Pacific Marine Environmental Laboratory contribution 5579.

Author information

Authors and Affiliations

Authors

Contributions

F.-F.J., S.Z. and M.F.S. conceptualized the research. S.Z. designed the model and experiments, conducted the analysis, produced the figures, and wrote the initial manuscript, in discussion with F.-F.J. F.-F.J., W.C., M.F.S. and S.Z. structured the paper. A.T.W., M.F.S. and S.Z. designed the LENS perfect model experiments. M.A.C. coined the acronym XRO. All authors contributed to interpreting the results and improving the paper.

Corresponding author

Correspondence to Fei-Fei Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Rong-Hua Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Seasonally-modulated strength of mode interactions in observations and CMIP5/6 models, as diagnosed from the linear part of the XRO model.

(a) ENSO recharge-oscillator coefficients, (b) Coupling processes denoted by the contribution of other modes to the tendencies of ENSO SSTA and WWV anomalies, (c) ENSO-forced processes denoted by the contribution of ENSO SSTA and WWV anomalies to the SSTA tendency of other modes, (d) Interactions among NPMM, SPMM, IOB, IOD, SIOD, TNA, ATL3, and SASD. The coefficient \({L}_{{ij}}\) has been normalized by a factor of \({\sigma }_{j}\)/\({\sigma }_{i}\), where \({\sigma }_{i}\) and \({\sigma }_{j}\) are the monthly standard deviations of the indices in row \(i\) and column \(j\), respectively, so that all coefficients are comparable, and the units are year−1. The diagonal panels (blue frames) show the damping rate for each index. The black curves with shading show the XRO fit to the ORAS5 reanalysis (with 10%–90% spread band from the cross-validated fitting excluding 3-year data, see “Cross-validated reforecasts” in Methods), and the red curves with shading show the ensemble mean with 10%–90% spread band of the 91 CMIP5/6 historical simulations. ENSO can be strongly driven by climate modes in extratropical Pacific, Indian Ocean, and Atlantic Ocean, which in some seasons are as important as the dynamics internal to the equatorial Pacific. Most of the non-ENSO modes are more strongly driven by ENSO (and their own damping) than by any of the other non-ENSO modes in other basins. The climate models underestimate the strength of most of the mode interactions and miss the seasonality.

Extended Data Fig. 2 Decadal change in the ENSO forecast correlation skill.

a, The all-months correlation skill of the 3-month running mean Niño3.4 index verified on 1950–1970 for the out-of-sample XRO fitted on 1973–2022 (red curve), out-of-sample nRO fitted on 1973–2022 (magenta curve), in-sample XRO fitted on 1950–1970 (black dashed curve) and in-sample XRO fitted on the full-period 1950–2022 (blue dashed curve). The bottom inset shows the time series of Niño3.4 index for out-of-sample training (blue) and verifying (orange) periods, respectively. b-c, same as a, but verifying on 1972–1992 and 2002–2022, respectively. The XRO is superior to the nRO regardless the verifying periods and decadal changes of ENSO forecast skill.

Extended Data Fig. 3 Test of additivity (i.e., linearity) of the sensitivity experiments.

a, Regression slope and linear correlation coefficients for the Niño3.4 SSTA forecasts between the effects of the uninitialized ExPO+IO + AO experiment (\({\rm{XRO}}-{U}_{{\rm{ExPO}}+{\rm{IO}}+{\rm{AO}}}\)) and the sum of the effects of the individual uninitialized ExPO, IO, and AO experiments (\(3\ast {\rm{XRO}}-{U}_{{\rm{ExPO}}}-{U}_{{\rm{IO}}}-{U}_{{\rm{AO}}}\)). b and c, same as a, but for decoupling experiments (\({\rm{XRO}}-{D}_{{\rm{ExPO}}+{\rm{IO}}+{\rm{AO}}}\) vs. \(3\ast {\rm{XRO}}-{D}_{{\rm{ExPO}}}-{D}_{{\rm{IO}}}-{D}_{{\rm{AO}}}\)) and relaxing towards observation experiments (\({\rm{XRO}}-{R}_{{\rm{ExPO}}+{\rm{IO}}+{\rm{AO}}}\) vs. \(3\ast {\rm{XRO}}-{R}_{{\rm{ExPO}}}-{R}_{{\rm{IO}}}-{R}_{{\rm{AO}}}\)), respectively. d, e the all-months correlation skill (d) and RMSE (e) of the 3-month running mean Niño3.4 index, as a function of the forecast lead month in the control experiment (black line) and sensitivity experiments: the uninitialized ExPO+IO + AO experiment (solid red line) and sum of uninitialized ExPO, IO, and AO individually (dashed red line), the decoupling ExPO+IO + AO experiment (solid blue line) and sum of decoupling ExPO, IO, and AO individually (dashed blue line), and the relaxing ExPO+IO + AO to observation experiment (solid magenta line) and sum of relaxing ExPO, IO, and AO to observation individually (dashed magenta line). The individual basin uninitialized experiments are additive with the slopes and correlations at all lead months being very close to 1. But the individual basin decoupling experiments and the individual relaxation towards observations experiments are not additive, owing to a nonlinear dependence on the operator parameters. The sum of the effects of decoupling ExPO, IO, and AO individually is much larger than the effect of decoupling ExPO+IO + AO, suggesting that the decoupling experiment framework overestimates the contribution of each basin, given the presence of indirect pathways due to interactions among basins.

Extended Data Fig. 4 Influence of the memory effect outside the equatorial Pacific on ENSO forecast skill.

Shown are the all-months correlation skill (a) and RMSE (b) of the 3-month running mean Niño3.4 index, as a function of the forecast lead month in the XRO forecast (black), the nRO forecast (grey triangle), and the “Losing memory” sensitivity experiments (colour curves) by adding different damping rates (ranging from a strong damping rate of –(5 day)−1 implying no memory to a weak damping rate of –(360 day)−1 implying longer memory) to the non-ENSO modes (See “Losing memory experiments” in Methods). The initial condition memory effect of the climate modes outside equatorial Pacific extends the skill of ENSO forecasts.

Extended Data Fig. 5 Contribution of each climate mode’s initialization to ENSO correlation skill.

Shown is the forecast skill difference of the Niño3.4 SSTA index, as a function of initial time and target month, between the control and uninitialized climate mode sensitivity experiments for the NPMM, SPMM, IOB, IOD, SIOD, TNA, ATL3, and SASD, respectively. The contributions of the IOD, NPMM, and TNA dominate the ENSO forecast skill improvement.

Extended Data Fig. 6 Impacts of climate-mode initialization to ENSO forecasts.

Shown is the difference of Niño3.4 SSTA (shading) and WWV anomalies (contours with interval of 0.6 m, positive in red and negative in black dashed, zero omitted), as a function of forecast lead and target time, between control and uninitialized climate mode experiments for NPMM, SPMM, IOB, IOD, SIOD, TNA, ATL3, and SASD, respectively. Vertical reference dashed lines denote December of El Niño (red) and La Niña (blue) years, respectively. The normalized time series of each climate mode SSTA index is indicated in the bottom axis; the black arrows indicate the flow of forecast integration started from the selected time in the bottom. The XRO sensitivity experiments quantify how the initial states of key climate modes affect subsequent ENSO events.

Extended Data Fig. 7 Impacts on ENSO forecast skill of correcting biases in the XRO parameters fitted to individual CMIP simulations.

Shown is the difference of the all-months correlation skill for the Niño3.4 SSTA index, between the corrected-parameter forecast experiment and the XROm experiment trained solely on CMIP model outputs. (a) Effect of correcting linear operators (\({{\rm{X}}{\rm{R}}{\rm{O}}}_{{\bf{L}}}^{m}\)- XROm), (b) effect of correcting ENSO internal linear dynamics (\({{\rm{X}}{\rm{R}}{\rm{O}}}_{{{\bf{L}}}_{{\rm{E}}{\rm{N}}{\rm{S}}{\rm{O}}}}^{m}\)- XROm), (c) effect of correcting remote climate mode feedbacks onto ENSO (\({{\rm{X}}{\rm{R}}{\rm{O}}}_{{{\bf{C}}}_{1}}^{m}\)- XROm), and (d) effect of correcting ENSO teleconnections to remote climate modes (\({{\rm{X}}{\rm{R}}{\rm{O}}}_{{{\bf{C}}}_{2}}^{m}\)- XROm). The model is sorted by the averaged correlation skill of the XROm forecast at 6–15 lead months. Reforecasts using the XRO trained on global climate model output show that correcting CGCMs’ dynamical biases in ENSO and climate mode interactions lead to more skilful ENSO forecasts. Most important is correcting ENSO biases (which improves skill at longest lead-times), followed by correcting the remote climate mode impact on ENSO (which improves skill at intermediate leads). Less skill is gained by improving ENSO’s teleconnection to the remote modes.

Extended Data Fig. 8 Correlation forecast skill for the Indian Ocean Dipole, using the XRO trained with climate model outputs.

(a) The correlation skill of the IOD index in Sep-Oct-Nov (SON) as a function of forecast lead, in the XROm trained solely on 91 individual CMIP model outputs (grey curves), the XRO trained on observations (red curve), and the original (not XRO) multi-model mean of the ensemble means of the forecasts from the NMME models (black). (b) the ensemble mean and 10%–90% spread band of the changes in correlation skill for the IOD index, obtained by correcting the ENSO internal linear dynamics (\({{\rm{X}}{\rm{R}}{\rm{O}}}_{{{\bf{L}}}_{{\rm{E}}{\rm{N}}{\rm{S}}{\rm{O}}}}^{m}\)- XROm, red), or the remote-mode feedbacks onto ENSO (\({{\rm{X}}{\rm{R}}{\rm{O}}}_{{{\bf{C}}}_{1}}^{m}\)- XROm, magenta), or the ENSO teleconnections to remote modes (\({{\rm{X}}{\rm{R}}{\rm{O}}}_{{{\bf{C}}}_{2}}^{m}\)- XROm, blue). Reforecasts using the XRO trained on climate model output show that reducing CGCM biases in the dynamics of ENSO’s climate mode interactions improves IOD forecasts.

Extended Data Table 1 Details of the XRO forecasting experiments based on observations (1979–2022)
Extended Data Table 2 Details of the XRO forecasting experiments using global climate model output as training data

Supplementary information

Supplementary Information

This file contains Supplementary Text, Tables 1–5, Figs. 1–18 and references.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Jin, FF., Stuecker, M.F. et al. Explainable El Niño predictability from climate mode interactions. Nature 630, 891–898 (2024). https://doi.org/10.1038/s41586-024-07534-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07534-6

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene