Skip to main content

Advertisement

Log in

Localization of Golgi-resident glycosyltransferases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

For many glycosyltransferases, the information that instructs Golgi localization is located within a relatively short sequence of amino acids in the N-termini of these proteins comprising: the cytoplasmic tail, the transmembrane spanning region, and the stem region (CTS). Also, one enzyme may be more reliant on a particular region in the CTS for its localization than another. The predominance of these integral membrane proteins in the Golgi has seen these enzymes become central players in the development of membrane trafficking models of transport within this organelle. It is now understood that the means by which the characteristic distributions of glycosyltransferases arise within the subcompartments of the Golgi is inextricably linked to the mechanisms that cells employ to direct the flow of proteins and lipids within this organelle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867

    CAS  PubMed  Google Scholar 

  2. Choi BK, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, Miele RG, Nett JH, Wildt S, Gerngross TU (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci USA 100:5022–5027

    CAS  PubMed  Google Scholar 

  3. Wildt S, Gerngross TU (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3:119–128

    CAS  PubMed  Google Scholar 

  4. Czlapinski JL, Bertozzi CR (2006) Synthetic glycobiology: exploits in the Golgi compartment. Curr Opin Chem Biol 10:645–651

    CAS  PubMed  Google Scholar 

  5. Chiba Y, Jigami Y (2007) Production of humanized glycoproteins in bacteria and yeasts. Curr Opin Chem Biol 11:670–676

    CAS  PubMed  Google Scholar 

  6. Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 18:387–392

    CAS  PubMed  Google Scholar 

  7. Lehle L, Strahl S, Tanner W (2006) Protein glycosylation, conserved from yeast to man: a model organism helps elucidate congenital human diseases. Angew Chem Int Ed Engl 45:6802–6818

    CAS  PubMed  Google Scholar 

  8. Dean N (1999) Asparagine-linked glycosylation in the yeast Golgi. Biochim Biophys Acta 1426:309–322

    CAS  PubMed  Google Scholar 

  9. Goto M (2007) Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci Biotechnol Biochem 71:1415–1427

    CAS  PubMed  Google Scholar 

  10. Abeijon C, Mandon EC, Hirschberg CB (1997) Transporters of nucleotide sugars, nucleotide sulfate and ATP in the Golgi apparatus. Trends Biochem Sci 22:203–207

    CAS  PubMed  Google Scholar 

  11. Maccioni HJ (2007) Glycosylation of glycolipids in the Golgi complex. J Neurochem 103(suppl 1):81–90

    CAS  PubMed  Google Scholar 

  12. Colley KJ (1997) Golgi localization of glycosyltransferases: more questions than answers. Glycobiology 7:1–13

    CAS  PubMed  Google Scholar 

  13. Giraudo CG, Maccioni HJ (2003) Endoplasmic reticulum export of glycosyltransferases depends on interaction of a cytoplasmic dibasic motif with Sar1. Mol Biol Cell 14:3753–3766

    CAS  PubMed  Google Scholar 

  14. Guo Y, Linstedt AD (2006) COPII–Golgi protein interactions regulate COPII coat assembly and Golgi size. J Cell Biol 174:53–63

    CAS  PubMed  Google Scholar 

  15. Johswich A, Kraft B, Wuhrer M, Berger M, Deelder AM, Hokke CH, Gerardy-Schahn R, Bakker H (2009) Golgi targeting of Drosophila melanogaster beta4GalNAcTB requires a DHHC protein family-related protein as a pilot. J Cell Biol 184:173–183

    CAS  PubMed  Google Scholar 

  16. Dennis JW, Granovsky M, Warren CE (1999) Protein glycosylation in development and disease. Bioessays 21:412–421

    CAS  PubMed  Google Scholar 

  17. Dennis JW, Warren CE, Granovsky M, Demetriou M (2001) Genetic defects in N-glycosylation and cellular diversity in mammals. Curr Opin Struct Biol 11:601–607

    CAS  PubMed  Google Scholar 

  18. Machingo QJ, Fritz A, Shur BD (2006) A beta1, 4-galactosyltransferase is required for convergent extension movements in zebrafish. Dev Biol 297:471–482

    CAS  PubMed  Google Scholar 

  19. Tonoyama Y, Anzai D, Ikeda A, Kakuda S, Kinoshita M, Kawasaki T, Oka S (2009) Essential role of beta-1,4-galactosyltransferase 2 during medaka (Oryzias latipes) gastrulation. Mech Dev (in press)

  20. Machingo QJ, Fritz A, Shur BD (2006) A beta1, 4-galactosyltransferase is required for Bmp2-dependent patterning of the dorsoventral axis during zebrafish embryogenesis. Development 133:2233–2241

    CAS  PubMed  Google Scholar 

  21. Moremen KW (2002) Golgi alpha-mannosidase II deficiency in vertebrate systems: implications for asparagine-linked oligosaccharide processing in mammals. Biochim Biophys Acta 1573:225–235

    CAS  PubMed  Google Scholar 

  22. Foulquier F (2008) COG defects, birth and rise! Biochim Biophys Acta (in press)

  23. Zeevaert R, Foulquier F, Jaeken J, Matthijs G (2008) Deficiencies in subunits of the conserved oligomeric golgi (COG) complex define a novel group of congenital disorders of glycosylation. Mol Genet Metab 93:15–21

    CAS  PubMed  Google Scholar 

  24. Pfeffer SR (2007) Unsolved mysteries in membrane traffic. Annu Rev Biochem 76:629–645

    CAS  PubMed  Google Scholar 

  25. Opat AS, van Vliet C, Gleeson PA (2001) Trafficking and localisation of resident Golgi glycosylation enzymes. Biochimie 83:763–773

    CAS  PubMed  Google Scholar 

  26. Munro S (1998) Localization of proteins to the Golgi apparatus. Trends Cell Biol 8:11–15

    CAS  PubMed  Google Scholar 

  27. Gleeson PA (1998) Targeting of proteins to the Golgi apparatus. Histochem Cell Biol 109:517–532

    CAS  PubMed  Google Scholar 

  28. Jackson CL (2009) Mechanisms of transport through the Golgi complex. J Cell Sci 122:443–452

    CAS  PubMed  Google Scholar 

  29. Patterson GH, Hirschberg K, Polishchuk RS, Gerlich D, Phair RD, Lippincott-Schwartz J (2008) Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 133:1055–1067

    CAS  PubMed  Google Scholar 

  30. McCormick C, Duncan G, Goutsos KT, Tufaro F (2000) The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. Proc Natl Acad Sci USA 97:668–673

    CAS  PubMed  Google Scholar 

  31. de Graffenried CL, Bertozzi CR (2004) The roles of enzyme localisation and complex formation in glycan assembly within the Golgi apparatus. Curr Opin Cell Biol 16:356–363

    PubMed  Google Scholar 

  32. Aoki D, Lee N, Yamaguchi N, Dubois C, Fukuda MN (1992) Golgi retention of a trans-Golgi membrane protein, galactosyltransferase, requires cysteine and histidine residues within the membrane-anchoring domain. Proc Natl Acad Sci USA 89:4319–4323

    CAS  PubMed  Google Scholar 

  33. Qian R, Chen C, Colley KJ (2001) Location and mechanism of alpha 2, 6-sialyltransferase dimer formation. Role of cysteine residues in enzyme dimerization, localization, activity, and processing. J Biol Chem 276:28641–28649

    CAS  PubMed  Google Scholar 

  34. Sousa VL, Brito C, Costa T, Lanoix J, Nilsson T, Costa J (2003) Importance of Cys, Gln, and Tyr from the transmembrane domain of human alpha 3/4 fucosyltransferase III for its localization and sorting in the Golgi of baby hamster kidney cells. J Biol Chem 278:7624–7629

    CAS  PubMed  Google Scholar 

  35. Machamer CE, Grim MG, Esquela A, Chung SW, Rolls M, Ryan K, Swift AM (1993) Retention of a cis Golgi protein requires polar residues on one face of a predicted alpha-helix in the transmembrane domain. Mol Biol Cell 4:695–704

    CAS  PubMed  Google Scholar 

  36. Machamer CE (1991) Golgi retention signals: do membranes hold the key? Trends Cell Biol 1:141–144

    CAS  PubMed  Google Scholar 

  37. Nilsson T, Warren G (1994) Retention and retrieval in the endoplasmic reticulum and the Golgi apparatus. Curr Opin Cell Biol 6:517–521

    CAS  PubMed  Google Scholar 

  38. Nilsson T, Rabouille C, Hui N, Watson R, Warren G (1996) The role of the membrane-spanning domain and stalk region of N-acetylglucosaminyltransferase I in retention, kin recognition and structural maintenance of the Golgi apparatus in HeLa cells. J Cell Sci 109(Pt 7):1975–1989

    CAS  PubMed  Google Scholar 

  39. Jungmann J, Munro S (1998) Multi-protein complexes in the cis Golgi of Saccharomyces cerevisiae with alpha-1, 6-mannosyltransferase activity. EMBO J 17:423–434

    CAS  PubMed  Google Scholar 

  40. Jungmann J, Rayner JC, Munro S (1999) The Saccharomyces cerevisiae protein Mnn10p/Bed1p is a subunit of a Golgi mannosyltransferase complex. J Biol Chem 274:6579–6585

    CAS  PubMed  Google Scholar 

  41. Giraudo CG, Daniotti JL, Maccioni HJ (2001) Physical and functional association of glycolipid N-acetyl-galactosaminyl and galactosyl transferases in the Golgi apparatus. Proc Natl Acad Sci USA 98:1625–1630

    CAS  PubMed  Google Scholar 

  42. Giraudo CG, Maccioni HJ (2003) Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 cells. J Biol Chem 278:40262–40271

    CAS  PubMed  Google Scholar 

  43. Opat AS, Houghton F, Gleeson PA (2000) Medial Golgi but not late Golgi glycosyltransferases exist as high molecular weight complexes. Role of luminal domain in complex formation and localization. J Biol Chem 275:11836–11845

    CAS  PubMed  Google Scholar 

  44. Chen C, Ma J, Lazic A, Backovic M, Colley KJ (2000) Formation of insoluble oligomers correlates with ST6Gal I stable localization in the golgi. J Biol Chem 275:13819–13826

    CAS  PubMed  Google Scholar 

  45. Rivinoja A, Hassinen A, Kokkonen N, Kauppila A, Kellokumpu S (2009) Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases. J Cell Physiol 220:144–154

    CAS  PubMed  Google Scholar 

  46. Nilsson T, Lucocq JM, Mackay D, Warren G (1991) The membrane spanning domain of beta-1, 4-galactosyltransferase specifies trans Golgi localization. EMBO J 10:3567–3575

    CAS  PubMed  Google Scholar 

  47. Tang BL, Wong SH, Low SH, Hong W (1992) The transmembrane domain of N-glucosaminyltransferase I contains a Golgi retention signal. J Biol Chem 267:10122–10126

    CAS  PubMed  Google Scholar 

  48. Wong SH, Low SH, Hong W (1992) The 17-residue transmembrane domain of beta-galactoside alpha 2, 6-sialyltransferase is sufficient for Golgi retention. J Cell Biol 117:245–258

    CAS  PubMed  Google Scholar 

  49. Teasdale RD, D’Agostaro G, Gleeson PA (1992) The signal for Golgi retention of bovine beta 1, 4-galactosyltransferase is in the transmembrane domain. J Biol Chem 267:4084–4096

    CAS  PubMed  Google Scholar 

  50. Munro S (1995) An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J 14:4695–4704

    CAS  PubMed  Google Scholar 

  51. Graham TR, Krasnov VA (1995) Sorting of yeast alpha 1, 3 mannosyltransferase is mediated by a lumenal domain interaction, and a transmembrane domain signal that can confer clathrin-dependent Golgi localization to a secreted protein. Mol Biol Cell 6:809–824

    CAS  PubMed  Google Scholar 

  52. Becker B, Haggarty A, Romero PA, Poon T, Herscovics A (2000) The transmembrane domain of murine alpha-mannosidase IB is a major determinant of Golgi localization. Eur J Cell Biol 79:986–992

    CAS  PubMed  Google Scholar 

  53. Munro S (1995) A comparison of the transmembrane domains of Golgi and plasma membrane proteins. Biochem Soc Trans 23:527–530

    CAS  PubMed  Google Scholar 

  54. Roth AF, Wan J, Bailey AO, Sun B, Kuchar JA, Green WN, Phinney BS, Yates JR III, Davis NG (2006) Global analysis of protein palmitoylation in yeast. Cell 125:1003–1013

    CAS  PubMed  Google Scholar 

  55. Valdez-Taubas J, Pelham H (2005) Swf1-dependent palmitoylation of the SNARE Tlg1 prevents its ubiquitination and degradation. EMBO J 24:2524–2532

    CAS  PubMed  Google Scholar 

  56. Lam KK, Davey M, Sun B, Roth AF, Davis NG, Conibear E (2006) Palmitoylation by the DHHC protein Pfa4 regulates the ER exit of Chs3. J Cell Biol 174:19–25

    CAS  PubMed  Google Scholar 

  57. Bretscher MS, Munro S (1993) Cholesterol and the Golgi apparatus. Science 261:1280–1281

    CAS  PubMed  Google Scholar 

  58. Munro S (1991) Sequences within and adjacent to the transmembrane segment of alpha-2, 6-sialyltransferase specify Golgi retention. EMBO J 10:3577–3588

    CAS  PubMed  Google Scholar 

  59. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    PubMed  Google Scholar 

  60. Lussier M, Sdicu AM, Ketela T, Bussey H (1995) Localization and targeting of the Saccharomyces cerevisiae Kre2p/Mnt1p alpha 1, 2-mannosyltransferase to a medial-Golgi compartment. J Cell Biol 131:913–927

    CAS  PubMed  Google Scholar 

  61. Klemm RW, Ejsing CS, Surma MA, Kaiser HJ, Gerl MJ, Sampaio JL, de Robillard Q, Ferguson C, Proszynski TJ, Shevchenko A, Simons K (2009) Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J Cell Biol 185:601–612

    CAS  PubMed  Google Scholar 

  62. Osman N, McKenzie IF, Mouhtouris E, Sandrin MS (1996) Switching amino-terminal cytoplasmic domains of alpha(1, 2)fucosyltransferase and alpha(1, 3)galactosyltransferase alters the expression of H substance and Galalpha(1, 3)Gal. J Biol Chem 271:33105–33109

    CAS  PubMed  Google Scholar 

  63. Milland J, Taylor SG, Dodson HC, McKenzie IF, Sandrin MS (2001) The cytoplasmic tail of alpha 1, 2-fucosyltransferase contains a sequence for golgi localization. J Biol Chem 276:12012–12018

    CAS  PubMed  Google Scholar 

  64. Uliana AS, Giraudo CG, Maccioni HJ (2006) Cytoplasmic tails of SialT2 and GalNAcT impose their respective proximal and distal Golgi localization. Traffic 7:604–612

    CAS  PubMed  Google Scholar 

  65. Saint-Jore-Dupas C, Nebenfuhr A, Boulaflous A, Follet-Gueye ML, Plasson C, Hawes C, Driouich A, Faye L, Gomord V (2006) Plant N-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway. Plant Cell 18:3182–3200

    CAS  PubMed  Google Scholar 

  66. Okamoto M, Yoko-o T, Miyakawa T, Jigami Y (2008) The cytoplasmic region of alpha-1, 6-mannosyltransferase Mnn9p is crucial for retrograde transport from the Golgi apparatus to the endoplasmic reticulum in Saccharomyces cerevisiae. Eukaryot Cell 7:310–318

    CAS  PubMed  Google Scholar 

  67. Christiansen D, Milland J, Dodson HC, Lazarus BD, Sandrin MS (2009) The cytoplasmic and transmembrane domains of secretor type alpha1, 2fucosyltransferase confer atypical cellular localisation. J Mol Recognit 22:250–254

    CAS  PubMed  Google Scholar 

  68. Schaub BE, Berger B, Berger EG, Rohrer J (2006) Transition of galactosyltransferase 1 from trans-Golgi cisterna to the trans-Golgi network is signal mediated. Mol Biol Cell 17:5153–5162

    CAS  PubMed  Google Scholar 

  69. Harris SL, Waters MG (1996) Localization of a yeast early Golgi mannosyltransferase, Och1p, involves retrograde transport. J Cell Biol 132:985–998

    CAS  PubMed  Google Scholar 

  70. Storrie B, White J, Rottger S, Stelzer EH, Suganuma T, Nilsson T (1998) Recycling of golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J Cell Biol 143:1505–1521

    CAS  PubMed  Google Scholar 

  71. Todorow Z, Spang A, Carmack E, Yates J, Schekman R (2000) Active recycling of yeast Golgi mannosyltransferase complexes through the endoplasmic reticulum. Proc Natl Acad Sci USA 97:13643–13648

    CAS  PubMed  Google Scholar 

  72. Girod A, Storrie B, Simpson JC, Johannes L, Goud B, Roberts LM, Lord JM, Nilsson T, Pepperkok R (1999) Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nat Cell Biol 1:423–430

    CAS  PubMed  Google Scholar 

  73. Stolz J, Munro S (2002) The components of the Saccharomyces cerevisiae mannosyltransferase complex M-Pol I have distinct functions in mannan synthesis. J Biol Chem 277:44801–44808

    CAS  PubMed  Google Scholar 

  74. Uemura S, Yoshida S, Shishido F, Inokuchi JI (2009) The cytoplasmic tail of GM3 synthase defines its subcellular localization, stability, and in vivo activity. Mol Biol Cell (in press)

  75. Tu L, Tai WC, Chen L, Banfield DK (2008) Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321:404–407

    CAS  PubMed  Google Scholar 

  76. Quintero CA, Valdez-Taubas J, Ferrari ML, Haedo SD, Maccioni HJ (2008) Calsenilin and CALP interact with the cytoplasmic tail of UDP-Gal:GA2/GM2/GD2 beta-1, 3-galactosyltransferase. Biochem J 412:19–26

    CAS  PubMed  Google Scholar 

  77. Schmitz KR, Liu J, Li S, Setty TG, Wood CS, Burd CG, Ferguson KM (2008) Golgi localization of glycosyltransferases requires a Vps74p oligomer. Dev Cell 14:523–534

    CAS  PubMed  Google Scholar 

  78. Michelsen K, Yuan H, Schwappach B (2005) Hide and run. Arginine-based endoplasmic-reticulum-sorting motifs in the assembly of heteromultimeric membrane proteins. EMBO Rep 6:717–722

    CAS  PubMed  Google Scholar 

  79. Bell AW, Ward MA, Blackstock WP, Freeman HN, Choudhary JS, Lewis AP, Chotai D, Fazel A, Gushue JN, Paiement J, Palcy S, Chevet E, Lafreniere-Roula M, Solari R, Thomas DY, Rowley A, Bergeron JJ (2001) Proteomics characterization of abundant Golgi membrane proteins. J Biol Chem 276:5152–5165

    CAS  PubMed  Google Scholar 

  80. Wu CC, Taylor RS, Lane DR, Ladinsky MS, Weisz JA, Howell KE (2000) GMx33: a novel family of trans-Golgi proteins identified by proteomics. Traffic 1:963–975

    CAS  PubMed  Google Scholar 

  81. Bruinsma P, Spelbrink RG, Nothwehr SF (2004) Retrograde transport of the mannosyltransferase Och1p to the early Golgi requires a component of the COG transport complex. J Biol Chem 279:39814–39823

    CAS  PubMed  Google Scholar 

  82. Shestakova A, Zolov S, Lupashin V (2006) COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. Traffic 7:191–204

    CAS  PubMed  Google Scholar 

  83. Smith RD, Lupashin VV (2008) Role of the conserved oligomeric Golgi (COG) complex in protein glycosylation. Carbohydr Res 343:2024–2031

    CAS  PubMed  Google Scholar 

  84. Ungar D, Oka T, Krieger M, Hughson FM (2006) Retrograde transport on the COG railway. Trends Cell Biol 16:113–120

    CAS  PubMed  Google Scholar 

  85. Foulquier F, Vasile E, Schollen E, Callewaert N, Raemaekers T, Quelhas D, Jaeken J, Mills P, Winchester B, Krieger M, Annaert W, Matthijs G (2006) Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proc Natl Acad Sci USA 103:3764–3769

    CAS  PubMed  Google Scholar 

  86. Wu X, Steet RA, Bohorov O, Bakker J, Newell J, Krieger M, Spaapen L, Kornfeld S, Freeze HH (2004) Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat Med 10:518–523

    CAS  PubMed  Google Scholar 

  87. Kranz C, Ng BG, Sun L, Sharma V, Eklund EA, Miura Y, Ungar D, Lupashin V, Winkel RD, Cipollo JF, Costello CE, Loh E, Hong W, Freeze HH (2007) COG8 deficiency causes new congenital disorder of glycosylation type IIh. Hum Mol Genet 16:731–741

    CAS  PubMed  Google Scholar 

  88. Foulquier F, Ungar D, Reynders E, Zeevaert R, Mills P, Garcia-Silva MT, Briones P, Winchester B, Morelle W, Krieger M, Annaert W, Matthijs G (2007) A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1–Cog8 interaction in COG complex formation. Hum Mol Genet 16:717–730

    CAS  PubMed  Google Scholar 

  89. Freeze HH (2007) Congenital disorders of glycosylation: CDG-I, CDG-II, and beyond. Curr Mol Med 7:389–396

    CAS  PubMed  Google Scholar 

  90. Fenteany FH, Colley KJ (2005) Multiple signals are required for alpha2, 6-sialyltransferase (ST6Gal I) oligomerization and Golgi localization. J Biol Chem 280:5423–5429

    CAS  PubMed  Google Scholar 

  91. Grabenhorst E, Conradt HS (1999) The cytoplasmic, transmembrane, and stem regions of glycosyltransferases specify their in vivo functional sublocalization and stability in the Golgi. J Biol Chem 274:36107–36116

    CAS  PubMed  Google Scholar 

  92. Zerfaoui M, Fukuda M, Langlet C, Mathieu S, Suzuki M, Lombardo D, El-Battari A (2002) The cytosolic and transmembrane domains of the beta 1, 6 N-acetylglucosaminyltransferase (C2GnT) function as a cis to medial/Golgi-targeting determinant. Glycobiology 12:15–24

    CAS  PubMed  Google Scholar 

  93. Lussier M, Sdicu AM, Bussereau F, Jacquet M, Bussey H (1997) The Ktr1p, Ktr3p, and Kre2p/Mnt1p mannosyltransferases participate in the elaboration of yeast O- and N-linked carbohydrate chains. J Biol Chem 272:15527–15531

    CAS  PubMed  Google Scholar 

  94. Hausler A, Ballou L, Ballou CE, Robbins PW (1992) Yeast glycoprotein biosynthesis: MNT1 encodes an alpha-1, 2-mannosyltransferase involved in O-glycosylation. Proc Natl Acad Sci USA 89:6846–6850

    CAS  PubMed  Google Scholar 

  95. Lussier M, Sdicu AM, Camirand A, Bussey H (1996) Functional characterization of the YUR1, KTR1, and KTR2 genes as members of the yeast KRE2/MNT1 mannosyltransferase gene family. J Biol Chem 271:11001–11008

    CAS  PubMed  Google Scholar 

  96. Romero PA, Lussier M, Sdicu AM, Bussey H, Herscovics A (1997) Ktr1p is an alpha-1, 2-mannosyltransferase of Saccharomyces cerevisiae. Comparison of the enzymic properties of soluble recombinant Ktr1p and Kre2p/Mnt1p produced in Pichia pastoris. Biochem J 321(Pt 2):289–295

    CAS  PubMed  Google Scholar 

  97. Inadome H, Noda Y, Adachi H, Yoda K (2005) Immunoisolaton of the yeast Golgi subcompartments and characterization of a novel membrane protein, Svp26, discovered in the Sed5-containing compartments. Mol Cell Biol 25:7696–7710

    CAS  PubMed  Google Scholar 

  98. Sipos G, Puoti A, Conzelmann A (1995) Biosynthesis of the side chain of yeast glycosylphosphatidylinositol anchors is operated by novel mannosyltransferases located in the endoplasmic reticulum and the Golgi apparatus. J Biol Chem 270:19709–19715

    CAS  PubMed  Google Scholar 

  99. Lussier M, Sdicu AM, Bussey H (1999) The KTR and MNN1 mannosyltransferase families of Saccharomyces cerevisiae. Biochim Biophys Acta 1426:323–334

    CAS  PubMed  Google Scholar 

  100. Lussier M, Sdicu AM, Winnett E, Vo DH, Sheraton J, Dusterhoft A, Storms RK, Bussey H (1997) Completion of the Saccharomyces cerevisiae genome sequence allows identification of KTR5, KTR6 and KTR7 and definition of the nine-membered KRE2/MNT1 mannosyltransferase gene family in this organism. Yeast 13:267–274

    CAS  PubMed  Google Scholar 

  101. Wang XH, Nakayama K, Shimma Y, Tanaka A, Jigami Y (1997) MNN6, a member of the KRE2/MNT1 family, is the gene for mannosylphosphate transfer in Saccharomyces cerevisiae. J Biol Chem 272:18117–18124

    CAS  PubMed  Google Scholar 

  102. Jigami Y, Odani T (1999) Mannosylphosphate transfer to yeast mannan. Biochim Biophys Acta 1426:335–345

    CAS  PubMed  Google Scholar 

  103. Romero PA, Lussier M, Veronneau S, Sdicu AM, Herscovics A, Bussey H (1999) Mnt2p and Mnt3p of Saccharomyces cerevisiae are members of the Mnn1p family of alpha-1, 3-mannosyltransferases responsible for adding the terminal mannose residues of O-linked oligosaccharides. Glycobiology 9:1045–1051

    CAS  PubMed  Google Scholar 

  104. Graham TR, Seeger M, Payne GS, MacKay VL, Emr SD (1994) Clathrin-dependent localization of alpha 1, 3 mannosyltransferase to the Golgi complex of Saccharomyces cerevisiae. J Cell Biol 127:667–678

    CAS  PubMed  Google Scholar 

  105. Yip CL, Welch SK, Klebl F, Gilbert T, Seidel P, Grant FJ, O’Hara PJ, MacKay VL (1994) Cloning and analysis of the Saccharomyces cerevisiae MNN9 and MNN1 genes required for complex glycosylation of secreted proteins. Proc Natl Acad Sci USA 91:2723–2727

    CAS  PubMed  Google Scholar 

  106. Rayner JC, Munro S (1998) Identification of the MNN2 and MNN5 mannosyltransferases required for forming and extending the mannose branches of the outer chain mannans of Saccharomyces cerevisiae. J Biol Chem 273:26836–26843

    CAS  PubMed  Google Scholar 

  107. Odani T, Shimma Y, Tanaka A, Jigami Y (1996) Cloning and analysis of the MNN4 gene required for phosphorylation of N-linked oligosaccharides in Saccharomyces cerevisiae. Glycobiology 6:805–810

    CAS  PubMed  Google Scholar 

  108. Yoko-o T, Wiggins CA, Stolz J, Peak-Chew SY, Munro S (2003) An N-acetylglucosaminyltransferase of the Golgi apparatus of the yeast Saccharomyces cerevisiae that can modify N-linked glycans. Glycobiology 13:581–589

    CAS  PubMed  Google Scholar 

  109. Gaynor EC, te Heesen S, Graham TR, Aebi M, Emr SD (1994) Signal-mediated retrieval of a membrane protein from the Golgi to the ER in yeast. J Cell Biol 127:653–665

    CAS  PubMed  Google Scholar 

  110. Nakayama K, Nagasu T, Shimma Y, Kuromitsu J, Jigami Y (1992) OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. EMBO J 11:2511–2519

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

D.K.B. acknowledges financial support for research in his laboratory from the Research Grants Council of Hong Kong (HKUST646/96M, HKUST6098/00M, HKUST6105/02M, HKUST6407/05M and 660007). We thank Dr. Sarah Webb for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Karl Banfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tu, L., Banfield, D.K. Localization of Golgi-resident glycosyltransferases. Cell. Mol. Life Sci. 67, 29–41 (2010). https://doi.org/10.1007/s00018-009-0126-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0126-z

Keywords

Navigation