Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The relationship between the gut microbiota and thyroid disorders

Abstract

Disorders of the thyroid gland are common, more prevalent in women than in men, and range from inflammatory to neoplastic lesions. Autoimmune thyroid diseases (AITD) affect 2–5% of the population, while thyroid cancer is the most frequent endocrine malignancy. Treatment for AITD is still restricted to management rather than prevention or cure. Progress has been made in identifying genetic variants that predispose to AITD and thyroid cancer, but the increasing prevalence of all thyroid disorders indicates that factors other than genes are involved. The gut microbiota, which begins to develop before birth, is highly sensitive to diet and the environment, providing a potential mechanism for non-communicable diseases to become communicable. Its functions extend beyond maintenance of gut integrity: the gut microbiota regulates the immune system, contributes to thyroid hormone metabolism and can generate or catabolize carcinogens, all of which are relevant to AITD and thyroid cancer. Observational and interventional studies in animal models support a role for the gut microbiota in AITD, which has been confirmed in some reports from human cohorts, although considerable geographic variation is apparent. Reports of a role for the microbiota in thyroid cancer are more limited, but evidence supports a relationship between gut dysbiosis and thyroid cancer.

Key points

  • The increased incidence of thyroid disorders, such as autoimmune thyroid disease (AITD) and thyroid cancer, has driven the search for contributory environmental factors, including the microbiota.

  • The gut microbiota has diverse functions, mainly exerted via metabolites such as short-chain fatty acids, including the modulation of immune balance, maintenance of thyroid hormone levels and generation or catabolism of carcinogens.

  • Animal models of AITD clearly support a role for the gut microbiota; disease-associated taxa have been identified and antibiotic treatment reduces the incidence and severity of disease.

  • Studies in humans with AITD have shown substantial geographic variation but all have shown reduced gut microbiota diversity; eight genera were associated with all types of thyroid autoimmunity, together with increased Prevotella abundance.

  • Reduced diversity is also a feature of thyroid cancer microbiomes, with the abundance of some species associated with the response to radioactive iodine treatment.

  • Microbiome studies in thyroid disorders are uniquely complicated by the interplay between the microbiota and thyroid hormones and/or therapeutic drugs, making it difficult to identify taxa relevant to autoimmunity or cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of the microbiota findings in autoimmune thyroid diseases.
Fig. 2: Summary of the microbiota findings in thyroid cancer.
Fig. 3: Gut–thyroid interactions in health and disease.

Similar content being viewed by others

References

  1. Kim, J., Gosnell, J. E. & Roman, S. A. Geographic influences in the global rise of thyroid cancer. Nat. Rev. Endocrinol. 16, 17–29 (2020).

    Article  PubMed  Google Scholar 

  2. Kieser, S., Zdobnov, E. M. & Trajkovski, M. Comprehensive mouse microbiota genome catalog reveals major difference to its human counterpart. PLoS Comput. Biol. 18, e1009947 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Miller, F. W. The increasing prevalence of autoimmunity and autoimmune diseases: an urgent call to action for improved understanding, diagnosis, treatment, and prevention. Curr. Opin. Immunol. 80, 102266 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. McLeod, D. S. A. & Cooper, D. S. The incidence and prevalence of thyroid autoimmunity. Endocrine 42, 252–265 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. McGrogan, A., Seaman, H. E., Wright, J. W. & de Vries, C. S. The incidence of autoimmune thyroid disease: a systematic review of the literature. Clin. Endocrinol. 69, 687–696 (2008).

    Article  Google Scholar 

  6. Rayman, M. P. Multiple nutritional factors and thyroid disease, with particular reference to autoimmune thyroid disease. Proc. Nutr. Soc. 78, 34–44 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Taylor, P. N. et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat. Rev. Endocrinol. 14, 301–316 (2018).

    Article  PubMed  Google Scholar 

  8. Pizzato, M. et al. The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol. 10, 264–272 (2022).

    Article  PubMed  Google Scholar 

  9. Ferlay, J. et al. Cancer statistics for the year 2020: an overview. Int. J. Cancer https://doi.org/10.1002/ijc.33588 (2021).

    Article  PubMed  Google Scholar 

  10. Ahn, H. S. et al. Thyroid cancer screening in South Korea increases detection of papillary cancers with no impact on other subtypes or thyroid cancer mortality. Thyroid 26, 1535–1540 (2016).

    Article  PubMed  Google Scholar 

  11. Henley, S. J. et al. Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer 126, 2225–2249 (2020).

    Article  PubMed  Google Scholar 

  12. Furmaniak, J., Sanders, J., Núñez Miguel, R. & Rees Smith, B. Mechanisms of action of TSHR autoantibodies. Horm. Metab. Res. 47, 735–752 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Davies, T. F. et al. Graves’ disease. Nat. Rev. Dis. Prim. 6, 52 (2020).

    Article  PubMed  Google Scholar 

  14. Wang, Y., Fang, S. & Zhou, H. Pathogenic role of Th17 cells in autoimmune thyroid disease and their underlying mechanisms. Best. Pract. Res. Clin. Endocrinol. Metab. 37, 101743 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Walsh, J. P. et al. Thyrotropin and thyroid antibodies as predictors of hypothyroidism: a 13-year, longitudinal study of a community-based cohort using current immunoassay techniques. J. Clin. Endocrinol. Metab. 95, 1095–1104 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Weetman, A. P. An update on the pathogenesis of Hashimoto’s thyroiditis. J. Endocrinol. Invest. 44, 883–890 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Blekhman, R. et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 16, 191 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee, H. J., Stefan-Lifshitz, M., Li, C. W. & Tomer, Y. Genetics and epigenetics of autoimmune thyroid diseases: translational implications. Best. Pract. Res. Clin. Endocrinol. Metab. 37, 101661 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Lafontaine, N., Wilson, S. G. & Walsh, J. P. DNA methylation in autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 108, 604–613 (2023).

    Article  PubMed  Google Scholar 

  20. Köhling, H. L., Plummer, S. F., Marchesi, J. R., Davidge, K. S. & Ludgate, M. The microbiota and autoimmunity: their role in thyroid autoimmune diseases. Clin. Immunol. 183, 63–74 (2017).

    Article  PubMed  Google Scholar 

  21. Hargreaves, C. E. et al. Yersinia enterocolitica provides the link between thyroid-stimulating antibodies and their germline counterparts in Graves’ disease. J. Immunol. 190, 5373–5381 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Covelli, D. & Ludgate, M. The thyroid, the eyes and the gut: a possible connection. J. Endocrinol. Invest. 40, 567–576 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 1551 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Fugazzola, L. Medullary thyroid cancer – an update. Best. Pract. Res. Clin. Endocrinol. Metab. 37, 101655 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Hofstra, R. M. et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367, 375–376 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Elisei, R. et al. Somatic RET indels in sporadic medullary thyroid cancer: prevalence and response to selpercatinib. J. Clin. Endocrinol. Metab. 107, 2195–2202 (2022).

    Article  PubMed  Google Scholar 

  27. Nosé, V., Gill, A., Teijeiro, J. M. C., Perren, A. & Erickson, L. Overview of the 2022 WHO classification of familial endocrine tumor syndromes. Endocr. Pathol. 33, 197–227 (2022).

    Article  PubMed  Google Scholar 

  28. Yehia, L. et al. Longitudinal analysis of cancer risk in children and adults with germline PTEN variants. JAMA Netw. Open. 6, e239705 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Baloch, Z. W. et al. Overview of the 2022 WHO classification of thyroid neoplasms. Endocr. Pathol. 33, 27–63 (2022).

    Article  PubMed  Google Scholar 

  30. National Cancer Institute. Thyroid: SEER 5-year relative survival rates, 2014-2020. Surveillance, Epidemiology, and End Results Program seer.cancer.gov/statistics-network/explorer/application.html?site=80&data_type=4&graph_type=5&compareBy=sex&chk_sex_3=3&chk_sex_2=2&series=9&race=1&age_range=1&stage=101&advopt_precision=1&advopt_show_ci=on&hdn_view=0&advopt_show_apc=on&advopt_display=2#resultsRegion0 (2024).

  31. Akaishi, J. et al. Prognostic impact of the Turin criteria in poorly differentiated thyroid carcinoma. World J. Surg. 43, 2235–2244 (2019).

    Article  PubMed  Google Scholar 

  32. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 159, 676–690 (2014).

    Article  Google Scholar 

  33. Fagin, J. A., Krishnamoorthy, G. P. & Landa, I. Pathogenesis of cancers derived from thyroid follicular cells. Nat. Rev. Cancer 23, 631–650 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Melo, M. et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J. Clin. Endocrinol. Metab. 99, E754–E765 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kunstman, J. W. et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum. Mol. Genet. 24, 2318���2329 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Williams, D. Radiation carcinogenesis: lessons from Chernobyl. Oncogene 27, S9–S18 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Cardis, E. et al. Risk of thyroid cancer after exposure to 131I in childhood. J. Natl Cancer Inst. 97, 724–732 (2005).

    Article  PubMed  Google Scholar 

  38. Macedo, S. et al. Endocrine-disrupting chemicals and endocrine neoplasia: a forty-year systematic review. Environ. Res. 218, 114869 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Gore, A. C. et al. EDC-2: the Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr. Rev. 36, E1–E150 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, L. et al. Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A: implications for host health in zebrafish. Environ. Pollut. 234, 307–317 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Rinninella, E. et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7, 14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Magne, F. et al. The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients 12, 1474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Masetti, G. et al. Gut microbiota in experimental murine model of Graves’ orbitopathy established in different environments may modulate clinical presentation of disease. Microbiome 6, 97 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pronovost, G. N. et al. The maternal microbiome promotes placental development in mice. Sci. Adv. 9, eadk1887 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xiao, L. & Zhao, F. Microbial transmission, colonisation and succession: from pregnancy to infancy. Gut 72, 772–786 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Biscarini, F. et al. Gut microbiome associated with Graves disease and Graves orbitopathy: the INDIGO multicenter European study. J. Clin. Endocrinol. Metab. 108, 2065–2077 (2023). The largest and only European study of the microbiota; long-term follow-up identified species linked with poor response to treatment.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Russell, J. T. et al. Genetic risk for autoimmunity is associated with distinct changes in the human gut microbiome. Nat. Commun. 10, 3621 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Moshkelgosha, S. et al. Gut microbiome in BALB/c and C57BL/6J Mice undergoing experimental thyroid autoimmunity associate with differences in immunological responses and thyroid function. Horm. Metab. Res. 50, 932–941 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Kelly, D., King, T. & Aminov, R. Importance of microbial colonization of the gut in early life to the development of immunity. Mutat. Res. 622, 58–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Valles-Colomer, M. et al. The person-to-person transmission landscape of the gut and oral microbiomes. Nature 614, 125–135 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. De Filippo, C. et al. Diet, environments, and gut microbiota. A preliminary investigation in children living in rural and urban Burkina Faso and Italy. Front. Microbiol. 8, 1979 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 3654 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. De Angelis, M. et al. Diet influences the functions of the human intestinal microbiome. Sci. Rep. 10, 4247 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Veettil, S. K. et al. Role of diet in colorectal cancer incidence: umbrella review of meta-analyses of prospective observational studies. JAMA Netw. Open. 4, e2037341 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jackson, M. A. et al. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat. Commun. 9, 2655 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108, 4554–4561 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Vangay, P., Ward, T., Gerber, J. S. & Knights, D. Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe 17, 553–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ianiro, G., Tilg, H. & Gasbarrini, A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut 65, 1906–1915 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Sun, J. et al. Gut microbiota participates in antithyroid drug induced liver injury through the lipopolysaccharide related signaling pathway. Front. Pharmacol. 11, 598170 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R. & Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16, 605–616 (2019).

    Article  PubMed  Google Scholar 

  65. Mohr, A. E. et al. The athletic gut microbiota. J. Int. Soc. Sports Nutr. 17, 24 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Antonello, G. et al. Smoking and salivary microbiota: a cross-sectional analysis of an Italian alpine population. Sci. Rep. 13, 18904 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Deleu, S., Machiels, K., Raes, J., Verbeke, K. & Vermeire, S. Short chain fatty acids and its producing organisms: an overlooked therapy for IBD? EBioMedicine 66, 103293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bischoff, S. C. et al. Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterol. 14, 189 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Camilleri, M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut 68, 1516–1526 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Zheng, D. et al. Elevated levels of circulating biomarkers related to leaky gut syndrome and bacterial translocation are associated with Graves’ disease. Front. Endocrinol. 12, 796212 (2021).

    Article  Google Scholar 

  71. Zhang, L. et al. Combining micro-RNA and protein sequencing to detect robust biomarkers for Graves’ disease and orbitopathy. Sci. Rep. 8, 8386 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Demir, E. et al. The relationship between elevated plasma zonulin levels and Hashimoto’s thyroiditis. Turk. J. Med. Sci. 52, 605–612 (2022).

    Article  PubMed  Google Scholar 

  73. Ch’ng, C. L., Jones, M. K. & Kingham, J. G. C. Celiac disease and autoimmune thyroid disease. Clin. Med. Res. 5, 184–192 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Luu, M., Schütz, B., Lauth, M. & Visekruna, A. The impact of gut microbiota-derived metabolites on the tumor immune microenvironment. Cancers 15, 1588 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kunc, M., Gabrych, A. & Witkowski, J. M. Microbiome impact on metabolism and function of sex, thyroid, growth and parathyroid hormones. Acta Biochim. Pol. 63, 189–201 (2016).

    CAS  PubMed  Google Scholar 

  76. DiStefano, J. J. III, Nguyen, T. T. & Yen, Y. M. Transfer kinetics of 3,5,3’-triiodothyronine and thyroxine from rat blood to large and small intestines, liver, and kidneys in vivo. Endocrinology 132, 1735–1744 (1993).

    Article  CAS  PubMed  Google Scholar 

  77. Fenneman, A. C., Bruinstroop, E., Nieuwdorp, M., van der Spek, A. H. & Boelen, A. A comprehensive review of thyroid hormone metabolism in the gut and its clinical implications. Thyroid 33, 32–44 (2023).

    Article  CAS  PubMed  Google Scholar 

  78. Malo, M. S. et al. Thyroid hormone positively regulates the enterocyte differentiation marker intestinal alkaline phosphatase gene via an atypical response element. Mol. Endocrinol. 18, 1941–1962 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Köhrle, J. Thyroid hormone deiodinases – a selenoenzyme family acting as gate keepers to thyroid hormone action. Acta Med. Austriaca 23, 17–30 (1996).

    PubMed  Google Scholar 

  80. Zheng, L. et al. Gut microbiota is associated with response to 131I therapy in patients with papillary thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging 50, 1453–1465 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Papanastasiou, L., Vatalas, I.-A., Koutras, D. A. & Mastorakos, G. Thyroid autoimmunity in the current iodine environment. Thyroid 17, 729–739 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Kasaikina, M. V. et al. Dietary selenium affects host selenoproteome expression by influencing the gut microbiota. FASEB J. 25, 2492–2499 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fröhlich, E. & Wahl, R. Microbiota and thyroid interaction in health and disease. Trends Endocrinol. Metab. 30, 479–490 (2019).

    Article  PubMed  Google Scholar 

  84. Cai, J., Su, W., Chen, X. & Zheng, H. Advances in the study of selenium and human intestinal bacteria. Front. Nutr. 9, 1059358 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Calomme, M., Hu, J., Van den Branden, K. & Vanden Berghe, D. A. Seleno-lactobacillus: an organic selenium source. Biol. Trace Elem. Res. 47, 379–383 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, J. et al. Dysbiosis of the gut microbiome is associated with thyroid cancer and thyroid nodules and correlated with clinical index of thyroid function. Endocrine 64, 564–574 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Ferreira, R. L. U. et al. Selenium in human health and gut microflora: bioavailability of selenocompounds and relationship with diseases. Front. Nutr. 8, 685317 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Park, J. et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 8, 80–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Bach, J.-F. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat. Rev. Immunol. 18, 105–120 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Buchta Rosean, C. et al. Preexisting commensal dysbiosis is a host-intrinsic regulator of tissue inflammation and tumor cell dissemination in hormone receptor-positive breast cancer. Cancer Res. 79, 3662–3675 (2019).

    Article  PubMed  Google Scholar 

  93. Björk, J. R. et al. Longitudinal gut microbiome changes in immune checkpoint blockade-treated advanced melanoma. Nat. Med. 30, 785–796 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Aghajani, M. J. et al. Pembrolizumab for anaplastic thyroid cancer: a case study. Cancer Immunol. Immunother. 68, 1921–1934 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022). This paper builds on the seminal work identifying hallmarks of cancer to include a role for the microbiota in all aspects of neoplastic disease.

    Article  CAS  PubMed  Google Scholar 

  98. Cuevas-Ramos, G. et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc. Natl Acad. Sci. USA 107, 11537–11542 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Davie, J. R. Inhibition of histone deacetylase activity by butyrate. J. Nutr. 133, 2485S–2493S (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Okumura, S. et al. Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion. Nat. Commun. 12, 5674 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020). A comprehensive analysis of more than 1,500 tumours (and normal tissues) from seven tumour types that verifies the presence and differential abundance of bacteria in all types of tumour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fu, A. et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell 185, 1356–1372.e26 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Moshkelgosha, S. et al. Modulating gut microbiota in a mouse model of Graves’ orbitopathy and its impact on induced disease. Microbiome 9, 45 (2021). The first study applying several methods to alter the microbiota including antibiotics and hFMT, which significantly reduced and increased disease incidence and severity, respectively.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Weaver, C. T. & Hatton, R. D. Interplay between the TH17 and TReg cell lineages: a (co-)evolutionary perspective. Nat. Rev. Immunol. 9, 883–889 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Su, X. et al. Gut dysbiosis contributes to the imbalance of Treg and Th17 cells in graves’ disease patients by propionic acid. J. Clin. Endocrinol. Metab. 105, dgaa511 (2020). The only study to identify a specific change in the microbiota and connect it with a known disease-inducing mechanism.

    Article  PubMed  Google Scholar 

  106. Cornejo-Pareja, I. et al. Differential microbial pattern description in subjects with autoimmune-based thyroid diseases: a pilot study. J. Pers. Med. 10, 192 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. El-Zawawy, H. T. et al. Study of gut microbiome in Egyptian patients with autoimmune thyroid diseases. Int. J. Clin. Pract. 75, e14038 (2021).

    Article  PubMed  Google Scholar 

  108. Zhu, Q. et al. Compositional and genetic alterations in Graves’ disease gut microbiome reveal specific diagnostic biomarkers. ISME J. 15, 3399–3411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cao, J. et al. A cause-effect relationship between Graves’ disease and the gut microbiome contributes to the thyroid–gut axis: a bidirectional two-sample Mendelian randomization study. Front. Immunol. 14, 977587 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang, Q. et al. Changes in the gut microbiota of patients with Graves’ orbitopathy according to severity grade. Clin. Exp. Ophthalmol. 51, 808–821 (2023).

    Article  PubMed  Google Scholar 

  111. Cayres, L. C. et al. Detection of alterations in the gut microbiota and intestinal permeability in patients with Hashimoto thyroiditis. Front. Immunol. 12, 579140 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ishaq, H. M. et al. Molecular estimation of alteration in intestinal microbial composition in Hashimoto’s thyroiditis patients. Biomed. Pharmacother. 95, 865–874 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Zhao, F. et al. Alterations of the gut microbiota in Hashimoto’s thyroiditis patients. Thyroid 28, 175–186 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Liu, S. et al. The composition of gut microbiota in patients bearing Hashimoto’s thyroiditis with euthyroidism and hypothyroidism. Int. J. Endocrinol. 2020, 5036959 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Liu, J. et al. Analysis of gut microbiota diversity in Hashimoto’s thyroiditis patients. BMC Microbiol. 22, 318 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Gong, B. et al. Association between gut microbiota and autoimmune thyroid disease: a systematic review and meta-analysis. Front. Endocrinol. 12, 774362 (2021).

    Article  Google Scholar 

  117. Sawicka-Gutaj, N. et al. Microbiota alterations in patients with autoimmune thyroid diseases: a systematic review. Int. J. Mol. Sci. 23, 13450 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Deng, Y. et al. Correlation between gut microbiota and the development of Graves’ disease: a prospective study. iScience 26, 107188 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Huo, D. et al. Probiotic Bifidobacterium longum supplied with methimazole improved the thyroid function of Graves’ disease patients through the gut–thyroid axis. Commun. Biol. 4, 1046 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Salvi, M. et al. The randomised probiotic trial of indigo study (investigation of novel biomarkers and definition of role of the microbiome in Graves’ orbitopathy) [abstract]. Endocr. Abstr. 63, GP71 (2019).

    Google Scholar 

  121. Han, Z. et al. The potential prebiotic berberine combined with methimazole improved the therapeutic effect of Graves’ disease patients through regulating the intestinal microbiome. Front. Immunol. 12, 826067 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Su, X., Zhao, Y., Li, Y., Ma, S. & Wang, Z. Gut dysbiosis is associated with primary hypothyroidism with interaction on gut–thyroid axis. Clin. Sci. 134, 1521–1535 (2020).

    Article  CAS  Google Scholar 

  123. Jiang, W. et al. Gut microbiota may play a significant role in the pathogenesis of Graves’ disease. Thyroid 31, 810–820 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chen, J. et al. Associations between gut microbiota and thyroidal function status in Chinese patients with Graves’ disease. J. Endocrinol. Invest. 44, 1913–1926 (2021).

    Article  PubMed  Google Scholar 

  125. Vacca, M. et al. The controversial role of human gut Lachnospiraceae. Microorganisms 8, 573 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Clasen, S. J. et al. Silent recognition of flagellins from human gut commensal bacteria by Toll-like receptor 5. Sci. Immunol. 8, eabq7001 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Morshed, S. A., Ma, R., Latif, R. & Davies, T. F. Cleavage region thyrotropin receptor antibodies influence thyroid cell survival in vivo. Thyroid 29, 993–1002 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Golemis, E. A. et al. Molecular mechanisms of the preventable causes of cancer in the United States. Genes. Dev. 32, 868–902 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ferreira, R. M. et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 67, 226–236 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Feng, J. et al. Alterations in the gut microbiota and metabolite profiles of thyroid carcinoma patients. Int. J. Cancer 144, 2728–2745 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Gnanasekar, A. et al. The intratumor microbiome predicts prognosis across gender and subtypes in papillary thyroid carcinoma. Comput. Struct. Biotechnol. J. 19, 1986–1997 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yuan, L. et al. Tumor microbiome diversity influences papillary thyroid cancer invasion. Commun. Biol. 5, 864 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fernandes, A., Oliveira, A., Carvalho, A. L., Soares, R. & Barata, P. Faecalibacterium prausnitzii in differentiated thyroid cancer patients treated with radioiodine. Nutrients 15, 2680 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lin, B. et al. Randomized clinical trial: probiotics alleviated oral–gut microbiota dysbiosis and thyroid hormone withdrawal-related complications in thyroid cancer patients before radioiodine therapy following thyroidectomy. Front. Endocrinol. 13, 834674 (2022). Promising preliminary results from a clinical trial using probiotics to alleviate thyroid hormone withdrawal-related complications in patients with thyroid cancer after thyroidectomy and before radioiodine therapy.

    Article  Google Scholar 

  135. Lu, G. et al. Disrupted gut microecology after high-dose 131I therapy and radioprotective effects of arachidonic acid supplementation. Eur. J. Nucl. Med. Mol. Imaging. https://doi.org/10.1007/s00259-024-06688-9 (2024).

  136. Fenneman, A. C. et al. Comparative analysis of taxonomic and functional gut microbiota profiles in relation to seroconversion of thyroid peroxidase antibodies in euthyroid participants. Thyroid 34, 101–111 (2024).

    Article  CAS  PubMed  Google Scholar 

  137. Fenneman, A. C. et al. Intestinal permeability is associated with aggravated inflammation and myofibroblast accumulation in Graves’ orbitopathy: the MicroGO study. Front. Endocrinol. 14, 1173481 (2023).

    Article  Google Scholar 

  138. Szóstak, N. et al. The standardisation of the approach to metagenomic human gut analysis: from sample collection to microbiome profiling. Sci. Rep. 12, 8470 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ishaq, H. M. et al. Molecular alteration analysis of human gut microbial composition in Graves’ disease patients. Int. J. Biol. Sci. 14, 1558–1570 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shi, T.-T. et al. Alterations in the intestinal microbiota of patients with severe and active Graves’ orbitopathy: a cross-sectional study. J. Endocrinol. Invest. 42, 967–978 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Shi, T.-T., Hua, L., Wang, H. & Xin, Z. The potential link between gut microbiota and serum TRAb in Chinese patients with severe and active Graves’ orbitopathy. Int. J. Endocrinol. 2019, 9736968 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Yang, M. et al. Alteration of the intestinal flora may participate in the development of Graves’ disease: a study conducted among the Han population in southwest China. Endocr. Connect. 8, 822–828 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yan, H.-X. et al. Intestinal microbiota changes in Graves’ disease: a prospective clinical study. Biosci. Rep. 40, BSR20191242 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shi, T.-T. et al. Comparative assessment of gut microbial composition and function in patients with Graves’ disease and Graves’ orbitopathy. J. Endocrinol. Invest. 44, 297–310 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Chang, S.-C. et al. Alterations of gut microbiota in patients with Graves’ disease. Front. Cell. Infect. Microbiol. 11, 663131 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Byrd, V., Getz, T., Padmanabhan, R., Arora, H. & Eng, C. The microbiome in PTEN hamartoma tumor syndrome. Endocr. Relat. Cancer 25, 233–243 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Yu, X. et al. Gut microbiota changes and its potential relations with thyroid carcinoma. J. Advert. Res. 35, 61–70 (2022).

    Article  CAS  Google Scholar 

  148. Lu, G. et al. Alterations of gut microbiome and metabolite profiles associated with anabatic lipid dysmetabolism in thyroid cancer. Front. Endocrinol. 13, 893164 (2022).

    Article  Google Scholar 

  149. Li, A. et al. Gut microbiome alterations in patients with thyroid nodules. Front. Cell. Infect. Microbiol. 11, 643968 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Petersen, C. & Round, J. L. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol. 16, 1024–1033 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Blanco-Míguez, A. et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat. Biotechnol. 41, 1633–1644 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

    Article  PubMed  Google Scholar 

  155. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Cole, J. R. et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Marian E. Ludgate.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Marco Centanni, Eleonore Fröhlich and Gislane Lelis Vilela de Oliveira for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Cytoscape: https://cytoscape.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludgate, M.E., Masetti, G. & Soares, P. The relationship between the gut microbiota and thyroid disorders. Nat Rev Endocrinol (2024). https://doi.org/10.1038/s41574-024-01003-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-024-01003-w

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology