Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Very-large-scale-integrated high quality factor nanoantenna pixels

Abstract

Metasurfaces precisely control the amplitude, polarization and phase of light, with applications spanning imaging, sensing, modulation and computing. Three crucial performance metrics of metasurfaces and their constituent resonators are the quality factor (Q factor), mode volume (Vm) and ability to control far-field radiation. Often, resonators face a trade-off between these parameters: a reduction in Vm leads to an equivalent reduction in Q, albeit with more control over radiation. Here we demonstrate that this perceived compromise is not inevitable: high quality factor, subwavelength Vm and controlled dipole-like radiation can be achieved simultaneously. We design high quality factor, very-large-scale-integrated silicon nanoantenna pixels (VINPix) that combine guided mode resonance waveguides with photonic crystal cavities. With optimized nanoantennas, we achieve Q factors exceeding 1,500 with Vm less than 0.1 \({(\lambda /{n}_{{{{\rm{air}}}}})}^{3}\). Each nanoantenna is individually addressable by free-space light and exhibits dipole-like scattering to the far-field. Resonator densities exceeding a million nanoantennas per cm2 can be achieved. As a proof-of-concept application, we show spectrometer-free, spatially localized, refractive-index sensing, and fabrication of an 8 mm × 8 mm VINPix array. Our platform provides a foundation for compact, densely multiplexed devices such as spatial light modulators, computational spectrometers and in situ environmental sensors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: VINPix resonators.
Fig. 2: Photonic mirrors confine GMRs.
Fig. 3: Optimization and characterization of VINPix resonators.
Fig. 4: Sensing changes in the local refractive index using high-resolution hyperspectral imaging.
Fig. 5: Slots boost light confinement within our VINPix resonators.

Similar content being viewed by others

Data availability

The data that support the plots and other findings in the work are available in the article and the supplementary information file, and are available from the corresponding authors on reasonable request.

Code availability

The source code for the calculations conducted in this study is available from the corresponding authors on reasonable request.

References

  1. Kuznetsov, A. I. et al. Roadmap for optical metasurfaces. ACS Photonics 11, 816–865 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen, H.-T., Taylor, A. J. & Yu, N. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, 076401 (2016).

    PubMed  Google Scholar 

  3. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    CAS  PubMed  Google Scholar 

  4. Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018).

    CAS  PubMed  Google Scholar 

  5. Zhang, S. et al. Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective. Nanophotonics 10, 259–293 (2021).

    CAS  Google Scholar 

  6. Tseng, M. L., Jahani, Y., Leitis, A. & Altug, H. Dielectric metasurfaces enabling advanced optical biosensors. ACS Photonics 8, 47–60 (2021).

    CAS  Google Scholar 

  7. Hu, J. et al. Rapid genetic screening with high quality factor metasurfaces. Nat. Commun. 14, 4486 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, X., Kwon, K., Henriksson, J., Luo, J. & Wu, M. C. A large-scale microelectromechanical-systems-based silicon photonics LiDAR. Nature 603, 253–258 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, N. et al. Spectral imaging and spectral LIDAR systems: moving toward compact nanophotonics-based sensing. Nanophotonics 10, 1437–1467 (2021).

    CAS  Google Scholar 

  10. Chen, W. T., Zhu, A. Y., Sisler, J., Bharwani, Z. & Capasso, F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun. 10, 355 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lawrence, M. et al. High quality factor phase gradient metasurfaces. Nat. Nanotechnol. 15, 956–961 (2020).

    CAS  PubMed  Google Scholar 

  12. Jang, M. et al. Wavefront shaping with disorder-engineered metasurfaces. Nat. Photonics 12, 84–90 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rogers, C. et al. A universal 3D imaging sensor on a silicon photonics platform. Nature 590, 256–261 (2021).

    CAS  PubMed  Google Scholar 

  14. Colburn, S., Zhan, A. & Majumdar, A. Metasurface optics for full-color computational imaging. Sci Adv 4, eaap9956 (2018).

    Google Scholar 

  15. Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

    CAS  PubMed  Google Scholar 

  16. Li, S.-Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).

    CAS  PubMed  Google Scholar 

  17. Panuski, C. L. et al. A full degree-of-freedom spatiotemporal light modulator. Nat. Photonics 16, 834–842 (2022).

    CAS  Google Scholar 

  18. Zangeneh-Nejad, F., Sounas, D. L., Alù, A. & Fleury, R. Analogue computing with metamaterials. Nat. Rev. Mater. 6, 207–225 (2020).

    Google Scholar 

  19. Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014).

    CAS  PubMed  Google Scholar 

  20. Gao, L., Qu, Y., Wang, L. & Yu, Z. Computational spectrometers enabled by nanophotonics and deep learning. Nanophotonics 11, 2507–2529 (2022).

    CAS  Google Scholar 

  21. Wang, Z. et al. Single-shot on-chip spectral sensors based on photonic crystal slabs. Nat. Commun. 10, 1020 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cihan, A. F., Curto, A. G., Raza, S., Kik, P. G. & Brongersma, M. L. Silicon mie resonators for highly directional light emission from monolayer MoS2. Nat. Photonics 12, 284–290 (2018).

    CAS  Google Scholar 

  23. Benea-Chelmus, I.-C. et al. Gigahertz free-space electro-optic modulators based on mie resonances. Nat. Commun. 13, 3170 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science https://doi.org/10.1126/science.aag2472 (2016).

  25. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).

    CAS  PubMed  Google Scholar 

  26. Koshelev, K. et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288–292 (2020).

    CAS  PubMed  Google Scholar 

  27. Barton, D. et al. High-Q nanophotonics: sculpting wavefronts with slow light. Nanophotonics 10, 83–88 (2021).

    Google Scholar 

  28. Overvig, A. C., Shrestha, S. & Yu, N. Dimerized high contrast gratings. Nanophotonics 7, 1157–1168 (2018).

    CAS  Google Scholar 

  29. Akahane, Y., Asano, T., Song, B.-S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    CAS  PubMed  Google Scholar 

  30. Hu, S. & Weiss, S. M. Design of photonic crystal cavities for extreme light concentration. ACS Photonics 3, 1647–1653 (2016).

    CAS  Google Scholar 

  31. Miura, R. et al. Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters. Nat. Commun. 5, 5580 (2014).

    CAS  PubMed  Google Scholar 

  32. Altug, H., Englund, D. & Vučković, J. Ultrafast photonic crystal nanocavity laser. Nat. Phys. 2, 484–488 (2006).

    CAS  Google Scholar 

  33. Tanabe, T., Notomi, M., Kuramochi, E., Shinya, A. & Taniyama, H. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity. Nat. Photonics 1, 49–52 (2006).

    Google Scholar 

  34. Matsko, A. B. & Ilchenko, V. S. Optical resonators with whispering-gallery modes-part i: basics. IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).

    CAS  Google Scholar 

  35. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    CAS  PubMed  Google Scholar 

  36. Gorodetsky, M. L., Savchenkov, A. A. & Ilchenko, V. S. Ultimate Q of optical microsphere resonators. Opt. Lett. 21, 453–455 (1996).

    CAS  PubMed  Google Scholar 

  37. Lin, G., Diallo, S., Henriet, R., Jacquot, M. & Chembo, Y. K. Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor. Opt. Lett. 39, 6009–6012 (2014).

    CAS  PubMed  Google Scholar 

  38. Zhang, J., MacDonald, K. F. & Zheludev, N. I. Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Opt. Express 21, 26721–26728 (2013).

    PubMed  Google Scholar 

  39. Mirzapourbeinekalaye, B., Samudrala, S., Mansouree, M., McClung, A. & Arbabi, A. Free-space-coupled wavelength-scale disk resonators. Nanophotonics 11, 2901–2908 (2022).

    CAS  Google Scholar 

  40. Zeng, B., Majumdar, A. & Wang, F. Tunable dark modes in one-dimensional ‘diatomic’ dielectric gratings. Opt. Express 23, 12478–12487 (2015).

    CAS  PubMed  Google Scholar 

  41. Wang, S. S. & Magnusson, R. Theory and applications of guided-mode resonance filters. Appl. Opt. 32, 2606–2613 (1993).

    CAS  PubMed  Google Scholar 

  42. Quan, Q., Deotare, P. B. & Loncar, M. Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide. Appl. Phys. Lett. 96, 203102 (2010).

    Google Scholar 

  43. Zain, A. R., Johnson, N. P., Sorel, M. & De La Rue, R. M. Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI). Opt. Express 16, 12084–12089 (2008).

    CAS  PubMed  Google Scholar 

  44. Srinivasan, K. & Painter, O. Momentum space design of high-q photonic crystal optical cavities. Opt. Express 10, 670–684 (2002).

    PubMed  Google Scholar 

  45. Seidler, P., Lister, K., Drechsler, U., Hofrichter, J. & Stöferle, T. Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio. Opt. Express 21, 32468–32483 (2013).

    PubMed  Google Scholar 

  46. Hu, S. et al. Experimental realization of deep-subwavelength confinement in dielectric optical resonators. Sci. Adv. 4, 2355 (2018).

    Google Scholar 

  47. Almeida, V. R., Xu, Q., Barrios, C. A. & Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 29, 1209–1211 (2004).

    PubMed  Google Scholar 

  48. Choi, H., Heuck, M. & Englund, D. Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities. Phys. Rev. Lett. 118, 223605 (2017).

    PubMed  Google Scholar 

  49. Macchia, E. et al. Single-molecule detection with a millimetre-sized transistor. Nat. Commun. 9, 3223 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Raveendran, M., Lee, A. J., Sharma, R., Wälti, C. & Actis, P. Rational design of DNA nanostructures for single molecule biosensing. Nat. Commun. 11, 4384 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kovarik, M. L. & Jacobson, S. C. Nanofluidics in lab-on-a-chip devices. Anal. Chem. 81, 7133–7140 (2009).

    CAS  PubMed  Google Scholar 

  52. Yamamoto, K., Ota, N. & Tanaka, Y. Nanofluidic devices and applications for biological analyses. Anal. Chem. 93, 332–349 (2021).

    CAS  PubMed  Google Scholar 

  53. Kim, S. J., Song, Y.-A. & Han, J. Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications. Chem. Soc. Rev. 39, 912–922 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Leggett, G. J. Scanning near-field photolithography–surface photochemistry with nanoscale spatial resolution. Chem. Soc. Rev. 35, 1150–1161 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank D. McCoy, F. Pan, B. Bourgeois and A. Dai for insightful discussions. The authors acknowledge funding from a NSF Waterman Award (grant number 1933624), which supported the salary of J.A.D.; the MURI (grant number N00014-23-1-2567), which supported the chip design, fabrication and salary of V.D. and S.D.; and the US Department of Energy, Office of Basic Energy Sciences (DE-SC0021984), which supported the chip characterization and salary of S.A. and H.C.D. V.D. was additionally supported by the Office of the Vice Provost for Graduate Education at Stanford through the Stanford Graduate Fellowship in Science and Engineering. H.B.B. acknowledges support from the NSF OCE-PRF (grant number: 2205990), the HHMI Hanna H. Gray Fellowship and the Stanford Sustainability Accelerator. S.D. was additionally supported by the Department of Defense (DOD) through the National Defense Science and Engineering (NDSEG) Fellowship Program. Part of this work was performed in part in the nano@Stanford labs, which are supported by the National Science Foundation as part of the National Nanotechnology Coordinated Infrastructure under award ECCS-2026822. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award ECCS-2026822.

Author information

Authors and Affiliations

Authors

Contributions

V.D., J.H., M.L. and J.A.D. conceived and designed the experiments. V.D. conducted the theory and numerical simulations. V.D., S.D., S.A., H.C.D. and P.M. fabricated the nanostructured samples. V.D., H.B.B. and S.D. performed the optical characterization experiments. V.D. and K.C. analysed the collected experimental data. A.S., F.S. and V.D. conducted the scanning electron microscopic characterizations. J.A.D. conceived the idea and supervised the project, along with M.L., J.H. and H.B.B. on relevant portions of the research. All authors contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Varun Dolia, Mark Lawrence, Jack Hu or Jennifer A. Dionne.

Ethics declarations

Competing interests

J.H., F.S. and J.A.D. are shareholders in Pumpkinseed Technologies, Inc. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Ho Wai Howard Lee, Vladimir Tuz and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2 and Figs. 1–13.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolia, V., Balch, H.B., Dagli, S. et al. Very-large-scale-integrated high quality factor nanoantenna pixels. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01697-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01697-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing