Skip to main content

Advertisement

Log in

Role of IgA receptors in the pathogenesis of IgA nephropathy

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Immunoglobulin A nephropathy (IgAN) or Berger’s disease is the most common form of primary glomerulonephritis in the world and one of the first causes of end-stage renal failure. IgAN is characterized by the accumulation of immune complexes containing polymeric IgA1 in mesangial areas. The pathogenesis of this disease involves the deposition of polymeric and hypogalactosylated IgA1 (Gd-IgA1) in the mesangium. Quantitative and structural changes of Gd-IgA1 play a key role in the development of the disease due to functional abnormalities of two IgA receptors: the FcαRI (CD89) expressed by blood myeloid cells and the transferrin receptor (CD71) on mesangial cells. Abnormal Gd-IgA1 induces release of soluble CD89, which participates in the formation of circulating IgA1 complexes. These complexes are trapped by CD71 that is overexpressed on mesangial cells in IgAN patients together with the crosslinking enzyme transglutaminase 2 allowing pathogenic IgA complex formation in situ and mesangial cell activation. A humanized mouse model expressing IgA1 and CD89 develops IgAN in a similar manner as patients. In this model, a food antigen, the gliadin, was shown to be crucial for circulating IgA1 complex formation and deposition, which could be prevented by a gluten-free diet. Identification of these new partners opens new therapeutic prospects for IgAN treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kerr MA (1990) The structure and function of human IgA. Biochem J 271:285–296

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Solomon A (1980) Monoclonal immunoglobulins as biomarkers of cancer. In: Sell S (ed) Cancer markers. Humana Press, New York, pp 57–87

    Chapter  Google Scholar 

  3. Phalipon A, Corthésy B (2003) Novel functions of the polymeric Ig receptor: well beyond transport of immunoglobulins. Trends Immunol 24:55–58

    Article  PubMed  CAS  Google Scholar 

  4. Boehm MK, Woof JM, Kerr MA, Perkins SJ (1999) The fab and fc fragments of IgA1 exhibit a different arrangement from that in IgG: a study by X-ray and neutron solution scattering and homology modelling1. J Mol Biol 286:1421–1447. doi:10.1006/jmbi.1998.2556

    Article  PubMed  CAS  Google Scholar 

  5. Woof JM, Kerr MA (2006) The function of immunoglobulin A in immunity. J Pathol 208:270–282. doi:10.1002/path.1877

    Article  PubMed  CAS  Google Scholar 

  6. Monteiro RC, Van De Winkel JGJ (2003) IgA Fc receptors. Annu Rev Immunol 21:177–204. doi:10.1146/annurev.immunol.21.120601.141011

    Article  PubMed  CAS  Google Scholar 

  7. Mestecky J, Tomana M, Moldoveanu Z et al (2008) Role of aberrant glycosylation of IgA1 molecules in the pathogenesis of IgA nephropathy. Kidney Blood Press Res 31:29–37. doi:10.1159/000112922

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Van Epps DE, Williams RC (1976) Suppression of leukocyte chemotaxis by human IgA myeloma components. J Exp Med 144:1227–1242. doi:10.1084/jem.144.5.1227

    Article  PubMed  Google Scholar 

  9. Van Epps DE, Reed K, Williams RC (1978) Suppression of human PMN bactericidal activity by human IgA paraproteins. Cell Immunol 36:363–376

    Article  PubMed  Google Scholar 

  10. Wilton JMA (1978) Suppression by IgA of IgG-mediated phagocytosis by human polymorphonuclear leucocytes. Clin Exp Immunol 34:423–428

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Wolf HM, Fischer MB, Puhringer H et al (1994) Human serum IgA downregulates the release of inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6) in human monocytes. Blood 83:1278–1288

    PubMed  CAS  Google Scholar 

  12. Nikolova EB, Russell MW (1995) Dual function of human IgA antibodies: inhibition of phagocytosis in circulating neutrophils and enhancement of responses in IL-8-stimulated cells. J Leukoc Biol 57:875–882

    PubMed  CAS  Google Scholar 

  13. Wolf HM, Hauber I, Gulle H et al (1996) Anti-inflammatory properties of human serum IgA: induction of IL-1 receptor antagonist and FcαR (CD89)-mediated down-regulation of tumour necrosis factor-alpha (TNF-α) and IL-6 in human monocytes. Clin Exp Immunol 105:537–543. doi:10.1046/j.1365-2249.1996.d01-793.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Olas K, Butterweck H, Teschner W et al (2005) Immunomodulatory properties of human serum immunoglobulin A: anti-inflammatory and pro-inflammatory activities in human monocytes and peripheral blood mononuclear cells. Clin Exp Immunol 140:478–490. doi:10.1111/j.1365-2249.2005.02779.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Jacob CMA, Pastorino AC, Fahl K et al (2008) Autoimmunity in IgA deficiency: revisiting the role of IgA as a silent housekeeper. J Clin Immunol 28(Suppl 1):S56–S61. doi:10.1007/s10875-007-9163-2

    Article  PubMed  CAS  Google Scholar 

  16. Ludvigsson JF, Neovius M, Hammarström L (2014) Association between IgA deficiency and other autoimmune conditions: a population-based matched cohort study. J Clin Immunol 34:444–451. doi:10.1007/s10875-014-0009-4

    Article  PubMed  CAS  Google Scholar 

  17. Diana J, Moura IC, Vaugier C et al (2013) Secretory IgA induces tolerogenic dendritic cells through SIGNR1 dampening autoimmunity in mice. J Immunol 191:2335–2343. doi:10.4049/jimmunol.1300864

    Article  PubMed  CAS  Google Scholar 

  18. Wines BD, Sardjono CT, Trist HM et al (2001) The interaction of FcαRI with IgA and its implications for ligand binding by immunoreceptors of the leukocyte receptor cluster. J Immunol 166:1781–1789. doi:10.4049/jimmunol.166.3.1781

    Article  PubMed  CAS  Google Scholar 

  19. Lawrence DA, Weigle WO, Spiegelberg HL (1975) Immunoglobulins cytophilic for human lymphocytes, monocytes, and neutrophils. J Clin Invest 55:368–376

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Grossetête B, Launay P, Lehuen A et al (1998) Down-regulation of Fc alpha receptors on blood cells of IgA nephropathy patients: evidence for a negative regulatory role of serum IgA. Kidney Int 53:1321–1335. doi:10.1046/j.1523-1755.1998.00885.x

    Article  PubMed  Google Scholar 

  21. Pasquier B, Launay P, Kanamaru Y et al (2005) Identification of FcαRI as an inhibitory receptor that controls inflammation: dual role of FcRγ ITAM. Immunity 22:31–42. doi:10.1016/j.immuni.2004.11.017

    PubMed  CAS  Google Scholar 

  22. Rossato E, Ben Mkaddem S, Kanamaru Y et al (2015) Reversal of arthritis by human monomeric IgA through the receptor-mediated SH2 domain-containing phosphatase 1 inhibitory pathway. Arthritis Rheumatol 67:1766–1777. doi:10.1002/art.39142

    Article  PubMed  CAS  Google Scholar 

  23. Launay P, Patry C, Lehuen A et al (1999) Alternative endocytic pathway for immunoglobulin A Fc receptors (CD89) depends on the lack of FcRgamma association and protects against degradation of bound ligand. J Biol Chem 274:7216–7225

    Article  PubMed  CAS  Google Scholar 

  24. Herr AB, Ballister ER, Bjorkman PJ (2003) Insights into IgA-mediated immune responses from the crystal structures of human FcαRI and its complex with IgA1-Fc. Nature 423:614–620. doi:10.1038/nature01685

    Article  PubMed  CAS  Google Scholar 

  25. Davis RS, Dennis G Jr, Odom MR et al (2002) Fc receptor homologs: newest members of a remarkably diverse Fc receptor gene family. Immunol Rev 190:123–136. doi:10.1034/j.1600-065X.2002.19009.x

    Article  PubMed  CAS  Google Scholar 

  26. Blank U, Launay P, Benhamou M, Monteiro RC (2009) Inhibitory ITAMs as novel regulators of immunity. Immunol Rev 232:59–71. doi:10.1111/j.1600-065X.2009.00832.x

    Article  PubMed  CAS  Google Scholar 

  27. Kanamaru Y, Pfirsch S, Aloulou M et al (2008) Inhibitory ITAM signaling by FcαRI-FcRγ chain controls multiple activating responses and prevents renal inflammation. J Immunol 180:2669–2678. doi:10.4049/jimmunol.180.4.2669

    Article  PubMed  CAS  Google Scholar 

  28. Launay P, Lehuen A, Kawakami T et al (1998) IgA Fc receptor (CD89) activation enables coupling to syk and Btk tyrosine kinase pathways: differential signaling after IFN-gamma or phorbol ester stimulation. J Leukoc Biol 63:636–642

    PubMed  CAS  Google Scholar 

  29. Kanamaru Y, Arcos-Fajardo M, Moura IC et al (2007) Fcα receptor I activation induces leukocyte recruitment and promotes aggravation of glomerulonephritis through the FcRγ adaptor. Eur J Immunol 37:1116–1128. doi:10.1002/eji.200636826

    Article  PubMed  CAS  Google Scholar 

  30. Monteiro RC, Halbwachs-Mecarelli L, Roque-Barreira MC et al (1985) Charge and size of mesangial IgA in IgA nephropathy. Kidney Int 28:666–671

    Article  PubMed  CAS  Google Scholar 

  31. Delacroix DL, Elkom KB, Geubel AP et al (1983) Changes in size, subclass, and metabolic properties of serum immunoglobulin A in liver diseases and in other diseases with high serum immunoglobulin A. J Clin Invest 71:358–367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Montenegro V, Monteiro RC (1999) Elevation of serum IgA in spondyloarthropathies and IgA nephropathy and its pathogenic role. Curr Opin Rheumatol 11:265–272

    Article  PubMed  CAS  Google Scholar 

  33. Almogren A, Kerr MA (2008) Irreversible aggregation of the Fc fragment derived from polymeric but not monomeric serum IgA1—Implications in IgA-mediated disease. Mol Immunol 45:87–94. doi:10.1016/j.molimm.2007.05.002

    Article  PubMed  CAS  Google Scholar 

  34. Allen AC, Bailey EM, Brenchley PEC et al (2001) Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: observations in three patients. Kidney Int 60:969–973. doi:10.1046/j.1523-1755.2001.060003969.x

    Article  PubMed  CAS  Google Scholar 

  35. Novak J, Julian BA, Tomana M, Mestecky J (2008) IgA glycosylation and IgA immune complexes in the pathogenesis of IgA Nephropathy. Semin Nephrol 28:78–87. doi:10.1016/j.semnephrol.2007.10.009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Tomana M, Novak J, Julian BA et al (1999) Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest 104:73–81

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Suzuki H, Moldoveanu Z, Hall S et al (2008) IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest 118:629–639. doi:10.1172/JCI33189

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Berthoux F, Suzuki H, Thibaudin L et al (2012) Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol 23:1579–1587. doi:10.1681/ASN.2012010053

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Kokubo T, Hiki Y, Iwase H et al (1997) Evidence for involvement of IgA1 hinge glycopeptide in the IgA1-IgA1 interaction in IgA nephropathy. J Am Soc Nephrol 8:915–919

    PubMed  CAS  Google Scholar 

  40. Grossetête B, Viard JP, Lehuen A et al (1995) Impaired Fc alpha receptor expression is linked to increased immunoglobulin A levels and disease progression in HIV-1-infected patients. AIDS Lond Engl 9:229–234

    Article  Google Scholar 

  41. Silvain C, Patry C, Launay P et al (1995) Altered expression of monocyte IgA Fc receptors is associated with defective endocytosis in patients with alcoholic cirrhosis. Potential role for IFN-gamma. J Immunol 155:1606–1618

    PubMed  CAS  Google Scholar 

  42. Montenegro V, Chiamolera M, Launay P et al (2000) Impaired expression of IgA Fc receptors (CD89) by blood phagocytic cells in ankylosing spondylitis. J Rheumatol 27:411–417

    PubMed  CAS  Google Scholar 

  43. Launay P, Grossetête B, Arcos-Fajardo M et al (2000) Fcalpha receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger’s disease). Evidence for pathogenic soluble receptor-Iga complexes in patients and CD89 transgenic mice. J Exp Med 191:1999–2009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Berthelot L, Robert T, Vuiblet V et al (2015) Recurrent IgA nephropathy is predicted by altered glycosylated IgA, autoantibodies and soluble CD89 complexes. Kidney Int. doi:10.1038/ki.2015.158

    Google Scholar 

  45. Monteiro RC, Moura IC, Launay P et al (2002) Pathogenic significance of IgA receptor interactions in IgA nephropathy. Trends Mol Med 8:464–468

    Article  PubMed  CAS  Google Scholar 

  46. Berthelot L, Papista C, Maciel TT et al (2012) Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J Exp Med 209:793–806. doi:10.1084/jem.20112005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Leung JCK, Tsang AWL, Chan DTM, Lai KN (2000) Absence of CD89, polymeric immunoglobulin receptor, and asialoglycoprotein receptor on human mesangial cells. J Am Soc Nephrol 11:241–249

    PubMed  CAS  Google Scholar 

  48. Moura IC, Centelles MN, Arcos-Fajardo M et al (2001) Identification of the transferrin receptor as a novel immunoglobulin (Ig)a1 receptor and its enhanced expression on mesangial cells in Iga nephropathy. J Exp Med 194:417–426. doi:10.1084/jem.194.4.417

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Moura IC, Arcos-Fajardo M, Sadaka C et al (2004) Glycosylation and size of IgA1 are essential for interaction with mesangial transferrin receptor in IgA nephropathy. J Am Soc Nephrol JASN 15:622–634

    Article  PubMed  CAS  Google Scholar 

  50. Moura IC, Arcos-Fajardo M, Gdoura A et al (2005) Engagement of transferrin receptor by polymeric IgA1: evidence for a positive feedback loop involving increased receptor expression and mesangial cell proliferation in IgA nephropathy. J Am Soc Nephrol JASN 16:2667–2676. doi:10.1681/ASN.2004111006

    Article  PubMed  CAS  Google Scholar 

  51. Tamouza H, Chemouny JM, Raskova Kafkova L et al (2012) The IgA1 immune complex-mediated activation of the MAPK/ERK kinase pathway in mesangial cells is associated with glomerular damage in IgA nephropathy. Kidney Int 82:1284–1296. doi:10.1038/ki.2012.192

    Article  PubMed  CAS  Google Scholar 

  52. Monteiro RC (2010) Role of IgA and IgA Fc receptors in inflammation. J Clin Immunol 30:1–9. doi:10.1007/s10875-009-9338-0

    Article  PubMed  CAS  Google Scholar 

  53. Collin P, Syrjänen J, Partanen J et al (2002) Celiac disease and HLA DQ in patients with IgA nephropathy. Am J Gastroenterol 97:2572–2576. doi:10.1111/j.1572-0241.2002.06025.x

    Article  PubMed  Google Scholar 

  54. Pasternack A, Collin P, Mustonen J et al (1990) Glomerular IgA deposits in patients with celiac disease. Clin Nephrol 34:56–60

    PubMed  CAS  Google Scholar 

  55. Coppo R, Amore A, Roccatello D (1992) Dietary antigens and primary immunoglobulin A nephropathy. J Am Soc Nephrol 2:S173

    PubMed  CAS  Google Scholar 

  56. Pierucci A, Fofi C, Bartoli B et al (2002) Antiendomysial antibodies in Berger’s disease. Am J Kidney Dis 39:1176–1182. doi:10.1053/ajkd.2002.33387

    Article  PubMed  CAS  Google Scholar 

  57. Amore A, Emancipator SN, Roccatello D et al (1994) Functional consequences of the binding of gliadin to cultured rat mesangial cells: bridging immunoglobulin A to cells and modulation of eicosanoid synthesis and altered cytokine production. Am J Kidney Dis Off J Natl Kidney Found 23:290–301

    Article  CAS  Google Scholar 

  58. Coppo R, Roccatello D, Amore A et al (1990) Effects of a gluten-free diet in primary IgA nephropathy. Clin Nephrol 33:72–86

    PubMed  CAS  Google Scholar 

  59. Kovács T, Kun L, Schmelczer M et al (1996) Do intestinal hyperpermeability and the related food antigens play a role in the progression of IgA nephropathy? I. Study of intestinal permeability. Am J Nephrol 16:500–505

    Article  PubMed  Google Scholar 

  60. Smerud HK, Fellström B, Hällgren R et al (2009) Gluten sensitivity in patients with IgA nephropathy. Nephrol Dial Transplant 24:2476–2481. doi:10.1093/ndt/gfp133

    Article  PubMed  CAS  Google Scholar 

  61. Papista C, Berthelot L, Monteiro RC (2011) Dysfunctions of the Iga system: a common link between intestinal and renal diseases. Cell Mol Immunol 8:126–134. doi:10.1038/cmi.2010.69

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Lebreton C, Ménard S, Abed J et al (2012) Interactions among secretory immunoglobulin A, CD71, and transglutaminase-2 affect permeability of intestinal epithelial cells to gliadin peptides. Gastroenterology 143(698–707):e4. doi:10.1053/j.gastro.2012.05.051

    Google Scholar 

  63. Papista C, Lechner S, Ben Mkaddem S et al (2015) Gluten exacerbates IgA nephropathy in humanized mice through gliadin–CD89 interaction. Kidney Int. doi:10.1038/ki.2015.94

    PubMed  Google Scholar 

  64. Matysiak-Budnik T, Moura IC, Arcos-Fajardo M et al (2008) Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J Exp Med 205:143–154. doi:10.1084/jem.20071204

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from ANR, FRM, INFLAMEX, INSERM, CNRS and Paris Diderot University. Sebastian M. Lechner PhD fellowship was supported by CORDDIM

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato C. Monteiro.

Ethics declarations

Conflict of interest

All authors declare no financial conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lechner, S.M., Papista, C., Chemouny, J.M. et al. Role of IgA receptors in the pathogenesis of IgA nephropathy. J Nephrol 29, 5–11 (2016). https://doi.org/10.1007/s40620-015-0246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-015-0246-5

Keywords

Navigation