Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Titanium:sapphire-on-insulator integrated lasers and amplifiers

A Publisher Correction to this article was published on 09 July 2024

This article has been updated

Abstract

Titanium:sapphire (Ti:sapphire) lasers have been essential for advancing fundamental research and technological applications, including the development of the optical frequency comb1, two-photon microscopy2 and experimental quantum optics3,4. Ti:sapphire lasers are unmatched in bandwidth and tuning range, yet their use is restricted because of their large size, cost and need for high optical pump powers5. Here we demonstrate a monocrystalline titanium:sapphire-on-insulator (Ti:SaOI) photonics platform that enables dramatic miniaturization, cost reduction and scalability of Ti:sapphire technology. First, through the fabrication of low-loss whispering-gallery-mode resonators, we realize a Ti:sapphire laser operating with an ultralow, sub-milliwatt lasing threshold. Then, through orders-of-magnitude improvement in mode confinement in Ti:SaOI waveguides, we realize an integrated solid-state (that is, non-semiconductor) optical amplifier operating below 1 μm. We demonstrate unprecedented distortion-free amplification of picosecond pulses to peak powers reaching 1.0 kW. Finally, we demonstrate a tunable integrated Ti:sapphire laser, which can be pumped with low-cost, miniature, off-the-shelf green laser diodes. This opens the doors to new modalities of Ti:sapphire lasers, such as massively scalable Ti:sapphire laser-array systems for several applications. As a proof-of-concept demonstration, we use a Ti:SaOI laser array as the sole optical control for a cavity quantum electrodynamics experiment with artificial atoms in silicon carbide6. This work is a key step towards the democratization of Ti:sapphire technology through a three-orders-of-magnitude reduction in cost and footprint and introduces solid-state broadband amplification of sub-micron wavelength light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Low-loss photonics and sub-milliwatt threshold Ti:sapphire laser in monocrystalline sapphire-on-insulator.
Fig. 2: Integrated optical amplifier in Ti:SaOI.
Fig. 3: Widely tunable, narrow-linewidth chip-integrated Ti:sapphire laser.
Fig. 4: Quantum photonics with artificial atoms driven by integrated Ti:SaOI lasers.

Similar content being viewed by others

Data availability

The data used to support the findings in this work are presented in the main text and Supplementary Information.

Change history

References

  1. Holzwarth, R. et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Semeghini, G. et al. Probing topological spin liquids on a programmable quantum simulator. Science 374, 1242–1247 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Moulton, P. F. Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Am. B 3, 125–133 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Lukin, D. M. et al. Two-emitter multimode cavity quantum electrodynamics in thin-film silicon carbide photonics. Phys. Rev. X 13, 011005 (2023).

    CAS  Google Scholar 

  7. Moulton, P. Ti-doped sapphire: tunable solid-state laser. Opt. News 8, 9 (1982).

    Article  Google Scholar 

  8. Morgner, U. et al. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Opt. Lett. 24, 411–413 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Prakash, R. et al. Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat. Methods 9, 1171–1179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu, C. & Webb, W. W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B 13, 481–491 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Leedle, K. J., Pease, R. F., Byer, R. L. & Harris, J. S. Laser acceleration and deflection of 96.3 keV electrons with a silicon dielectric structure. Optica 2, 158–161 (2015).

    Article  ADS  CAS  Google Scholar 

  12. Kfir, O. et al. Controlling free electrons with optical whispering-gallery modes. Nature 582, 46–49 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Rugar, A. E. et al. Quantum photonic interface for tin-vacancy centers in diamond. Phys. Rev. X 11, 031021 (2021).

    CAS  Google Scholar 

  15. Rizzo, A. et al. Massively scalable Kerr comb-driven silicon photonic link. Nat. Photon. 17, 781–790 (2023).

    Article  ADS  CAS  Google Scholar 

  16. Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Riemensberger, J. et al. A photonic integrated continuous-travelling-wave parametric amplifier. Nature 612, 56–61 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Xiang, C. et al. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 620, 78–85 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou, Z. et al. Prospects and applications of on-chip lasers. eLight 3, 1–25 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tran, M. A. et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 610, 54–60 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Corato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photon. 17, 157–164 (2023).

    Article  ADS  CAS  Google Scholar 

  23. Zhang, Z. et al. Photonic integration platform for rubidium sensors and beyond. Optica 10, 752–753 (2023).

    Article  CAS  Google Scholar 

  24. Ahmad, F. R., Tseng, Y. W., Kats, M. A. & Rana, F. Energy limits imposed by two-photon absorption for pulse amplification in high-power semiconductor optical amplifiers. Opt. Lett. 33, 1041–1043 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Chang, L., Liu, S. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photon. 16, 95–108 (2022).

    Article  ADS  CAS  Google Scholar 

  26. Liu, Y. et al. A photonic integrated circuit–based erbium-doped amplifier. Science 376, 1309–1313 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Liu, Y. et al. A fully hybrid integrated erbium-based laser. Preprint at https://arxiv.org/abs/2305.03652 (2023).

  28. Grivas, C., Shepherd, D. P., May-Smith, T. C., Eason, R. W. & Pollnau, M. Single-transverse-mode Ti:sapphire rib waveguide laser. Opt. Express 13, 210–215 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Grivas, C. et al. Generation of multi-gigahertz trains of phase-coherent femtosecond laser pulses in Ti:sapphire waveguides. Laser Photon. Rev. 12, 1800167 (2018).

    Article  ADS  Google Scholar 

  30. Grivas, C., Corbari, C., Brambilla, G. & Lagoudakis, P. G. Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses. Opt. Lett. 37, 4630–4632 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Yang, T.-T. et al. Widely tunable, 25-mW power, Ti:sapphire crystal-fiber laser. IEEE Photon. Technol. Lett. 31, 1921–1924 (2019).

    Article  ADS  Google Scholar 

  32. Wang, S.-C. et al. Laser-diode pumped glass-clad Ti:sapphire crystal fiber laser. Opt. Lett. 41, 3217–3220 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Azeem, F. et al. Ultra-low threshold titanium-doped sapphire whispering-gallery laser. Adv. Opt. Mater. 10, 2102137 (2022).

    Article  CAS  Google Scholar 

  34. Wang, Y., Holguín-Lerma, J. A., Vezzoli, M., Guo, Y. & Tang, H. X. Photonic-circuit-integrated titanium:sapphire laser. Nat. Photon. 17, 338–345 (2023).

    Article  ADS  CAS  Google Scholar 

  35. Guo, Y. et al. Hybrid integrated external cavity laser with a 172-nm tuning range. APL Photon. 7, 066101 (2022).

    Article  ADS  CAS  Google Scholar 

  36. Guo, J. et al. E-band widely tunable, narrow linewidth heterogeneous laser on silicon. APL Photon. 8, 046114 (2023).

    Article  ADS  CAS  Google Scholar 

  37. Lukin, D. M. et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photon. 14, 330–334 (2020).

    Article  ADS  CAS  Google Scholar 

  38. Bouma, B. E. et al. Optical coherence tomography. Nat. Rev. Methods Primers 2, 79 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Drexler, W. et al. In vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 24, 1221–1223 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355–358 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Major, A., Yoshino, F., Nikolakakos, I., Aitchison, J. S. & Smith, P. W. E. Dispersion of the nonlinear refractive index in sapphire. Opt. Lett. 29, 602–604 (2004).

    Article  ADS  PubMed  Google Scholar 

  42. Shtyrkova, K. et al. Integrated CMOS-compatible Q-switched mode-locked lasers at 1900nm with an on-chip artificial saturable absorber. Opt. Express 27, 3542–3556 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Byun, H. et al. Integrated low-jitter 400-MHz femtosecond waveguide laser. IEEE Photon. Technol. Lett. 21, 763–765 (2009).

    Article  ADS  CAS  Google Scholar 

  44. Franken, C. A. A. et al. Hybrid-integrated diode laser in the visible spectral range. Opt. Lett. 46, 4904–4907 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).

    Article  ADS  CAS  Google Scholar 

  46. Aslam, N. et al. Quantum sensors for biomedical applications. Nat. Rev. Phys. 5, 157–169 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Davis, E. J. et al. Probing many-body dynamics in a two-dimensional dipolar spin ensemble. Nat. Phys. 19, 836–844 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Evans, R. E. et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662–665 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Lukin, D. M. et al. Multiemitter cavity quantum electrodynamics in 4H-silicon carbide-on-insulator photonics. In CLEO 2023 Fundamental Science, Technical Digest Series FTu3C.4 (Optica Publishing Group, 2023).

  51. Catanzaro, D., Lukin, D. M., Lustig, E., Guidry, M. A. & Vučković, J. Cryogenic fiber-coupled waveguide probe co-integrated with electrical control lines. In CLEO 2023 Science and Innovations, Technical Digest Series JTu2A.47 (Optica Publishing Group, 2023).

  52. Nagy, R. et al. Quantum properties of dichroic silicon vacancies in silicon carbide. Phys. Rev. Appl. 9, 034022 (2018).

    Article  ADS  Google Scholar 

  53. Levonian, D. et al. Optical entanglement of distinguishable quantum emitters. Phys. Rev. Lett. 128, 213602 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019).

    Article  ADS  CAS  Google Scholar 

  55. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. He, C. et al. Ultra-high Q alumina optical microresonators in the UV and blue bands. Opt. Express 31, 33923–33929 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Li, M. et al. Integrated pockels laser. Nat. Commun. 13, 5344 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao, H. et al. Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40, 2177–2180 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Ledezma, L. et al. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Optica 9, 303–308 (2022).

    Article  ADS  Google Scholar 

  60. Burton, H., Debardelaben, C., Amir, W. & Planchon, T. A. Temperature dependence of Ti:sapphire fluorescence spectra for the design of cryogenic cooled Ti:sapphire CPA laser. Opt. Express 25, 6954–6962 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Soykal, Ö. O., Dev, P. & Economou, S. E. Silicon vacancy center in 4 H-SiC: Electronic structure and spin-photon interfaces. Phys. Rev. B 93, 081207(R) (2016).

  62. Chen, T., Lee, H., Li, J. & Vahala, K. J. A general design algorithm for low optical loss adiabatic connections in waveguides. Opt. Express 20, 22819–22829 (2012).

    Article  ADS  PubMed  Google Scholar 

  63. van Rees, A. et al. Long-term absolute frequency stabilization of a hybrid-integrated InP-Si3N4 diode laser. IEEE Photon. J. 15, 1502408 (2023).

    Google Scholar 

Download references

Acknowledgements

We thank C. Langrock for his help with lapping and polishing, K. Yang for the discussions and guidance on fibre tapering, L. Mandyam for technical support in device fabrication and M. M. Fejer for access to laboratory equipment. We acknowledge funding support from the IET A. F. Harvey Prize, the Vannevar Bush Faculty Fellowship from the US Department of Defense, DARPA LUMOS and the AFOSR under award no. FA9550-23-1-0248. J.Y. acknowledges support from the National Defense Science and Engineering Graduate (NDSEG) Fellowship. K.V.G. acknowledges support from the Research Foundation—Flanders (12ZB520N). Part of this work was performed at the Stanford Nano Shared Facilities (SNSF)/Stanford Nanofabrication Facility (SNF), supported by the National Science Foundation under award no. ECCS-2026822.

Author information

Authors and Affiliations

Authors

Contributions

J.Y. and K.V.G. designed the devices. J.Y., K.V.G., D.M.L. and G.H.A. fabricated the devices. J.Y., K.V.G., D.M.L., M.A.G. and A.D.W. ran the device simulations. J.Y., K.V.G., D.M.L., M.A.G. and A.D.W. assisted with the experimental setup. J.Y., K.V.G., D.M.L. and M.A.G. conducted the measurements on the microdisk lasers. J.Y., K.V.G., D.M.L. and M.A.G. conducted the measurements on the waveguide amplifiers. J.Y., K.V.G. and D.M.L. conducted the measurements on the waveguide lasers. J.Y. and D.M.L. conducted the cavity QED experiment. J.Y., K.V.G. and D.M.L. analysed the data. All authors helped with editing the Article. J.V. supervised the work.

Corresponding author

Correspondence to Jelena Vučković.

Ethics declarations

Competing interests

J.Y. and D.M.L. are cofounders of Brightlight Photonics, which is commercializing integrated Ti:sapphire lasers. K.V.G. is an advisor to Brightlight Photonics. J.Y., K.V.G. and D.M.L. hold equity in Brightlight Photonics. J.V., D.M.L., M.A.G. and G.H.A. are coinventors on a patent application related to integrated Ti:sapphire lasers (patent no. WO 2021/022188). J.V., J.Y., K.V.G. and D.M.L. are coinventors on a patent application related to integrated Ti:sapphire amplifiers.

Peer review

Peer review information

Nature thanks Emir Salih Mağden, Johann Riemensberger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Diode-pumped on-chip Ti:Sapphire laser.

(a) Diagram of the measurement setup used in the diode-pumping experiments (MM: multi-mode, OSA: optical spectrum analyzer). (b) Measured optical spectrum of single-mode lasing at 848.7 nm and 858.3 nm, with a SMSR of 23.2 dB and 22.2 dB, respectively. (Inset) Image of the diode package used in these experiments.

Supplementary information

Supplementary Information

This file contains Supplementary Sections 1–10, including Supplementary Figs. 1–8, Supplementary Tables 1–3 and Supplementary References.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Van Gasse, K., Lukin, D.M. et al. Titanium:sapphire-on-insulator integrated lasers and amplifiers. Nature 630, 853–859 (2024). https://doi.org/10.1038/s41586-024-07457-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07457-2

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing