Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of antibody glycosylation in autoimmune and alloimmune kidney diseases

Abstract

Immunoglobulin glycosylation is a pivotal mechanism that drives the diversification of antibody functions. The composition of the IgG glycome is influenced by environmental factors, genetic traits and inflammatory contexts. Differential IgG glycosylation has been shown to intricately modulate IgG effector functions and has a role in the initiation and progression of various diseases. Analysis of IgG glycosylation is therefore a promising tool for predicting disease severity. Several autoimmune and alloimmune disorders, including critical and potentially life-threatening conditions such as systemic lupus erythematosus, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and antibody-mediated kidney graft rejection, are driven by immunoglobulin. In certain IgG-driven kidney diseases, including primary membranous nephropathy, IgA nephropathy and lupus nephritis, particular glycome characteristics can enhance in situ complement activation and the recruitment of innate immune cells, resulting in more severe kidney damage. Hypofucosylation, hypogalactosylation and hyposialylation are the most common IgG glycosylation traits identified in these diseases. Modulating IgG glycosylation could therefore be a promising therapeutic strategy for regulating the immune mechanisms that underlie IgG-driven kidney diseases and potentially reduce the burden of immunosuppressive drugs in affected patients.

Key points

  • Aberrant glycosylation of IgG is influenced by antibody subclass and antigen specificity and is established during B cell differentiation and maturation within germinal centres.

  • Hypogalactosylation of the fragment crystallizable (Fc) of anti-PLA2R1 is a key feature of primary membranous nephropathy.

  • Hypogalactosylation and hyposialylation of the Fc portion of anti-neutrophil cytoplasmic antibodies and total IgG in patients with anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis are associated with more severe disease and disease relapse.

  • Among patients with systemic lupus erythematosus, those with lupus nephritis have reduced levels of galactosylation of the Fc portion of total IgG.

  • In patients with IgA nephropathy, hypogalactosylated IgA1 triggers the generation of anti-hypogalactosylated IgA1 autoantibodies, leading to the formation of immune complexes.

  • Aberrant hyposialylation and hypofucosylation of donor-specific antibodies are associated with antibody-mediated rejection of kidney grafts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Glycosylation of IgG and IgA.
Fig. 2: Biosynthesis of N-linked oligosaccharides.
Fig. 3: Anti-inflammatory mechanisms of galactosylated IgG.
Fig. 4: Anti-inflammatory mechanisms of sialylated IgG.
Fig. 5: Factors that influence IgG glycosylation.
Fig. 6: Role of glycosylation in the pathophysiology of IgA nephropathy.

Similar content being viewed by others

References

  1. Leone, G. M., Mangano, K., Petralia, M. C., Nicoletti, F. & Fagone, P. Past, present and (foreseeable) future of biological anti-TNF alpha therapy. J. Clin. Med. 12, 1630 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lu, T., Zhang, J., Xu-Monette, Z. Y. & Young, K. H. The progress of novel strategies on immune-based therapy in relapsed or refractory diffuse large B-cell lymphoma. Exp. Hematol. Oncol. 12, 72 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pegram, M. et al. Evolving perspectives on the treatment of HR+/HER2+ metastatic breast cancer. Ther. Adv. Med. Oncol. 15, 17588359231187201 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rizzetto, G., De Simoni, E., Molinelli, E., Offidani, A. & Simonetti, O. Efficacy of pembrolizumab in advanced melanoma: a narrative review. Int. J. Mol. Sci. 24, 12383 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xiao, Z. & Murakhovskaya, I. Rituximab resistance in ITP and beyond. Front. Immunol. 14, 1215216 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yadav, S. et al. Role of daratumumab in the frontline management of multiple myeloma: a narrative review. Expert Rev. Hematol. 16, 743–760 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Schroeder, H. W. & Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 125, S41–52 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kerr, M. A. The structure and function of human IgA. Biochem. J. 271, 285–296 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de Sousa-Pereira, P. & Woof, J. M. IgA: structure, function, and developability. Antibodies 8, 57 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Keyt, B. A., Baliga, R., Sinclair, A. M., Carroll, S. F. & Peterson, M. S. Structure, function, and therapeutic use of IgM antibodies. Antibodies 9, 53 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sutton, B. J., Davies, A. M., Bax, H. J. & Karagiannis, S. N. IgE antibodies: from structure to function and clinical translation. Antibodies 8, 19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vidarsson, G., Dekkers, G. & Rispens, T. IgG subclasses and allotypes: from structure to effector functions. Front. Immunol. 5, 520 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schwab, I. & Nimmerjahn, F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat. Rev. Immunol. 13, 176–189 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Arnold, J. N., Wormald, M. R., Sim, R. B., Rudd, P. M. & Dwek, R. A. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Flynn, G. C., Chen, X., Liu, Y. D., Shah, B. & Zhang, Z. Naturally occurring glycan forms of human immunoglobulins G1 and G2. Mol. Immunol. 47, 2074–2082 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Baković, M. P. et al. High-throughput IgG Fc N-glycosylation profiling by mass spectrometry of glycopeptides. J. Proteome Res. 12, 821–831 (2013).

    Article  PubMed  Google Scholar 

  17. Anumula, K. R. Quantitative glycan profiling of normal human plasma derived immunoglobulin and its fragments Fab and Fc. J. Immunol. Methods 382, 167–176 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Jefferis, R. Glycosylation of natural and recombinant antibody molecules. Adv. Exp. Med. Biol. 564, 143–148 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Koers, J. et al. Differences in IgG autoantibody Fab glycosylation across autoimmune diseases. J. Allergy Clin. Immunol. 151, 1646–1654 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Bondt, A. et al. Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Mol. Cell Proteom. 13, 3029–3039 (2014).

    Article  CAS  Google Scholar 

  21. Beck, L. H. et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 361, 11–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grupper, A. et al. Recurrent membranous nephropathy after kidney transplantation: treatment and long-term implications. Transplantation 100, 2710–2716 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Passerini, P., Malvica, S., Tripodi, F., Cerutti, R. & Messa, P. Membranous nephropathy (MN) recurrence after renal transplantation. Front. Immunol. 10, 1326 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moroni, G. et al. Long-term outcome of renal transplantation in patients with idiopathic membranous glomerulonephritis (MN). Nephrol. Dial. Transpl. 25, 3408–3415 (2010).

    Article  Google Scholar 

  25. Zhu, D. et al. Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood 99, 2562–2568 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Dunn-Walters, D., Boursier, L. & Spencer, J. Effect of somatic hypermutation on potential N-glycosylation sites in human immunoglobulin heavy chain variable regions. Mol. Immunol. 37, 107–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. van de Bovenkamp, F. S. et al. Adaptive antibody diversification through N-linked glycosylation of the immunoglobulin variable region. Proc. Natl Acad. Sci. USA 115, 1901–1906 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Taylor, M. E. & Drickamer, K. Introduction to Glycobiology. (Oxford University Press, 2011).

  29. Aebi, M. N-linked protein glycosylation in the ER. Biochim. Biophys. Acta Mol. Cell Res. 1833, 2430–2437 (2013).

    Article  CAS  Google Scholar 

  30. Aebi, M., Bernasconi, R., Clerc, S. & Molinari, M. N-glycan structures: recognition and processing in the ER. Trends Biochem. Sci. 35, 74–82 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Breitling, J. & Aebi, M. N-linked protein glycosylation in the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 5, a013359 (2013).

  32. Kornfeld, R. & Kornfeld, S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Tu, L. & Banfield, D. K. Localization of Golgi-resident glycosyltransferases. Cell. Mol. Life Sci. 67, 29–41 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Jaśkiewicz, E. Retention of glycosyltransferases in the Golgi apparatus. Acta Biochim. Pol. 44, 173–179 (1997).

    Article  PubMed  Google Scholar 

  35. Hassinen, A. et al. Functional organization of Golgi N- and O-glycosylation pathways involves pH-dependent complex formation that is impaired in cancer cells. J. Biol. Chem. 286, 38329–38340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wuhrer, M. et al. Glycosylation profiling of immunoglobulin G (IgG) subclasses from human serum. Proteomics 7, 4070–4081 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Masuda, K. et al. Pairing of oligosaccharides in the Fc region of immunoglobulin G. FEBS Lett. 473, 349–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Knezević, A. et al. Variability, heritability and environmental determinants of human plasma N-glycome. J. Proteome Res. 8, 694–701 (2009).

    Article  PubMed  Google Scholar 

  39. Zauner, G. et al. Glycoproteomic analysis of antibodies. Mol. Cell Proteom. 12, 856–865 (2013).

    Article  CAS  Google Scholar 

  40. Kobata, A. The N-linked sugar chains of human immunoglobulin G: their unique pattern, and their functional roles. Biochim. Biophys. Acta 1780, 472–478 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Gudelj, I., Lauc, G. & Pezer, M. Immunoglobulin G glycosylation in aging and diseases. Cell. Immunol. 333, 65–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Štambuk, J. et al. Global variability of the human IgG glycome. Aging 12, 15222–15259 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Huffman, J. E. et al. Comparative performance of four methods for high-throughput glycosylation analysis of immunoglobulin G in genetic and epidemiological research. Mol. Cell Proteom. 13, 1598–1610 (2014).

    Article  CAS  Google Scholar 

  44. Shields, R. L. et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277, 26733–26740 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Subedi, G. P. & Barb, A. W. The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fc γ receptor. MAbs 8, 1512–1524 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Golay, J. et al. Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab. Blood 122, 3482–3491 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Dekkers, G. et al. Decoding the human immunoglobulin G-glycan repertoire reveals a spectrum of Fc-receptor- and complement-mediated-effector activities. Front. Immunol. 8, 877 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ferrara, C. et al. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcγRIII and antibodies lacking core fucose. Proc. Natl Acad. Sci. USA 108, 12669–12674 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ferrara, C., Stuart, F., Sondermann, P., Brünker, P. & Umaña, P. The carbohydrate at FcγRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J. Biol. Chem. 281, 5032–5036 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Harbison, A. & Fadda, E. An atomistic perspective on antibody-dependent cellular cytotoxicity quenching by core-fucosylation of IgG1 Fc N-glycans from enhanced sampling molecular dynamics. Glycobiology 30, 407–414 (2020).

    Article  PubMed  Google Scholar 

  51. Bruggeman, C. W. et al. Enhanced effector functions due to antibody defucosylation depend on the effector cell Fcγ receptor profile. J. Immunol. 199, 204–211 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Iida, S. et al. Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcγRIIIa. Clin. Cancer Res. 12, 2879–2887 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Kanda, Y. et al. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology 17, 104–118 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Okazaki, A. et al. Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcγRIIIa. J. Mol. Biol. 336, 1239–1249 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Nagelkerke, S. Q. et al. Inhibition of FcγR-mediated phagocytosis by IVIg is independent of IgG-Fc sialylation and FcγRIIb in human macrophages. Blood 124, 3709–3718 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Bologna, L. et al. Mechanism of action of type II, glycoengineered, anti-CD20 monoclonal antibody GA101 in B-chronic lymphocytic leukemia whole blood assays in comparison with rituximab and alemtuzumab. J. Immunol. 186, 3762–3769 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Niwa, R. et al. IgG subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal from Asn297-linked oligosaccharides. J. Immunol. Methods 306, 151–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Kapur, R. et al. Low anti-RhD IgG-Fc-fucosylation in pregnancy: a new variable predicting severity in haemolytic disease of the fetus and newborn. Br. J. Haematol. 166, 936–945 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sibéril, S. et al. Selection of a human anti-RhD monoclonal antibody for therapeutic use: impact of IgG glycosylation on activating and inhibitory FcγR functions. Clin. Immunol. 118, 170–179 (2006).

    Article  PubMed  Google Scholar 

  60. Sonneveld, M. E. et al. Antigen specificity determines anti-red blood cell IgG-Fc alloantibody glycosylation and thereby severity of haemolytic disease of the fetus and newborn. Br. J. Haematol. 176, 651–660 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Shrivastava, A., Joshi, S., Guttman, A. & Rathore, A. S. N-glycosylation of monoclonal antibody therapeutics: a comprehensive review on significance and characterization. Anal. Chim. Acta 1209, 339828 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. McHugh, J. Glycoengineering has therapeutic potential. Nat. Rev. Rheumatol. 14, 121–121 (2018).

    Article  PubMed  Google Scholar 

  63. Pereira, N. A., Chan, K. F., Lin, P. C. & Song, Z. The ‘less-is-more’ in therapeutic antibodies: afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. MAbs 10, 693–711 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Goede, V. et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N. Engl. J. Med. 370, 1101–1110 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Jefferis, R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat. Rev. Drug. Discov. 8, 226–234 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Fokkink, W. J. R. et al. Comparison of Fc N-glycosylation of pharmaceutical products of intravenous immunoglobulin G. PLoS One 10, e0139828 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pucić, M. et al. High throughput isolation and glycosylation analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations. Mol. Cell Proteom. 10, M111.010090 (2011).

    Article  Google Scholar 

  68. Schuster, M. et al. Improved effector functions of a therapeutic monoclonal Lewis Y-specific antibody by glycoform engineering. Cancer Res. 65, 7934–7941 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Benedetti, E. et al. Network inference from glycoproteomics data reveals new reactions in the IgG glycosylation pathway. Nat. Commun. 8, 1483 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Umaña, P., Jean-Mairet, J., Moudry, R., Amstutz, H. & Bailey, J. E. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol. 17, 176–180 (1999).

    Article  PubMed  Google Scholar 

  71. Hodoniczky, J., Zheng, Y. Z. & James, D. C. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol. Prog. 21, 1644–1652 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Zou, G. et al. Chemoenzymatic synthesis and Fcγ receptor binding of homogeneous glycoforms of antibody Fc domain. Presence of a bisecting sugar moiety enhances the affinity of Fc to FcγIIIa receptor. J. Am. Chem. Soc. 133, 18975–18991 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lifely, M. R., Hale, C., Boyce, S., Keen, M. J. & Phillips, J. Glycosylation and biological activity of CAMPATH-1H expressed in different cell lines and grown under different culture conditions. Glycobiology 5, 813–822 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Lu, L. L. et al. A functional role for antibodies in tuberculosis. Cell 167, 433–443.e14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pilkington, C., Basaran, M., Barlan, I., Costello, A. M. & Rook, G. A. Raised levels of agalactosyl IgG in childhood tuberculosis. Trans. R. Soc. Trop. Med. Hyg. 90, 167–168 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Pilkington, C., Yeung, E., Isenberg, D., Lefvert, A. K. & Rook, G. A. Agalactosyl IgG and antibody specificity in rheumatoid arthritis, tuberculosis, systemic lupus erythematosus and myasthenia gravis. Autoimmunity 22, 107–111 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Sjöwall, C. et al. Altered glycosylation of complexed native IgG molecules is associated with disease activity of systemic lupus erythematosus. Lupus 24, 569–581 (2015).

    Article  PubMed  Google Scholar 

  78. Tomana, M., Schrohenloher, R. E., Reveille, J. D., Arnett, F. C. & Koopman, W. J. Abnormal galactosylation of serum IgG in patients with systemic lupus erythematosus and members of families with high frequency of autoimmune diseases. Rheumatol. Int. 12, 191–194 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. Gudelj, I. et al. Low galactosylation of IgG associates with higher risk for future diagnosis of rheumatoid arthritis during 10 years of follow-up. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 2034–2039 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Gińdzieńska-Sieśkiewicz, E. et al. Changes of glycosylation of IgG in rheumatoid arthritis patients treated with methotrexate. Adv. Med. Sci. 61, 193–197 (2016).

    Article  PubMed  Google Scholar 

  81. van de Geijn, F. E. et al. Immunoglobulin G galactosylation and sialylation are associated with pregnancy-induced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study. Arthritis Res. Ther. 11, R193 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ercan, A. et al. Aberrant IgG galactosylation precedes disease onset, correlates with disease activity, and is prevalent in autoantibodies in rheumatoid arthritis. Arthritis Rheum. 62, 2239–2248 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rombouts, Y. et al. Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis. Ann. Rheum. Dis. 74, 234–241 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Dubé, R. et al. Agalactosyl IgG in inflammatory bowel disease: correlation with C-reactive protein. Gut 31, 431–434 (1990).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Šimurina, M. et al. Glycosylation of immunoglobulin G associates with clinical features of inflammatory bowel diseases. Gastroenterology 154, 1320–1333.e10 (2018).

    Article  PubMed  Google Scholar 

  86. Trbojević Akmačić, I. et al. Inflammatory bowel disease associates with proinflammatory potential of the immunoglobulin G glycome. Inflamm. Bowel Dis. 21, 1237–1247 (2015).

    PubMed  Google Scholar 

  87. Nakajima, S. et al. Functional analysis of agalactosyl IgG in inflammatory bowel disease patients. Inflamm. Bowel Dis. 17, 927–936 (2011).

    Article  PubMed  Google Scholar 

  88. Bond, A. et al. A detailed lectin analysis of IgG glycosylation, demonstrating disease specific changes in terminal galactose and N-acetylglucosamine. J. Autoimmun. 10, 77–85 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Bond, A., Alavi, A., Axford, J. S., Youinou, P. & Hay, F. C. The relationship between exposed galactose and N-acetylglucosamine residues on IgG in rheumatoid arthritis (RA), juvenile chronic arthritis (JCA) and Sjögren’s syndrome (SS). Clin. Exp. Immunol. 105, 99–103 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kemna, M. J. et al. Galactosylation and sialylation levels of IgG predict relapse in patients with PR3-ANCA associated vasculitis. EBioMedicine 17, 108–118 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Holland, M. et al. Hypogalactosylation of serum IgG in patients with ANCA-associated systemic vasculitis. Clin. Exp. Immunol. 129, 183–190 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Holland, M. et al. Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA-associated systemic vasculitis. Biochim. Biophys. Acta 1760, 669–677 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Selman, M. H. J. et al. IgG fc N-glycosylation changes in Lambert-Eaton myasthenic syndrome and myasthenia gravis. J. Proteome Res. 10, 143–152 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Fokkink, W.-J. R. et al. IgG Fc N-glycosylation in Guillain-Barré syndrome treated with immunoglobulins. J. Proteome Res. 13, 1722–1730 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Moore, J. S. et al. Increased levels of galactose-deficient IgG in sera of HIV-1-infected individuals. AIDS 19, 381–389 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Ackerman, M. E. et al. Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity. J. Clin. Invest. 123, 2183–2192 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vaccari, M. et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat. Med. 22, 762–770 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ho, C.-H. et al. Aberrant serum immunoglobulin G glycosylation in chronic hepatitis B is associated with histological liver damage and reversible by antiviral therapy. J. Infect. Dis. 211, 115–124 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Mehta, A. S. et al. Increased levels of galactose-deficient anti-Gal immunoglobulin G in the sera of hepatitis C virus-infected individuals with fibrosis and cirrhosis. J. Virol. 82, 1259–1270 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Boyd, P. N., Lines, A. C. & Patel, A. K. The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol. Immunol. 32, 1311–1318 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Peschke, B., Keller, C. W., Weber, P., Quast, I. & Lünemann, J. D. Fc-Galactosylation of human immunoglobulin gamma isotypes improves C1q binding and enhances complement-dependent cytotoxicity. Front. Immunol. 8, 646 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Malhotra, R. et al. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat. Med. 1, 237–243 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Dekkers, G., Rispens, T. & Vidarsson, G. Novel concepts of altered immunoglobulin G galactosylation in autoimmune diseases. Front. Immunol. 9, 553 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Tsuchiya, N. et al. Effects of galactose depletion from oligosaccharide chains on immunological activities of human IgG. J. Rheumatol. 16, 285–290 (1989).

    CAS  PubMed  Google Scholar 

  105. Yamaguchi, Y. et al. Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. Biochim. Biophys. Acta Gen. Subj. 1760, 693–700 (2006).

    Article  CAS  Google Scholar 

  106. Kiyoshi, M., Tsumoto, K., Ishii-Watabe, A. & Caaveiro, J. M. M. Glycosylation of IgG-Fc: a molecular perspective. Int. Immunol. 29, 311–317 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Nimmerjahn, F., Anthony, R. M. & Ravetch, J. V. Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc. Natl Acad. Sci. USA 104, 8433–8437 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. van de Geijn, F. E. et al. Mannose-binding lectin polymorphisms are not associated with rheumatoid arthritis — confirmation in two large cohorts. Rheumatology 47, 1168–1171 (2008).

    Article  PubMed  Google Scholar 

  109. van de Geijn, F. E. et al. Mannose-binding lectin does not explain the course and outcome of pregnancy in rheumatoid arthritis. Arthritis Res. Ther. 13, R10 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Karsten, C. M. et al. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB and dectin-1. Nat. Med. 18, 1401–1406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Heyl, K. A., Karsten, C. M. & Slevogt, H. Galectin-3 binds highly galactosylated IgG1 and is crucial for the IgG1 complex mediated inhibition of C5aReceptor induced immune responses. Biochem. Biophys. Res. Commun. 479, 86–90 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Yamada, K. et al. Galactosylation of IgG1 modulates FcγRIIB-mediated inhibition of murine autoimmune hemolytic anemia. J. Autoimmun. 47, 104–110 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Houde, D., Peng, Y., Berkowitz, S. A. & Engen, J. R. Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol. Cell Proteom. 9, 1716–1728 (2010).

    Article  CAS  Google Scholar 

  114. Kumpel, B. M., Rademacher, T. W., Rook, G. A., Williams, P. J. & Wilson, I. B. Galactosylation of human IgG monoclonal anti-D produced by EBV-transformed B-lymphoblastoid cell lines is dependent on culture method and affects Fc receptor-mediated functional activity. Hum. Antibodies Hybrid. 5, 143–151 (1994).

    CAS  Google Scholar 

  115. Kumpel, B. M., Wang, Y., Griffiths, H. L., Hadley, A. G. & Rook, G. A. The biological activity of human monoclonal IgG anti-D is reduced by β-galactosidase treatment. Hum. Antibodies Hybrid. 6, 82–88 (1995).

    Article  CAS  Google Scholar 

  116. Thomann, M., Reckermann, K., Reusch, D., Prasser, J. & Tejada, M. L. Fc-galactosylation modulates antibody-dependent cellular cytotoxicity of therapeutic antibodies. Mol. Immunol. 73, 69–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Thomann, M. et al. In vitro glycoengineering of IgG1 and its effect on Fc receptor binding and ADCC activity. PLoS One 10, e0134949 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kaneko, Y., Nimmerjahn, F. & Ravetch, J. V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Li, T. et al. Modulating IgG effector function by Fc glycan engineering. Proc. Natl Acad. Sci. USA 114, 3485–3490 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Scallon, B. J., Tam, S. H., McCarthy, S. G., Cai, A. N. & Raju, T. S. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol. Immunol. 44, 1524–1534 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Kissel, T. et al. IgG anti-citrullinated protein antibody variable domain glycosylation increases before the onset of rheumatoid arthritis and stabilizes thereafter: a cross-sectional study encompassing ~1,500 samples. Arthritis Rheumatol. 74, 1147–1158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Axford, J. S. et al. Changes in normal glycosylation mechanisms in autoimmune rheumatic disease. J. Clin. Invest. 89, 1021–1031 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bondt, A. et al. Association between galactosylation of immunoglobulin G and improvement of rheumatoid arthritis during pregnancy is independent of sialylation. J. Proteome Res. 12, 4522–4531 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. van Timmeren, M. M. et al. IgG glycan hydrolysis attenuates ANCA-mediated glomerulonephritis. J. Am. Soc. Nephrol. 21, 1103–1114 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Wuhrer, M. et al. Skewed Fc glycosylation profiles of anti-proteinase 3 immunoglobulin G1 autoantibodies from granulomatosis with polyangiitis patients show low levels of bisection, galactosylation, and sialylation. J. Proteome Res. 14, 1657–1665 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Tingting, L. et al. Characteristics of purified Anti-β2GPI IgG N-glycosylation associate with thrombotic, obstetric, and catastrophic antiphospholipid syndrome. Rheumatology 61, 1243–1254 (2021).

    Google Scholar 

  127. Aurer, I. et al. Aberrant glycosylation of Igg heavy chain in multiple myeloma. Coll. Antropol. 31, 247–251 (2007).

    CAS  PubMed  Google Scholar 

  128. Bosseboeuf, A. et al. Analysis of the targets and glycosylation of monoclonal IgAs From MGUS and myeloma patients. Front. Immunol. 11, 854 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mittermayr, S. et al. Polyclonal immunoglobulin G N-glycosylation in the pathogenesis of plasma cell disorders. J. Proteome Res. 16, 748–762 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Chen, G. et al. Human IgG Fc-glycosylation profiling reveals associations with age, sex, female sex hormones and thyroid cancer. J. Proteom. 75, 2824–2834 (2012).

    Article  CAS  Google Scholar 

  131. Kanoh, Y., Ohara, T., Tadano, T., Kanoh, M. & Akahoshi, T. Changes to N-linked oligosaccharide chains of human serum immunoglobulin G and matrix metalloproteinase-2 with cancer progression. Anticancer. Res. 28, 715–720 (2008).

    CAS  PubMed  Google Scholar 

  132. Kanoh, Y. et al. Analysis of the oligosaccharide chain of human serum immunoglobulin G in patients with localized or metastatic cancer. Oncology 66, 365–370 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Anthony, R. M. et al. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320, 373–376 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Washburn, N. et al. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proc. Natl Acad. Sci. USA 112, E1297–E1306 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Anthony, R. M., Wermeling, F., Karlsson, M. C. I. & Ravetch, J. V. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc. Natl Acad. Sci. USA 105, 19571–19578 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bruhns, P., Samuelsson, A., Pollard, J. W. & Ravetch, J. V. Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity 18, 573–581 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Anthony, R. M., Kobayashi, T., Wermeling, F. & Ravetch, J. V. Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway. Nature 475, 110–113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Siragam, V. et al. Intravenous immunoglobulin ameliorates ITP via activating Fcγ receptors on dendritic cells. Nat. Med. 12, 688–692 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Guhr, T. et al. Enrichment of sialylated IgG by lectin fractionation does not enhance the efficacy of immunoglobulin G in a murine model of immune thrombocytopenia. PLoS One 6, e21246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Campbell, I. K. et al. Therapeutic effect of IVIG on inflammatory arthritis in mice is dependent on the Fc portion and independent of sialylation or basophils. J. Immunol. 192, 5031–5038 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Leontyev, D. et al. Sialylation-independent mechanism involved in the amelioration of murine immune thrombocytopenia using intravenous gammaglobulin. Transfusion 52, 1799–1805 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Käsermann, F. et al. Analysis and functional consequences of increased Fab-sialylation of intravenous immunoglobulin (IVIG) after lectin fractionation. PLoS One 7, e37243 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  143. von Gunten, S. et al. IVIG pluripotency and the concept of Fc-sialylation: challenges to the scientist. Nat. Rev. Immunol. 14, 349 (2014).

    Article  Google Scholar 

  144. Tjon, A. S. W. et al. Intravenous immunoglobulin treatment in humans suppresses dendritic cell function via stimulation of IL-4 and IL-13 production. J. Immunol. 192, 5625–5634 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Sharma, M. et al. Intravenous immunoglobulin-induced IL-33 is insufficient to mediate basophil expansion in autoimmune patients. Sci. Rep. 4, 5672 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Siedlar, M. et al. Preparations of intravenous immunoglobulins diminish the number and proinflammatory response of CD14+ CD16++ monocytes in common variable immunodeficiency (CVID) patients. Clin. Immunol. 139, 122–132 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Ichiyama, T. et al. Intravenous immunoglobulin does not increase FcγRIIB expression on monocytes/macrophages during acute Kawasaki disease. Rheumatology 44, 314–317 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Shimomura, M. et al. Intravenous immunoglobulin does not increase FcγRIIB expression levels on monocytes in children with immune thrombocytopenia. Clin. Exp. Immunol. 169, 33–37 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Temming, A. R. et al. Human DC-SIGN and CD23 do not interact with human IgG. Sci. Rep. 9, 10 (2019).

    Article  Google Scholar 

  150. Yu, X. et al. Engineering hydrophobic protein-carbohydrate interactions to fine-tune monoclonal antibodies. J. Am. Chem. Soc. 135, 9723–9732 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Raju, T. S. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr. Opin. Immunol. 20, 471–478 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Crispin, M., Yu, X. & Bowden, T. A. Crystal structure of sialylated IgG Fc: implications for the mechanism of intravenous immunoglobulin therapy. Proc. Natl Acad. Sci. USA 110, E3544–3546 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fang, J., Richardson, J., Du, Z. & Zhang, Z. Effect of Fc-glycan structure on the conformational stability of IgG revealed by hydrogen/deuterium exchange and limited proteolysis. Biochemistry 55, 860–868 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Barb, A. W. et al. NMR characterization of immunoglobulin G Fc glycan motion on enzymatic sialylation. Biochemistry 51, 4618–4626 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Zhang, Z., Shah, B. & Richardson, J. Impact of Fc N-glycan sialylation on IgG structure. MAbs 11, 1381–1390 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Powell, L. D., Sgroi, D., Sjoberg, E. R., Stamenkovic, I. & Varki, A. Natural ligands of the B cell adhesion molecule CD22β carry N-linked oligosaccharides with ɑ-2,6-linked sialic acids that are required for recognition. J. Biol. Chem. 268, 7019–7027 (1993).

    Article  CAS  PubMed  Google Scholar 

  157. Massoud, A. H. et al. Dendritic cell immunoreceptor: a novel receptor for intravenous immunoglobulin mediates induction of regulatory T cells. J. Allergy Clin. Immunol. 133, 853–863.e5 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Séïté, J.-F. et al. IVIg modulates BCR signaling through CD22 and promotes apoptosis in mature human B lymphocytes. Blood 116, 1698–1704 (2010).

    Article  PubMed  Google Scholar 

  159. Wang, T. T. et al. Anti-HA glycoforms drive B cell affinity selection and determine influenza vaccine efficacy. Cell 162, 160–169 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Quast, I. et al. Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. J. Clin. Invest. 125, 4160–4170 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Wallick, S. C., Kabat, E. A. & Morrison, S. L. Glycosylation of a VH residue of a monoclonal antibody against alpha (1–6) dextran increases its affinity for antigen. J. Exp. Med. 168, 1099–1109 (1988).

    Article  CAS  PubMed  Google Scholar 

  162. Tachibana, H., Kim, J. Y. & Shirahata, S. Building high affinity human antibodies by altering the glycosylation on the light chain variable region in N-acetylglucosamine-supplemented hybridoma cultures. Cytotechnology 23, 151–159 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Leibiger, H., Wüstner, D., Stigler, R. D. & Marx, U. Variable domain-linked oligosaccharides of a human monoclonal IgG: structure and influence on antigen binding. Biochem. J. 338, 529–538 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wright, A., Tao, M. H., Kabat, E. A. & Morrison, S. L. Antibody variable region glycosylation: position effects on antigen binding and carbohydrate structure. EMBO J. 10, 2717–2723 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bondt, A., Wuhrer, M., Kuijper, T. M., Hazes, J. M. W. & Dolhain, R. J. E. M. Fab glycosylation of immunoglobulin G does not associate with improvement of rheumatoid arthritis during pregnancy. Arthritis Res. Ther. 18, 274 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Hafkenscheid, L. et al. N-linked glycans in the variable domain of IgG anti-citrullinated protein antibodies predict the development of rheumatoid arthritis. Arthritis Rheumatol. 71, 1626–1633 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lardinois, O. M. et al. Immunoglobulins G from patients with ANCA-associated vasculitis are atypically glycosylated in both the Fc and Fab regions and the relation to disease activity. PLoS One 14, e0213215 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. van de Bovenkamp, F. S., Hafkenscheid, L., Rispens, T. & Rombouts, Y. The emerging importance of IgG fab glycosylation in immunity. J. Immunol. 196, 1435–1441 (2016).

    Article  PubMed  Google Scholar 

  169. Xu, P.-C. et al. Influence of variable domain glycosylation on anti-neutrophil cytoplasmic autoantibodies and anti-glomerular basement membrane autoantibodies. BMC Immunol. 13, 10 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Coelho, V. et al. Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proc. Natl Acad. Sci. USA 107, 18587–18592 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Schneider, D. et al. Lectins from opportunistic bacteria interact with acquired variable-region glycans of surface immunoglobulin in follicular lymphoma. Blood 125, 3287–3296 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wong, K. L. et al. SM03, an znti-CD22 antibody, converts cis-to-trans ligand binding of CD22 against α2,6-linked sialic acid glycans and immunomodulates systemic autoimmune diseases. J. Immunol. 208, 2726–2737 (2022).

    Article  CAS  PubMed  Google Scholar 

  173. Chiodin, G. et al. Insertion of atypical glycans into the tumor antigen-binding site identifies DLBCLs with distinct origin and behavior. Blood 138, 1570–1582 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Menni, C. et al. Glycosylation of immunoglobulin g: role of genetic and epigenetic influences. PLoS One 8, e82558 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Datta, A. K., Sinha, A. & Paulson, J. C. Mutation of the sialyltransferase S-sialylmotif alters the kinetics of the donor and acceptor substrates. J. Biol. Chem. 273, 9608–9614 (1998).

    Article  CAS  PubMed  Google Scholar 

  176. Lauc, G. et al. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 9, e1003225 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Shadrina, A. S. et al. Multivariate genome-wide analysis of immunoglobulin G N-glycosylation identifies new loci pleiotropic with immune function. Hum. Mol. Genet. 30, 1259–1270 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Wahl, A. et al. Genome-wide association study on immunoglobulin G glycosylation patterns. Front. Immunol. 9, 277 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Whiteman, H. J. & Farrell, P. J. RUNX expression and function in human B cells. Crit. Rev. Eukaryot. Gene Expr. 16, 31–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Niebuhr, B. et al. Runx1 is essential at two stages of early murine B-cell development. Blood 122, 413–423 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Sellars, M., Reina-San-Martin, B., Kastner, P. & Chan, S. Ikaros controls isotype selection during immunoglobulin class switch recombination. J. Exp. Med. 206, 1073–1087 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bondt, A. et al. ACPA IgG galactosylation associates with disease activity in pregnant patients with rheumatoid arthritis. Ann. Rheum. Dis. 77, 1130–1136 (2018).

    CAS  PubMed  Google Scholar 

  183. Pekelharing, J. M., Hepp, E., Kamerling, J. P., Gerwig, G. J. & Leijnse, B. Alterations in carbohydrate composition of serum IgG from patients with rheumatoid arthritis and from pregnant women. Ann. Rheum. Dis. 47, 91–95 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Rook, G. A. et al. Changes in IgG glycoform levels are associated with remission of arthritis during pregnancy. J. Autoimmun. 4, 779–794 (1991).

    Article  CAS  PubMed  Google Scholar 

  185. Krištić, J. et al. Glycans are a novel biomarker of chronological and biological ages. J. Gerontol. A Biol. Sci. Med. Sci. 69, 779–789 (2014).

    Article  PubMed  Google Scholar 

  186. Ercan, A. et al. Estrogens regulate glycosylation of IgG in women and men. JCI Insight 2, e89703 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Engdahl, C. et al. Estrogen induces St6gal1 expression and increases IgG sialylation in mice and patients with rheumatoid arthritis: a potential explanation for the increased risk of rheumatoid arthritis in postmenopausal women. Arthritis Res. Ther. 20, 84 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Du, N. et al. Phytoestrogens protect joints in collagen induced arthritis by increasing IgG glycosylation and reducing osteoclast activation. Int. Immunopharmacol. 83, 106387 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Dall’Olio, F., Malagolini, N. & Immunoglobulin, G. Glycosylation changes in aging and other inflammatory conditions. Exp. Suppl. 112, 303–340 (2021).

    PubMed  Google Scholar 

  190. Dall’Olio, F. et al. N-glycomic biomarkers of biological aging and longevity: a link with inflammaging. Ageing Res. Rev. 12, 685–698 (2013).

    Article  PubMed  Google Scholar 

  191. Parekh, R., Roitt, I., Isenberg, D., Dwek, R. & Rademacher, T. Age-related galactosylation of the N-linked oligosaccharides of human serum IgG. J. Exp. Med. 167, 1731–1736 (1988).

    Article  CAS  PubMed  Google Scholar 

  192. Knezevic, A. et al. Effects of aging, body mass index, plasma lipid profiles, and smoking on human plasma N-glycans. Glycobiology 20, 959–969 (2010).

    Article  CAS  PubMed  Google Scholar 

  193. de Haan, N., Reiding, K. R., Driessen, G., van der Burg, M. & Wuhrer, M. Changes in healthy human IgG Fc-glycosylation after birth and during early childhood. J. Proteome Res. 15, 1853–1861 (2016).

    Article  PubMed  Google Scholar 

  194. Pucic, M. et al. Changes in plasma and IgG N-glycome during childhood and adolescence. Glycobiology 22, 975–982 (2012).

    Article  CAS  PubMed  Google Scholar 

  195. Yamada, E., Tsukamoto, Y., Sasaki, R., Yagyu, K. & Takahashi, N. Structural changes of immunoglobulin G oligosaccharides with age in healthy human serum. Glycoconj. J. 14, 401–405 (1997).

    Article  CAS  PubMed  Google Scholar 

  196. Vanhooren, V. et al. N-glycomic changes in serum proteins during human aging. Rejuvenation Res. 10, 521–531a (2007).

    Article  PubMed  Google Scholar 

  197. Yu, X. et al. Profiling IgG N-glycans as potential biomarker of chronological and biological ages: a community-based study in a Han Chinese population. Medicine 95, e4112 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Batten, M. et al. IL-27 supports germinal center function by enhancing IL-21 production and the function of T follicular helper cells. J. Exp. Med. 207, 2895–2906 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Bartsch, Y. C. et al. Sialylated autoantigen-reactive IgG antibodies attenuate disease development in autoimmune mouse models of lupus nephritis and rheumatoid arthritis. Front. Immunol. 9, 1183 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Hess, C. et al. T cell-independent B cell activation induces immunosuppressive sialylated IgG antibodies. J. Clin. Invest. 123, 3788–3796 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Bartsch, Y. C. et al. IgG Fc sialylation is regulated during the germinal center reaction following immunization with different adjuvants. J. Allergy Clin. Immunol. 146, 652–666.e11 (2020).

    Article  CAS  PubMed  Google Scholar 

  202. Pfeifle, R. et al. Regulation of autoantibody activity by the IL-23-TH17 axis determines the onset of autoimmune disease. Nat. Immunol. 18, 104–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  203. Cardenas, A. et al. Plasma concentrations of per- and polyfluoroalkyl substances at baseline and associations with glycemic indicators and diabetes incidence among high-risk adults in the diabetes prevention program trial. Env. Health Perspect. 125, 107001 (2017).

    Article  Google Scholar 

  204. Zhou, W. et al. Plasma perfluoroalkyl and polyfluoroalkyl substances concentration and menstrual cycle characteristics in preconception women. Env. Health Perspect. 125, 067012 (2017).

    Article  Google Scholar 

  205. Fletcher, T. et al. Associations between PFOA, PFOS and changes in the expression of genes involved in cholesterol metabolism in humans. Env. Int. 57–58, 2–10 (2013).

    Article  Google Scholar 

  206. Siebenaler, R. et al. Serum perfluoroalkyl acids (PFAAs) and associations with behavioral attributes. Chemosphere 184, 687–693 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Liu, J. et al. Associations between the serum levels of PFOS/PFOA and IgG N-glycosylation in adult or children. Environ. Pollut. 265, 114285 (2020).

    Article  CAS  PubMed  Google Scholar 

  208. Birukov, A. et al. Immunoglobulin G N-glycosylation signatures in incident type 2 diabetes and cardiovascular disease. Diabetes Care 45, 2729–2736 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Lemmers, R. F. H. et al. IgG glycan patterns are associated with type 2 diabetes in independent European populations. Biochim. Biophys. Acta Gen. Subj. 1861, 2240–2249 (2017).

    Article  CAS  PubMed  Google Scholar 

  210. Singh, S. S. et al. Association of the IgG N-glycome with the course of kidney function in type 2 diabetes. BMJ Open. Diabetes Res. Care 8, e001026 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Wang, H. et al. Leveraging IgG N-glycosylation to infer the causality between T2D and hypertension. Diabetol. Metab. Syndr. 15, 80 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Wu, Z. et al. Variation of IgG N-linked glycosylation profile in diabetic retinopathy. J. Diabetes 13, 672–680 (2021).

    Article  CAS  PubMed  Google Scholar 

  213. Nikolac Perkovic, M. et al. The association between galactosylation of immunoglobulin G and body mass index. Prog. Neuropsychopharmacol. Biol. Psychiatry 48, 20–25 (2014).

    Article  CAS  PubMed  Google Scholar 

  214. Russell, A. C. et al. Increased central adiposity is associated with pro-inflammatory immunoglobulin G N-glycans. Immunobiology 224, 110–115 (2019).

    Article  CAS  PubMed  Google Scholar 

  215. Greto, V. L. et al. Extensive weight loss reduces glycan age by altering IgG N-glycosylation. Int. J. Obes. 45, 1521–1531 (2021).

    Article  CAS  Google Scholar 

  216. Kifer, D. et al. N-glycosylation of immunoglobulin G predicts incident hypertension. J. Hypertens. 39, 2527–2533 (2021).

  217. Liu, J. N. et al. The association between subclass-specific IgG Fc N-glycosylation profiles and hypertension in the Uygur, Kazak, Kirgiz, and Tajik populations. J. Hum. Hypertens. 32, 555–563 (2018).

    Article  CAS  PubMed  Google Scholar 

  218. Meng, X. et al. Glycosylation of IgG associates with hypertension and type 2 diabetes mellitus comorbidity in the Chinese Muslim ethnic minorities and the Han Chinese. J. Pers. Med. 11, 614 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Wang, Y. et al. The association between glycosylation of immunoglobulin G and hypertension: a multiple ethnic cross-sectional study. Medicine 95, e3379 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Liu, D. et al. The changes of immunoglobulin G N-glycosylation in blood lipids and dyslipidaemia. J. Transl. Med. 16, 235 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Menni, C. et al. Glycosylation profile of immunoglobulin G is cross-sectionally associated with cardiovascular disease risk score and subclinical atherosclerosis in two independent cohorts. Circ. Res. 122, 1555–1564 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Rudman, N. et al. Children at onset of type 1 diabetes show altered N-glycosylation of plasma proteins and IgG. Diabetologia 65, 1315–1327 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Colombo, M. et al. Quantitative levels of serum N-glycans in type 1 diabetes and their association with kidney disease. Glycobiology 31, 613–623 (2021).

    Article  CAS  PubMed  Google Scholar 

  224. Rook, G. A. et al. A longitudinal study of per cent agalactosyl IgG in tuberculosis patients receiving chemotherapy, with or without immunotherapy. Immunology 81, 149–154 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Larsen, M. D. et al. Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. Science 371, eabc8378 (2021).

    Article  CAS  PubMed  Google Scholar 

  226. Teo, A., Tan, H. D., Loy, T., Chia, P. Y. & Chua, C. L. L. Understanding antibody-dependent enhancement in dengue: are afucosylated IgG1s a concern? PLoS Pathog. 19, e1011223 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Trzos, S., Link-Lenczowski, P. & Pocheć, E. The role of N-glycosylation in B-cell biology and IgG activity. The aspects of autoimmunity and anti-inflammatory therapy. Front. Immunol. 14, 1188838 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Lundström, S. L. et al. IgG Fc galactosylation predicts response to methotrexate in early rheumatoid arthritis. Arthritis Res. Ther. 19, 182 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Collins, E. S. et al. Glycosylation status of serum in inflammatory arthritis in response to anti-TNF treatment. Rheumatology 52, 1572–1582 (2013).

    Article  CAS  PubMed  Google Scholar 

  230. Croce, A. et al. Effect of infliximab on the glycosylation of IgG of patients with rheumatoid arthritis. J. Clin. Lab. Anal. 21, 303–314 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Ercan, A. et al. Hypogalactosylation of serum N-glycans fails to predict clinical response to methotrexate and TNF inhibition in rheumatoid arthritis. Arthritis Res. Ther. 14, R43 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Liu, J. et al. IgG Galactosylation status combined with MYOM2-rs2294066 precisely predicts anti-TNF response in ankylosing spondylitis. Mol. Med. 25, 25 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Font, G. et al. IgG N-glycosylation from patients with pemphigus treated with rituximab. Biomedicines 10, 1774 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Schmidt, D. E. et al. IgG-Fc glycosylation before and after rituximab treatment in immune thrombocytopenia. Sci. Rep. 10, 3051 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Barrios, C. et al. Glycosylation profile of IgG in moderate kidney dysfunction. J. Am. Soc. Nephrol. 27, 933–941 (2016).

    Article  CAS  PubMed  Google Scholar 

  236. Haddad & G et al. Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1-associated membranous nephropathy. J. Clin. Invest. 131, 140453 (2021).

    Article  PubMed  Google Scholar 

  237. Oskam, N. et al. Factors affecting IgG4-mediated complement activation. Front. Immunol. 14, 1087532 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Chinello, C. et al. Definition of IgG subclass-specific glycopatterns in idiopathic membranous nephropathy: aberrant IgG glycoforms in blood. Int. J. Mol. Sci. 23, 4664 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Segelmark, M. & Wieslander, J. IgG subclasses of antineutrophil cytoplasm autoantibodies (ANCA). Nephrol. Dial. Transpl. 8, 696–702 (1993).

    Article  CAS  Google Scholar 

  240. Espy, C. et al. Sialylation levels of anti-proteinase 3 antibodies are associated with the activity of granulomatosis with polyangiitis (Wegener’s). Arthritis Rheum. 63, 2105–2115 (2011).

    Article  CAS  PubMed  Google Scholar 

  241. Shibuya, N. et al. The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(ɑ2-6)Gal/GalNAc sequence. J. Biol. Chem. 262, 1596–1601 (1987).

    Article  CAS  PubMed  Google Scholar 

  242. Stadlmann, J. et al. A close look at human IgG sialylation and subclass distribution after lectin fractionation. Proteomics 9, 4143–4153 (2009).

    Article  CAS  PubMed  Google Scholar 

  243. Dalziel, M., McFarlane, I. & Axford, J. S. Lectin analysis of human immunoglobulin G N-glycan sialylation. Glycoconj. J. 16, 801–807 (1999).

    Article  CAS  PubMed  Google Scholar 

  244. Rademacher, T. W. Network theory of glycosylation — etiologic and pathogenic implications of changes in IgG glycoform levels in autoimmunity. Semin. Cell Biol. 2, 327–337 (1991).

    CAS  PubMed  Google Scholar 

  245. Magorivska, I. et al. Sialylation of anti-histone immunoglobulin G autoantibodies determines their capabilities to participate in the clearance of late apoptotic cells. Clin. Exp. Immunol. 184, 110–117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Zhou, X. et al. Antibody glycosylation in autoimmune diseases. Autoimmun. Rev. 20, 102804 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Biermann, M. H. C. et al. Sweet but dangerous — the role of immunoglobulin G glycosylation in autoimmunity and inflammation. Lupus 25, 934–942 (2016).

    Article  CAS  PubMed  Google Scholar 

  248. Vučković, F. et al. Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome. Arthritis Rheumatol. 67, 2978–2989 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Han, J. et al. Fucosylation of anti-dsDNA IgG1 correlates with disease activity of treatment-naïve systemic lupus erythematosus patients. eBioMedicine 77, 103883 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Bhargava, R. et al. Aberrantly glycosylated IgG elicits pathogenic signaling in podocytes and signifies lupus nephritis. JCI Insight 6, e147789 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Clarke, J. Glycosylation influences IgG effects in LN. Nat. Rev. Rheumatol. 17, 310–310 (2021).

    Article  CAS  PubMed  Google Scholar 

  252. Lu, X. et al. Association between immunoglobulin G N-glycosylation and lupus nephritis in female patients with systemic lupus erythematosus: a case-control study. Front. Immunol. 14, 1257906 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. van Egmond, M. et al. IgA and the IgA Fc receptor. Trends Immunol. 22, 205–211 (2001).

    Article  PubMed  Google Scholar 

  254. Novak, J., Julian, B. A., Mestecky, J. & Renfrow, M. B. Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin. Immunopathol. 34, 365–382 (2012).

    Article  CAS  PubMed  Google Scholar 

  255. Ding, L., Chen, X., Cheng, H., Zhang, T. & Li, Z. Advances in IgA glycosylation and its correlation with diseases. Front. Chem. 10, 974854 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Ohyama, Y., Renfrow, M. B., Novak, J. & Takahashi, K. Aberrantly glycosylated IgA1 in IgA nephropathy: what we know and what we don’t know. J. Clin. Med. 10, 3467 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Posgai, M. T. et al. FcαRI binding at the IgA1 CH2-CH3 interface induces long-range conformational changes that are transmitted to the hinge region. Proc. Natl Acad. Sci. USA 115, E8882–E8891 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Novak, J., Barratt, J., Julian, B. A. & Renfrow, M. B. Aberrant glycosylation of the IgA1 Molecule in IgA nephropathy. Semin. Nephrol. 38, 461–476 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Suzuki, H. & Novak, J. IgA glycosylation and immune complex formation in IgAN. Semin. Immunopathol. 43, 669–678 (2021).

    Article  CAS  PubMed  Google Scholar 

  260. Moldoveanu, Z. et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int. 71, 1148–1154 (2007).

    Article  CAS  PubMed  Google Scholar 

  261. Berthoux, F. et al. Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J. Am. Soc. Nephrol. 23, 1579–1587 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Zhao, N. et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 82, 790–796 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Suzuki, H. et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J. Clin. Invest. 119, 1668–1677 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Pattrapornpisut, P., Avila-Casado, C. & Reich, H. N. IgA nephropathy: core curriculum 2021. Am. J. Kidney Dis. 78, 429–441 (2021).

    Article  CAS  PubMed  Google Scholar 

  265. Knoppova, B. et al. Pathogenesis of IgA nephropathy: current understanding and implications for development of disease-specific treatment. J. Clin. Med. 10, 4501 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Zhang, X. et al. Poly-IgA complexes and disease severity in IgA nephropathy. Clin. J. Am. Soc. Nephrol. 16, 1652–1664 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Placzek, W. J. et al. Serum galactose-deficient-IgA1 and IgG autoantibodies correlate in patients with IgA nephropathy. PLoS One 13, e0190967 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Maixnerova, D. et al. Galactose-deficient IgA1 and the corresponding IgG autoantibodies predict IgA nephropathy progression. PLoS One 14, e0212254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Medrano, A. S. et al. Relationship between immunoglobulin A1 lectin-binding specificities, mesangial C4d deposits and clinical phenotypes in immunoglobulin A nephropathy. Nephrol. Dial. Transpl. 37, 318–325 (2022).

    Article  CAS  Google Scholar 

  270. Chen, P. et al. Plasma galactose-deficient IgA1 and C3 and CKD progression in IgA nephropathy. Clin. J. Am. Soc. Nephrol. 14, 1458–1465 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Liang, Y. et al. Proliferation and cytokine production of human mesangial cells stimulated by secretory IgA isolated from patients with IgA nephropathy. Cell Physiol. Biochem. 36, 1793–1808 (2015).

    Article  CAS  PubMed  Google Scholar 

  272. Zhang, J. et al. Role of human mesangial-tubular crosstalk in secretory IgA-induced IgA nephropathy. Kidney Blood Press. Res. 46, 286–297 (2021).

    Article  CAS  PubMed  Google Scholar 

  273. Amore, A. et al. Aberrantly glycosylated IgA molecules downregulate the synthesis and secretion of vascular endothelial growth factor in human mesangial cells. Am. J. Kidney Dis. 36, 1242–1252 (2000).

    Article  CAS  PubMed  Google Scholar 

  274. Person, T. et al. Cytokines and production of aberrantly O-glycosylated IgA1, the main autoantigen in IgA nephropathy. J. Interferon Cytokine Res. 42, 301–315 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Lechner, S. M., Papista, C., Chemouny, J. M., Berthelot, L. & Monteiro, R. C. Role of IgA receptors in the pathogenesis of IgA nephropathy. J. Nephrol. 29, 5–11 (2016).

    Article  CAS  PubMed  Google Scholar 

  276. Jhee, J. H. et al. CD71 mesangial IgA1 receptor and the progression of IgA nephropathy. Transl. Res. 230, 34–43 (2021).

    Article  CAS  PubMed  Google Scholar 

  277. Cambier, A. et al. Soluble CD89 is a critical factor for mesangial proliferation in childhood IgA nephropathy. Kidney Int. 101, 274–287 (2022).

    Article  CAS  PubMed  Google Scholar 

  278. Wyatt, R. J. & Julian, B. A. IgA nephropathy. N. Engl. J. Med. 368, 2402–2414 (2013).

    Article  CAS  PubMed  Google Scholar 

  279. Steffen, U. et al. IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nat. Commun. 11, 120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Pillebout, E. et al. Biomarkers of IgA vasculitis nephritis in children. PLoS One 12, e0188718 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Song, Y. et al. Pathogenesis of IgA vasculitis: an up-to-date review. Front. Immunol. 12, 771619 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Sugiyama, M. et al. A cross-sectional analysis of clinicopathologic similarities and differences between Henoch-Schönlein purpura nephritis and IgA nephropathy. PLoS One 15, e0232194 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Haniuda, K., Gommerman, J. L. & Reich, H. N. The microbiome and IgA nephropathy. Semin. Immunopathol. 43, 649–656 (2021).

    Article  CAS  PubMed  Google Scholar 

  284. Novak, J., Julian, B. A., Tomana, M. & Mestecky, J. IgA glycosylation and IgA immune complexes in the pathogenesis of IgA nephropathy. Semin. Nephrol. 28, 78–87 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Smith, A. C., Molyneux, K., Feehally, J. & Barratt, J. O-glycosylation of serum IgA1 antibodies against mucosal and systemic antigens in IgA nephropathy. J. Am. Soc. Nephrol. 17, 3520–3528 (2006).

    Article  CAS  PubMed  Google Scholar 

  286. Gale, D. P. et al. Galactosylation of IgA1 is associated with common variation in C1GALT1. J. Am. Soc. Nephrol. 28, 2158–2166 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Xing, Y. et al. C1GALT1 expression is associated with galactosylation of IgA1 in peripheral B lymphocyte in immunoglobulin a nephropathy. BMC Nephrol. 21, 18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Sellarés, J. et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am. J. Transplant. 12, 388–399 (2012).

    Article  PubMed  Google Scholar 

  289. Roufosse, C. et al. A 2018 reference guide to the Banff Classification of Renal Allograft Pathology. Transplantation 102, 1795–1814 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Haas, M. et al. The Banff 2017 Kidney Meeting Report: revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials. Am. J. Transplant. 18, 293–307 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Loupy, A., Hill, G. S. & Jordan, S. C. The impact of donor-specific anti-HLA antibodies on late kidney allograft failure. Nat. Rev. Nephrol. 8, 348–357 (2012).

    Article  CAS  PubMed  Google Scholar 

  292. Lefaucheur, C. et al. Preexisting donor-specific HLA antibodies predict outcome in kidney transplantation. J. Am. Soc. Nephrol. 21, 1398–1406 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Everly, M. J. et al. Impact of IgM and IgG3 anti-HLA alloantibodies in primary renal allograft recipients. Transplantation 97, 494–501 (2014).

    Article  PubMed  Google Scholar 

  294. Hamdani, G. et al. IGG3 anti-HLA donor-specific antibodies and graft function in pediatric kidney transplant recipients. Pediatr. Transpl. 22, e13219 (2018).

    Article  Google Scholar 

  295. Lefaucheur, C. et al. IgG donor-specific anti-human HLA antibody subclasses and kidney allograft antibody-mediated injury. J. Am. Soc. Nephrol. 27, 293–304 (2016).

    Article  CAS  PubMed  Google Scholar 

  296. Pernin, V. et al. IgG3 donor-specific antibodies with a proinflammatory glycosylation profile may be associated with the risk of antibody-mediated rejection after kidney transplantation. Am. J. Transpl. 22, 865–875 (2022).

    Article  CAS  Google Scholar 

  297. Pernin, V. et al. Distribution of de novo donor-specific antibody subclasses quantified by mass spectrometry: high IgG3 proportion is associated with antibody-mediated rejection occurrence and severity. Front. Immunol. 11, 919 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Valenzuela, N. M. & Schaub, S. The biology of IgG subclasses and their clinical relevance to transplantation. Transplantation 102, S7–S13 (2018).

    Article  CAS  PubMed  Google Scholar 

  299. Viglietti, D. et al. Value of donor-specific anti-HLA antibody monitoring and characterization for risk stratification of kidney allograft loss. J. Am. Soc. Nephrol. 28, 702–715 (2017).

    Article  PubMed  Google Scholar 

  300. Schinstock, C. A. et al. The value of protocol biopsies to identify patients with de novo donor-specific antibody at high risk for allograft loss. Am. J. Transpl. 17, 1574–1584 (2017).

    Article  CAS  Google Scholar 

  301. Bailly, E. et al. Prognostic value of the persistence of C1q-binding anti-HLA antibodies in acute antibody-mediated rejection in kidney transplantation. Transplantation 102, 688–698 (2018).

    Article  CAS  PubMed  Google Scholar 

  302. Cazarote, H. B. et al. Complement-fixing donor-specific anti-HLA antibodies and kidney allograft failure. Transpl. Immunol. 49, 33–38 (2018).

    Article  CAS  PubMed  Google Scholar 

  303. Loupy, A. et al. Complement-binding anti-HLA antibodies and kidney-allograft survival. N. Engl. J. Med. 369, 1215–1226 (2013).

    Article  CAS  PubMed  Google Scholar 

  304. Malheiro, J. et al. Detection of complement-binding donor-specific antibodies, not IgG-antibody strength nor C4d status, at antibody-mediated rejection diagnosis is an independent predictor of kidney graft failure. Transplantation 102, 1943–1954 (2018).

    Article  CAS  PubMed  Google Scholar 

  305. Sicard, A. et al. Detection of C3d-binding donor-specific anti-HLA antibodies at diagnosis of humoral rejection predicts renal graft loss. J. Am. Soc. Nephrol. 26, 457–467 (2015).

    Article  PubMed  Google Scholar 

  306. Thammanichanond, D. et al. Significance of C1q-fixing donor-specific antibodies after kidney transplantation. Transpl. Proc. 46, 368–371 (2014).

    Article  CAS  Google Scholar 

  307. Thammanichanond, D. et al. Role of pretransplant complement-fixing donor-specific antibodies identified by C1q assay in kidney transplantation. Transpl. Proc. 48, 756–760 (2016).

    Article  CAS  Google Scholar 

  308. Viglietti, D. et al. Complement-binding anti-HLA antibodies are independent predictors of response to treatment in kidney recipients with antibody-mediated rejection. Kidney Int. 94, 773–787 (2018).

    Article  CAS  PubMed  Google Scholar 

  309. Malard-Castagnet, S. et al. Sialylation of antibodies in kidney recipients with de novo donor specific antibody, with or without antibody mediated rejection. Hum. Immunol. 77, 1076–1083 (2016).

    Article  CAS  PubMed  Google Scholar 

  310. Barba, T. et al. Highly variable sialylation status of donor-specific antibodies does not impact humoral rejection outcomes. Front. Immunol. 10, 513 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Bharadwaj, P. et al. Afucosylation of HLA-specific IgG1 as a potential predictor of antibody pathogenicity in kidney transplantation. Cell Rep. Med. 3, 100818 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Bhargava, R. et al. N-glycosylated IgG in patients with kidney transplants increases calcium/calmodulin kinase IV in podocytes and causes injury. Am. J. Transpl. 21, 148–160 (2021).

    Article  CAS  Google Scholar 

  313. Schofield, D. J. et al. Application of phage display to high throughput antibody generation and characterization. Genome Biol. 8, R254 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  314. Grabarics, M. et al. Mass spectrometry-based techniques to elucidate the sugar code. Chem. Rev. 122, 7840–7908 (2022).

    Article  CAS  PubMed  Google Scholar 

  315. García-Alija, M. et al. Modulating antibody effector functions by Fc glycoengineering. Biotechnol. Adv. 67, 108201 (2023).

    Article  PubMed  Google Scholar 

  316. Golay, J., Andrea, A. E. & Cattaneo, I. Role of Fc core fucosylation in the effector function of IgG1 antibodies. Front. Immunol. 13, 929895 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Mössner, E. et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 115, 4393–4402 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  318. Ginthör, N. E., Artinger, K., Pollheimer, M. J., Stradner, M. H. & Eller, K. Membranous nephropathy associated with immunoglobulin G4-related disease successfully treated with obinutuzumab. Clin. Kidney J. 15, 564–566 (2022).

    Article  PubMed  Google Scholar 

  319. Hudson, R., Rawlings, C., Mon, S. Y., Jefferis, J. & John, G. T. Treatment resistant M-type phospholipase A2 receptor associated membranous nephropathy responds to obinutuzumab: a report of two cases. BMC Nephrol. 23, 134 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  320. Naik, S. et al. Obinutuzumab in refractory phospholipase A2 receptor-associated membranous nephropathy with severe CKD. Kidney Int. Rep. 8, 942–943 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  321. Hiatt, A. et al. Glycan variants of a respiratory syncytial virus antibody with enhanced effector function and in vivo efficacy. Proc. Natl Acad. Sci. USA 111, 5992–5997 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Bardhi, A. et al. Potent in vivo NK cell-mediated elimination of HIV-1-infected cells mobilized by a gp120-bispecific and hexavalent broadly neutralizing fusion protein. J. Virol. 91, e00937–17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Zeitlin, L. et al. Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. Proc. Natl Acad. Sci. USA 108, 20690–20694 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Jones, A. J. S. et al. Selective clearance of glycoforms of a complex glycoprotein pharmaceutical caused by terminal N-acetylglucosamine is similar in humans and cynomolgus monkeys. Glycobiology 17, 529–540 (2007).

    Article  CAS  PubMed  Google Scholar 

  325. Li, M. et al. Next generation of anti-PD-L1 atezolizumab with enhanced anti-tumor efficacy in vivo. Sci. Rep. 11, 5774 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Qian, J. et al. Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion. Anal. Biochem. 364, 8–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  327. Janin-Bussat, M.-C. et al. Cetuximab Fab and Fc N-glycan fast characterization using IdeS digestion and liquid chromatography coupled to electrospray ionization mass spectrometry. Methods Mol. Biol. 988, 93–113 (2013).

    Article  CAS  PubMed  Google Scholar 

  328. Chung, C. H. et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-ɑ-1,3-galactose. N. Engl. J. Med. 358, 1109–1117 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Steinke, J. W., Platts-Mills, T. A. E. & Commins, S. P. The alpha-gal story: lessons learned from connecting the dots. J. Allergy Clin. Immunol. 135, 589–596 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Pagan, J. D., Kitaoka, M. & Anthony, R. M. Engineered sialylation of pathogenic antibodies in vivo attenuates autoimmune disease. Cell 172, 564–577.e13 (2018).

    Article  CAS  PubMed  Google Scholar 

  331. Oefner, C. M. et al. Tolerance induction with T cell-dependent protein antigens induces regulatory sialylated IgGs. J. Allergy Clin. Immunol. 129, 1647–1655.e13 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to discussion of the content. All authors wrote the article or reviewed/edited the manuscript before submission.

Corresponding authors

Correspondence to Anaïs Beyze or Moglie Le Quintrec.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Robert Anthony and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyze, A., Larroque, C. & Le Quintrec, M. The role of antibody glycosylation in autoimmune and alloimmune kidney diseases. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00850-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00850-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing