Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Topological magnetic and ferroelectric systems for reservoir computing

Abstract

Topological spin textures in magnetic materials and arrangements of electric dipoles in ferroelectrics are considered to be promising candidates for next-generation information technology and unconventional computing. Exciting examples are magnetic skyrmions and ferroelectric domain walls. We discuss how the physical properties of these topological nanoscale systems can be leveraged for reservoir computing, that is, for translating non-linear problems into linearly solvable ones. They fulfill the requirements for non-linearity, complexity, short-term memory and reproducibility, giving new opportunities for the downscaling of devices, enhanced complexity and versatile input and readout options. We also discuss the practical challenges and opportunities for exploiting the unique properties of these systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physical reservoir computing.
Fig. 2: Magnetic textures for reservoir computing obtained by micromagnetic simulations.
Fig. 3: Key features of ferroelectric domain walls for reservoir computing.
Fig. 4: Various physical input, operational and readout schemes.
Fig. 5: Towards 3D reservoir computing and enhanced complexity using multi-scale and multiple-order-parameter systems.

Similar content being viewed by others

References

  1. Ielmini, D. & Wong, H.-S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).

    Article  Google Scholar 

  2. Indiveri, G. et al. Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011).

    Article  Google Scholar 

  3. Finocchio, G. et al. The promise of spintronics for unconventional computing. J. Magn. Magn. Mater. 521, 167506 (2021).

    Article  Google Scholar 

  4. Finocchio, G. et al. Roadmap for unconventional computing with nanotechnology. Nano Futures 8, 012001 (2024).

    Article  ADS  Google Scholar 

  5. Lee, O. et al. Perspective on unconventional computing using magnetic skyrmions. Appl. Phys. Lett. 122, 260501 (2023).

    Article  ADS  Google Scholar 

  6. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article  ADS  Google Scholar 

  7. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article  ADS  Google Scholar 

  8. Back, C. et al. The 2020 skyrmionics roadmap. J. Phys. D Appl. Phys. 53, 363001 (2020).

    Article  ADS  Google Scholar 

  9. Vedmedenko, E. Y. et al. The 2020 magnetism roadmap. J. Phys. D Appl. Phys. 53, 453001 (2020).

    Article  Google Scholar 

  10. Tang, J. et al. Magnetic skyrmion bundles and their current-driven dynamics. Nat. Nanotechnol. 16, 1086–1091 (2021).

    Article  ADS  Google Scholar 

  11. Wang, X., Qaiumzadeh, A. & Brataas, A. Current-driven dynamics of magnetic hopfions. Phys. Rev. Lett. 123, 147203 (2019).

    Article  ADS  Google Scholar 

  12. Kent, N. et al. Creation and observation of hopfions in magnetic multilayer systems. Nat. Commun. 12, 1562 (2021).

    Article  ADS  Google Scholar 

  13. Azhar, M., Kravchuk, V. P. & Garst, M. Screw dislocations in chiral magnets. Phys. Rev. Lett. 128, 157204 (2022).

    Article  ADS  Google Scholar 

  14. Stepanova, M. et al. Detection of topological spin textures via nonlinear magnetic responses. Nano Lett. 22, 14–21 (2021).

    Article  ADS  Google Scholar 

  15. McConville, J. P. et al. Ferroelectric domain wall memristor. Adv. Funct. Mater. 30, 2000109 (2020).

    Article  Google Scholar 

  16. Rieck, J. L. et al. Ferroelastic domain walls in BiFeO3 as memristive networks. Adv. Intell. Syst. 5, 2200292 (2023).

    Article  Google Scholar 

  17. Meier, D. & Selbach, S. M. Ferroelectric domain walls for nanotechnology. Nat. Rev. Mater. 7, 157–173 (2022).

    Article  ADS  Google Scholar 

  18. Sharma, P., Moise, T. S., Colombo, L. & Seidel, J. Roadmap for ferroelectric domain wall nanoelectronics. Adv. Funct. Mater. 32, 2110263 (2022).

    Article  Google Scholar 

  19. Wang, C. et al. Analog ferroelectric domain-wall memories and synaptic devices integrated with Si substrates. Nano Res. 15, 3606–3613 (2022).

    Article  ADS  Google Scholar 

  20. Schroeder, U. et al. Hafnium oxide based CMOS compatible ferroelectric materials. ECS J. Solid State Sci. Technol. 2, N69 (2013).

    Article  Google Scholar 

  21. Govinden, V. et al. Spherical ferroelectric solitons. Nat. Mater. 22, 553–561 (2023).

    Article  ADS  Google Scholar 

  22. Nataf, G. F. et al. Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials. Nat. Rev. Phys. 2, 634–648 (2020).

    Article  Google Scholar 

  23. Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article  ADS  Google Scholar 

  24. Meier, D., Íñiguez-González, J., Rodrigues, D. & Everschor-Sitte, K. Editorial: Focus issue on topological solitons for neuromorphic systems. Neuromorph. Comput. Eng. 4, 010202 (2024).

    Article  Google Scholar 

  25. Lukoševičius, M., Jaeger, H. & Schrauwen, B. Reservoir computing trends. Künstliche Intell. 26, 365–371 (2012).

    Article  Google Scholar 

  26. Jaeger, H. The “echo state” approach to analysing and training recurrent neural networks — with an erratum note. (GMD Research Center for Information Technology, 2001).

  27. Jaeger, H. Short term memory in echo state networks (GMD Research Center for Information Technology, 2001).

  28. Dambre, J., Verstraeten, D., Schrauwen, B. & Massar, S. Information processing capacity of dynamical systems. Sci. Rep. 2, 514 (2012).

    Article  ADS  Google Scholar 

  29. Inubushi, M. & Yoshimura, K. Reservoir computing beyond memory-nonlinearity trade-off. Sci. Rep. 7, 10199 (2017).

    Article  ADS  Google Scholar 

  30. Love, J. et al. Spatial analysis of physical reservoir computers. Phys. Rev. Appl. 20, 044057 (2023).

    Article  ADS  Google Scholar 

  31. Dale, M., Miller, J. F., Stepney, S. & Trefzer, M. A. A substrate-independent framework to characterize reservoir computers. Proc. R. Soc. A 475, 20180723 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  32. Love, J., Mulkers, J., Bourianoff, G., Leliaert, J. & Everschor-Sitte, K. Task agnostic metrics for reservoir computing. Preprint at https://doi.org/10.48550/arXiv.2108.01512 (2002).

  33. Cucchi, M., Abreu, S., Ciccone, G., Brunner, D. & Kleemann, H. Hands-on reservoir computing: a tutorial for practical implementation. Neuromorph. Comput. Eng. 2, 032002 (2022).

    Article  Google Scholar 

  34. Kudithipudi, D., Saleh, Q., Merkel, C., Thesing, J. & Wysocki, B. Design and analysis of a neuromemristive reservoir computing architecture for biosignal processing. Front. Neurosci. 9, 502 (2016).

    Article  Google Scholar 

  35. Yi, Y. et al. FPGA based spike-time dependent encoder and reservoir design in neuromorphic computing processors. Microprocess. Microsyst. 46, 175–183 (2016).

    Article  Google Scholar 

  36. Tanaka, G. et al. Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100–123 (2019).

    Article  Google Scholar 

  37. Nakajima, K. Physical reservoir computing — an introductory perspective. Jpn. J. Appl. Phys. 59, 060501 (2020).

    Article  ADS  Google Scholar 

  38. Christensen, D. V. et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorph. Comput. Eng. 2, 022501 (2022).

    Article  Google Scholar 

  39. Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).

    Article  Google Scholar 

  40. Furuta, T. et al. Macromagnetic simulation for reservoir computing utilizing spin dynamics in magnetic tunnel junctions. Phys. Rev. Appl. 10, 034063 (2018).

    Article  ADS  Google Scholar 

  41. Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).

    Article  Google Scholar 

  42. Marković, D. et al. Reservoir computing with the frequency, phase, and amplitude of spin-torque nano-oscillators. Appl. Phys. Lett. 114, 012409 (2019).

    Article  ADS  Google Scholar 

  43. Van der Sande, G., Brunner, D. & Soriano, M. C. Advances in photonic reservoir computing. Nanophotonics 6, 561–576 (2017).

    Article  Google Scholar 

  44. Röhm, A. & Lüdge, K. Multiplexed networks: reservoir computing with virtual and real nodes. J. Phys. Commun. 2, 085007 (2018).

    Article  Google Scholar 

  45. Nomura, H. et al. Reservoir computing with dipole-coupled nanomagnets. Jpn. J. Appl. Phys. 58, 070901 (2019).

    Article  ADS  Google Scholar 

  46. Gartside, J. C. et al. Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting. Nat. Nanotechnol. 17, 460–469 (2022).

    Article  ADS  Google Scholar 

  47. Vidamour, I. T. et al. Reconfigurable reservoir computing in a magnetic metamaterial. Commun. Phys. 6, 230 (2023).

    Article  Google Scholar 

  48. Raab, K. et al. Brownian reservoir computing realized using geometrically confined skyrmion dynamics. Nat. Commun. 13, 6982 (2022).

    Article  ADS  Google Scholar 

  49. Prychynenko, D. et al. Magnetic skyrmion as a nonlinear resistive element: a potential building block for reservoir computing. Phys. Rev. Appl. 9, 014034 (2018).

    Article  ADS  Google Scholar 

  50. Bourianoff, G., Pinna, D., Sitte, M. & Everschor-Sitte, K. Potential implementation of reservoir computing models based on magnetic skyrmions. AIP Adv. 8, 055602 (2018).

    Article  ADS  Google Scholar 

  51. Pinna, D., Bourianoff, G. & Everschor-Sitte, K. Reservoir computing with random skyrmion textures. Phys. Rev. Appl. 14, 054020 (2020).

    Article  ADS  Google Scholar 

  52. Sun, Y. et al. Experimental demonstration of a skyrmion-enhanced strain-mediated physical reservoir computing system. Nat. Commun. 14, 3434 (2023).

    Article  ADS  Google Scholar 

  53. Lee, M.-K. & Mochizuki, M. Reservoir computing with spin waves in a skyrmion crystal. Phys. Rev. Appl. 18, 014074 (2022).

    Article  ADS  Google Scholar 

  54. Lee, M.-K. & Mochizuki, M. Handwritten digit recognition by spin waves in a skyrmion reservoir. Sci. Rep. 13, 19423 (2023).

    Article  ADS  Google Scholar 

  55. Bechler, N. & Masell, J. Helitronics as a potential building block for classical and unconventional computing. Neuromorph. Comput. Eng. 3, 034003 (2023).

    Article  Google Scholar 

  56. Lee, O. et al. Task-adaptive physical reservoir computing. Nat. Mater. 23, 79–87 (2024).

    Article  ADS  Google Scholar 

  57. Msiska, R., Love, J., Mulkers, J., Leliaert, J. & Everschor-Sitte, K. Audio classification with skyrmion reservoirs. Adv. Intell. Syst. 2023, 2200388 (2023).

    Article  Google Scholar 

  58. Chen, Z. et al. All-ferroelectric implementation of reservoir computing. Nat. Commun. 14, 3585 (2023).

    Article  ADS  Google Scholar 

  59. Tagantsev, A. K., Cross, L. E. & Fousek, J. Domains in Ferroic Crystals and Thin Films (Springer, 2010).

  60. Yang, M.-M. & Alexe, M. Light-induced reversible control of ferroelectric polarization in BiFeO3. Adv. Mater. 30, 1704908 (2018).

    Article  Google Scholar 

  61. Lu, H. et al. Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012).

    Article  ADS  Google Scholar 

  62. Kim, D. et al. Ferroelectric synaptic devices based on CMOS-compatible HfAlOx for neuromorphic and reservoir computing applications. Nanoscale 15, 8366–8376 (2023).

    Article  Google Scholar 

  63. Tang, M.et al. Fully ferroelectric-FETs reservoir computing network for temporal and random signal processing. IEEE Trans. Electron Devices (2023).

  64. Toprasertpong, K. et al. Reservoir computing on a silicon platform with a ferroelectric field-effect transistor. Commun. Eng. 1, 21 (2022).

    Article  Google Scholar 

  65. Falcone, D. F., Halter, M., Bégon-Lours, L. & Offrein, B. J. Back-end, CMOS-compatible ferroelectric FinFET for synaptic weights. Front. Electron. Mater. 2, 849879 (2022).

    Article  Google Scholar 

  66. Eliseev, E., Morozovska, A., Svechnikov, G., Gopalan, V. & Shur, V. Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B 83, 235313 (2011).

    Article  ADS  Google Scholar 

  67. Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284–288 (2012).

    Article  ADS  Google Scholar 

  68. Roede, E. D. et al. Contact-free reversible switching of improper ferroelectric domains by electron and ion irradiation. APL Mater. 9, 021105 (2021).

    Article  ADS  Google Scholar 

  69. Jiang, J. et al. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories. Nat. Mater. 17, 49–56 (2018).

    Article  ADS  Google Scholar 

  70. Choi, T. et al. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat. Mater. 9, 253–258 (2010).

    Article  ADS  Google Scholar 

  71. Han, M.-G. et al. Ferroelectric switching dynamics of topological vortex domains in a hexagonal manganite. Adv. Mater. 25, 2415–2421 (2013).

    Article  Google Scholar 

  72. Grigoriev, A. et al. Nanosecond domain wall dynamics in ferroelectric Pb(Zr,Ti)O3 thin films. Phys. Rev. Lett. 96, 187601 (2006).

    Article  ADS  Google Scholar 

  73. Holtz, M. E. et al. Topological defects in hexagonal manganites: inner structure and emergent electrostatics. Nano Lett. 17, 5883–5890 (2017).

    Article  ADS  Google Scholar 

  74. Roede, E. D. et al. The third dimension of ferroelectric domain walls. Adv. Mater. 34, 2202614 (2022).

    Article  Google Scholar 

  75. Wang, Y. et al. Polar meron lattice in strained oxide ferroelectrics. Nat. Mater. 19, 881–886 (2020).

    Article  ADS  Google Scholar 

  76. Luk’yanchuk, I., Tikhonov, Y., Razumnaya, A. & Vinokur, V. Hopfions emerge in ferroelectrics. Nat. Commun. 11, 2433 (2020).

    Article  ADS  Google Scholar 

  77. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  ADS  Google Scholar 

  78. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).

    Article  ADS  Google Scholar 

  79. Husain, S. et al. Low-temperature grapho-epitaxial La-substituted BiFeO3 on metallic perovskite. Nat. Commun. 15, 479 (2024).

    Article  ADS  Google Scholar 

  80. Jiang, Y. et al. Enabling ultra-low-voltage switching in BaTiO3. Nat. Mater. 21, 779–785 (2022).

    Article  ADS  Google Scholar 

  81. Zhang, S. et al. Domain wall evolution in Hf0.5Zr0.5O2 ferroelectrics under field-cycling behavior. Research 6, 0093 (2023).

    Article  ADS  Google Scholar 

  82. Werner, C. S. et al. Large and accessible conductivity of charged domain walls in lithium niobate. Sci. Rep. 7, 9862 (2017).

    Article  ADS  Google Scholar 

  83. Sluka, T., Tagantsev, A. K., Bednyakov, P. & Setter, N. Free-electron gas at charged domain walls in insulating BaTiO3. Nat. Commun. 4, 1808 (2013).

    Article  ADS  Google Scholar 

  84. Li, T., Zhang, L. & Hong, X. Anisotropic magnetoresistance and planar Hall effect in correlated and topological materials. J. Vac. Sci. Technol. A 40, 010807 (2022).

  85. Fernández-Pacheco, A. et al. Three-dimensional nanomagnetism. Nat. Commun. 8, 15756 (2017).

    Article  ADS  Google Scholar 

  86. Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

    Article  ADS  Google Scholar 

  87. Wolf, D. et al. Unveiling the three-dimensional magnetic texture of skyrmion tubes. Nat. Nanotechnol. 17, 250–255 (2022).

    Article  ADS  Google Scholar 

  88. Birch, M. T. et al. Real-space imaging of confined magnetic skyrmion tubes. Nat. Commun. 11, 1726 (2020).

    Article  ADS  Google Scholar 

  89. Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    Article  ADS  Google Scholar 

  90. Gu, K. et al. Three-dimensional racetrack memory devices designed from freestanding magnetic heterostructures. Nat. Nanotechnol. 17, 1065–1071 (2022).

    Article  ADS  Google Scholar 

  91. Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

    Article  ADS  Google Scholar 

  92. Nothhelfer, J. et al. Steering Majorana braiding via skyrmion-vortex pairs: a scalable platform. Phys. Rev. B 105, 224509 (2022).

    Article  ADS  Google Scholar 

  93. Kiebel, S. J., Daunizeau, J. & Friston, K. J. A hierarchy of time-scales and the brain. PLoS Comput. Biol. 4, e1000209 (2008).

    Article  ADS  Google Scholar 

  94. Stenning, K. D. et al. Adaptive programmable networks for in materia neuromorphic computing. Preprint at https://doi.org/10.48550/arXiv.2211.06373 (2022).

  95. Jakob, S. et al. Optimization of electronic domain-wall properties by aliovalent cation substitution. Adv. Electron. Mater. 2, 1500195 (2015).

    Google Scholar 

  96. Tanigaki, T. et al. Real-space observation of short-period cubic lattice of skyrmions in MnGe. Nano Lett. 15, 5438–5442 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to R. Msiska and H. Kurebayashi for numerous discussions. K.E.-S. acknowledges funding from the Emergent AI Center funded by the Carl Zeiss Foundation and the German Research Foundation (DFG) through the Emmy Noether grant under project number 320163632. D.M. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (Grant Agreement number 863691) and thanks NTNU for the support through the Onsager Fellowship Program and the Outstanding Academic Fellow Program. The work was partly supported by the Research Council of Norway through its Centers of Excellence funding scheme, project number 262633, “QuSpin”.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Karin Everschor-Sitte or Dennis Meier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Yuchao Yang, An Quan Jiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Everschor-Sitte, K., Majumdar, A., Wolk, K. et al. Topological magnetic and ferroelectric systems for reservoir computing. Nat Rev Phys 6, 455–462 (2024). https://doi.org/10.1038/s42254-024-00729-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-024-00729-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing