Skip to main content

Advertisement

Log in

Analog ferroelectric domain-wall memories and synaptic devices integrated with Si substrates

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Brain-inspired neuromorphic computing can overcome the energy and throughput limitations of traditional von Neumann-type computing systems, which requires analog updates of their artificial synaptic strengths for the best recognition performance and low energy consumption. Here, we report synaptic devices made from highly insulating ferroelectric LiNbO3 (LNO) thin films bonded to SiO2/Si wafers. Through the creation/annihilation of periodically arrayed antiparallel domains within LNO nanocells, which are stimulated using positive/negative voltage pulses (synaptic plasticity), we can modulate the synaptic conductance linearly by controlling the number of the conducting domain walls. The multilevel conductance is nonvolatile and reproducible with negligible dispersion over 100 switching cycles, representing much better performance than that of random defect-based nonlinear memristors, which generally exhibit large-scale resistance dispersion. The simulation of a neuromorphic network using these LNO artificial synapses achieves 95.6% recognition accuracy for faces, thus approaching the theoretical yield of ideal neuromorphic computing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, M.; Li, H.; Chen, Y. R.; Wu, Q.; Rose, G. S.; Linderman, R. W. Memristor crossbar-based neuromorphic computing system: A case study. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 1864–1878.

    Article  Google Scholar 

  2. Shi, Y. Y.; Liang, X. H.; Yuan, B.; Chen, V.; Li, H. T.; Hui, F.; Yu, Z. C. W.; Yuan, F.; Pop, E.; Wong, H. S. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 2018, 1, 458–465.

    Article  Google Scholar 

  3. Liu, C. S.; Yan, X.; Song, X. F.; Ding, S. J.; Zhang, D. W.; Zhou, P. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 2018, 13, 404–410.

    Article  CAS  Google Scholar 

  4. Abbott, L. F.; Nelson, S. B. Synaptic plasticity: Taming the beast. Nat. Neurosci. 2000, 3, 1178–1183.

    Article  CAS  Google Scholar 

  5. Zamarreño-Ramos, C.; Camuñas-Mesa, L. A.; Pérez-Carrasco, J. A.; Masquelier, T.; Serrano-Gotarredona, T.; Linares-Barranco, B. On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Front. Neurosci. 2011, 5, 26.

    Article  Google Scholar 

  6. Markram, H.; Lübke, J.; Frotscher, M.; Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 1997, 275, 213–215.

    Article  CAS  Google Scholar 

  7. Diederich, N.; Bartsch, T.; Kohlstedt, H.; Ziegler, M. A Memristive plasticity model of voltage-based STDP suitable for recurrent bidirectional neural networks in the hippocampus. Sci. Rep. 2018, 8, 9367.

    Article  Google Scholar 

  8. Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301.

    Article  CAS  Google Scholar 

  9. van de Burgt, Y.; Lubberman, E.; Fuller, E. J.; Keene, S. T.; Faria, G. C.; Agarwal, S.; Marinella, M. J.; Talin, A. A.; Salleo, A. A nonvolatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 2017, 16, 414–418.

    Article  CAS  Google Scholar 

  10. Esqueda, I. S.; Yan, X. D.; Rutherglen, C.; Kane, A.; Cain, T.; Marsh, P.; Liu, Q. Z.; Galatsis, K.; Wang, H.; Zhou, C. W. Aligned carbon nanotube synaptic transistors for large-scale neuromorphic computing. ACS Nano 2018, 12, 7352–7361.

    Article  Google Scholar 

  11. Sharbati, M. T.; Du, Y. H.; Torres, J.; Ardolino, N. D.; Yun, M.; Xiong, F. Low-power, electrochemically tunable graphene synapses for neuromorphic computing. Adv. Mater. 2018, 30, 1802353.

    Article  Google Scholar 

  12. Seo, S. Y.; Park, J.; Park, J.; Song, K.; Cha, S.; Sim, S.; Choi, S. Y.; Yeom, H. W.; Choi, H.; Jo, M. H. Writing monolithic integrated circuits on a two-dimensional semiconductor with a scanning light probe. Nat. Electron. 2018, 1, 512–517.

    Article  CAS  Google Scholar 

  13. Yu, S. M.; Chen, P. Y.; Cao, Y.; Xia, L. X.; Wang, Y.; Wu, H. Q. Scaling-up resistive synaptic arrays for neuro-inspired architecture: Challenges and prospect. In Proceedings of 2015, IEEE International Electron Devices Meeting (IEDM), Washington, USA, 2015, pp 17.3. 1–17.3. 4.

  14. Yang, J. J.; Strukov, D. B.; Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 2013, 8, 13–24.

    Article  CAS  Google Scholar 

  15. Zhao, D.; Lenz, T.; Gelinck, G. H.; Groen, P.; Damjanovic, D.; de Leeuw, D. M.; Katsouras, I. Depolarization of multidomain ferroelectric materials. Nat. Commun. 2019, 10, 2547.

    Article  Google Scholar 

  16. Woo, J.; Moon, K.; Song, J.; Lee, S.; Kwak, M.; Park, J.; Hwang, H. Improved synaptic behavior under identical pulses using AlOx/HfO2 bilayer RRAM array for neuromorphic systems. IEEE Electron Device Lett. 2016, 37, 994–997.

    Article  CAS  Google Scholar 

  17. John, R. A.; Liu, F. C.; Chien, N. A.; Kulkarni, M. R.; Zhu, C.; Fu, Q. D.; Basu, A.; Liu, Z.; Mathews, N. Synergistic gating of electroiono-photoactive 2D chalcogenide neuristors: Coexistence of hebbian and homeostatic synaptic metaplasticity. Adv. Mater. 2018, 30, 1800220.

    Article  Google Scholar 

  18. Jerry, M.; Dutta, S.; Kazemi, A.; Ni, K.; Zhang, J. C.; Chen, P. Y.; Sharma, P.; Yu, S. M.; Hu, X. S.; Niemier, M. et al. A ferroelectric field effect transistor based synaptic weight cell. J. Phys. D:Appl. Phys. 2018, 51, 434001.

    Article  Google Scholar 

  19. Luo, Z. D.; Xia, X.; Yang, M. M.; Wilson, N. R.; Gruverman, A.; Alexe, M. Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano 2020, 14, 746–754.

    Article  CAS  Google Scholar 

  20. Wu, G. J.; Tian, B. B.; Liu, L.; Lv, W.; Wu, S.; Wang, X. D.; Chen, Y.; Li, J. Y.; Wang, Z.; Wu, S. Q. et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 2020, 3, 43–50.

    Article  CAS  Google Scholar 

  21. McConville, J. P. V.; Lu, H. D.; Wang, B.; Tan, Y. Z.; Cochard, C.; Conroy, M.; Moore, K.; Harvey, A.; Bangert, U.; Chen, L. Q. et al. Ferroelectric domain wall memristor. Adv. Funct. Mater. 2020, 30, 2000109.

    Article  CAS  Google Scholar 

  22. Chaudhary, P.; Lu, H.; Lipatov, A.; Ahmadi, Z.; McConville, J. P. V.; Sokolov, A.; Shield, J. E.; Sinitskii, A.; Gregg, J. M.; Gruverman, A. Low-voltage domain-wall LiNbO3 memristors. Nano Lett. 2020, 20, 5873–5878.

    Article  CAS  Google Scholar 

  23. Zidan, M. A.; Strachan, J. P.; Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22–29.

    Article  Google Scholar 

  24. Jiang, A. Q.; Geng, W. P.; Lv, P.; Hong, J. W.; Jiang, J.; Wang, C.; Chai, X. J.; Lian, J. W.; Zhang, Y.; Huang, R. et al. Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers. Nat. Mater. 2020, 19, 1188–1194.

    Article  CAS  Google Scholar 

  25. Lubk, A.; Rossell, M. D.; Seidel, J.; He, Q.; Yang, S. Y.; Chu, Y. H.; Ramesh, R.; Hÿtch, M. J.; Snoeck, E. Evidence of sharp and diffuse domain walls in BiFeO3 by means of unit-cell-wise strain and polarization maps obtained with high resolution scanning transmission electron microscopy. Phys. Rev. Lett. 2012, 109, 047601.

    Article  CAS  Google Scholar 

  26. Schröder, M.; Haußmann, A.; Thiessen, A.; Soergel, E.; Woike, T.; Eng, L. M. Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 2012, 22, 3936–3944.

    Article  Google Scholar 

  27. Kalinin, S. V.; Borisevich, A.; Fong, D. Beyond condensed matter physics on the nanoscale: The role of ionic and electrochemical phenomena in the physical functionalities of oxide materials. ACS Nano 2012, 6, 10423–10437.

    Article  CAS  Google Scholar 

  28. Shimojo, Y.; Konno, A.; Nishimura, J.; Okada, T.; Yamada, Y.; Kitazaki, S.; Furuhashi, H.; Yamazaki, S.; Yahashi, K.; Tomioka, K. et al. High-density and high-speed 128Mb chain FeRAM™ with SDRAM-compatible DDR2 interface. In Proceedings of 2009 Symposium on VLSI Technology, Kyoto, Japan, 2009, pp 218–219.

  29. Pandya, S.; Wilbur, J.; Kim, J.; Gao, R.; Dasgupta, A.; Dames, C.; Martin, L. W. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat. Mater. 2018, 17, 432–438.

    Article  CAS  Google Scholar 

  30. Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P; Lončar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104.

    Article  CAS  Google Scholar 

  31. Lu, H.; Bark, C. W.; de los Ojos, D. E.; Alcala, J.; Eom, C. B.; Catalan, G.; Gruverman, A. Mechanical writing of ferroelectric polarization. Science 2012, 336, 59–61.

    Article  CAS  Google Scholar 

  32. Oh, S.; Kim, T.; Kwak, M.; Song, J.; Woo, J.; Jeon, S.; Yoo, I. K.; Hwang, H. HfZrOx-based ferroelectric synapse device with 32 levels of conductance states for neuromorphic applications. IEEE Electron Device Lett. 2017, 38, 732–735.

    Article  CAS  Google Scholar 

  33. Kaneko, Y. ZnO/Pb(Zr, Ti)O3 gate structure ferroelectric FETs. In Ferroelectric-Gate Field Effect Transistor Memories: Device Physics and Applications; Park, B. E.; Ishiwara, H.; Okuyama, M.; Sakai, S.; Yoon, S. M., Eds.; Springer: Singapore, 2016; pp 89–109.

    Chapter  Google Scholar 

  34. Wang, C.; Jiang, J.; Chai, X. J.; Lian, J. W.; Hu, X. B.; Jiang, A. Q. Energy-efficient ferroelectric domain wall memory with controlled domain switching dynamics. ACS Appl. Mater. Interfaces 2020, 12, 44998–45004.

    Article  CAS  Google Scholar 

  35. Nishitani, Y.; Kaneko, Y.; Ueda, M.; Morie, T.; Fujii, E. Three-terminal ferroelectric synapse device with concurrent learning function for artificial neural networks. J. Appl. Phys. 2012, 111, 124108.

    Article  Google Scholar 

  36. Lee, G. G.; Tokumitsu, E.; Yoon, S. M.; Fujisaki, Y.; Yoon, J. W.; Ishiwara, H. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly (vinylidene fluoridetrifluoroethylene). Appl. Phys. Lett. 2011, 99, 012901.

    Article  Google Scholar 

  37. Ishiwara, H. Proposal of adaptive-learning neuron circuits with ferroelectric analog-memory weights. Jpn. J. Appl. Phys. 1993, 32, 442–446.

    Article  Google Scholar 

  38. Kim, M. K.; Lee, J. S. Ferroelectric analog synaptic transistors. Nano Lett. 2019, 19, 2044–2050.

    Article  CAS  Google Scholar 

  39. Han, H. P.; Cai, L. T.; Xiang, B. X.; Jiang, Y. P.; Hu, H. Lithium-rich vapor transport equilibration in single-crystal lithium niobate thin film at low temperature. Opt. Mater. Express 2015, 5, 2634–2641.

    Article  CAS  Google Scholar 

  40. Molotskii, M.; Agronin, A.; Urenski, P.; Shvebelman, M.; Rosenman, G.; Rosenwaks, Y. Ferroelectric domain breakdown. Phys. Rev. Lett. 2003, 90, 107601.

    Article  Google Scholar 

  41. Jiang, A. Q.; Lee, H. J.; Hwang, C. S.; Scott, J. F. Sub-picosecond processes of ferroelectric domain switching from field and temperature experiments. Adv. Funct. Mater. 2012, 22, 192–199.

    Article  CAS  Google Scholar 

  42. Sharma, P.; McQuaid, R. G. P.; McGilly, L. J.; Gregg, J. M.; Gruverman, A. Nanoscale dynamics of superdomain boundaries in single-crystal BaTiO3 lamellae. Adv. Mater. 2013, 25, 1323–1330.

    Article  CAS  Google Scholar 

  43. Merz, W. J. Domain formation and domain wall motions in ferroelectric BaTi O3 single crystals. Phys. Rev. 1954, 95, 690–698.

    Article  CAS  Google Scholar 

  44. Tybell, T.; Paruch, P.; Giamarchi, T.; Triscone, J. M. Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. Phys. Rev. Lett. 2002, 89, 097601.

    Article  CAS  Google Scholar 

  45. Mankowsky, R.; von Hoegen, A.; Först, M.; Cavalleri, A. Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 2017, 118, 197601.

    Article  CAS  Google Scholar 

  46. Grigoriev, A.; Do, D. H.; Kim, D. M.; Eom, C. B.; Adams, B.; Dufresne, E. M.; Evans, P. G. Nanosecond domain wall dynamics in ferroelectric Pb(Zr, Ti)O3 thin films. Phys. Rev. Lett. 2006, 96, 187601.

    Article  Google Scholar 

  47. Shin, Y. H.; Grinberg, I.; Chen, I. W.; Rappe, A. M. Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature 2007, 449, 881–884.

    Article  CAS  Google Scholar 

  48. Wang, T. Y.; Meng, J. L.; He, Z. Y.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Zhou, P.; Zhang, D. W. Fully transparent, flexible and waterproof synapses with pattern recognition in organic environments. Nanoscale Horiz. 2019, 4, 1293–1301.

    Article  CAS  Google Scholar 

  49. Chung, W.; Si, M.; Ye, P. D. First demonstration of Ge ferroelectric nanowire FET as synaptic device for online learning in neural network with high number of conductance state and Gmax/Gmin. In Proceedings of 2018, IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2018, pp 15.2. 1–15.2. 4.

  50. Jerry, M.; Chen, P. Y.; Zhang, J. C.; Sharma, P.; Ni, K.; Yu, S. M.; Datta, S. Ferroelectric FET analog synapse for acceleration of deep neural network training. In Proceedings of 2017, IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017, pp 6.2. 1–6.2. 4.

  51. Jun, D.; Wei, J.; Png, C. E.; Guangyuan, S.; Son, J.; Yang, H.; Danner, A. J. Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas. J. Vac. Sci. Technol. B 2012, 30, 011208.

    Article  Google Scholar 

  52. Choi, S.; Tan, S. H.; Li, Z. F.; Kim, Y.; Choi, C.; Chen, P. Y.; Yeon, H.; Yu, S. M.; Kim, J. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater. 2018, 17, 335–340.

    Article  CAS  Google Scholar 

  53. Belhumeur, P. N.; Hespanha, J. P.; Kriegman, D. J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 711–720.

    Article  Google Scholar 

  54. Wang, T. Y.; Meng, J. L.; Rao, M. Y.; He, Z. Y.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Bao, W. Z.; Zhou, P. et al. Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett. 2020, 20, 4111–4120.

    Article  CAS  Google Scholar 

  55. Sun, J.; Oh, S.; Choi, Y.; Seo, S.; Oh, M. J.; Lee, M.; Lee, W. B.; Yoo, P. J.; Cho, J. H.; Park, J. H. Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Adv. Funct. Mater. 2018, 28, 1804397.

    Article  Google Scholar 

  56. Seo, S.; Jo, S. H.; Kim, S.; Shim, J.; Oh, S.; Kim, J. H.; Heo, K.; Choi, J. W.; Choi, C.; Oh, S. et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 2018, 9, 5106.

    Article  Google Scholar 

  57. Hou, Y. X.; Li, Y.; Zhang, Z. C.; Li, J. Q.; Qi, D. H.; Chen, X. D.; Wang, J. J.; Yao, B. W.; Yu, M. X.; Lu, T. B. et al. Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano 2021, 15, 1497–1508.

    Article  CAS  Google Scholar 

  58. Kwon, K. C.; Zhang, Y. S.; Wang, L.; Yu, W.; Wang, X. J.; Oark, I. H.; Choi, H. S.; Ma, T.; Zhu, Z. Y.; Tian, B. B. et al. In-plane ferroelectric tin monosulfide and its application in a ferroelectric analog synaptic device. ACS Nano 2020, 14, 7628–7638.

    Article  CAS  Google Scholar 

  59. Ge, C.; Liu, C. X.; Zhou, Q. L.; Zhang, Q. H.; Du, J. Y.; Li, J. K.; Wang, C.; Gu, L.; Yang, G. Z.; Jin, K. J. A ferrite synaptic transistor with topotactic transformation. Adv. Mater. 2019, 31, 1900379.

    Article  Google Scholar 

  60. Wang, S. Y.; Liu, L.; Gan, L. R.; Chen, H. W.; Hou, X.; Ding, Y.; Ma, S. L.; Zhang, D. W.; Zhou, P. Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nat. Commun. 2021, 12, 53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2019YFA0308500) and the National Natural Science Foundation of China (No. 61904034). We acknowledge the use of the Yale Face Database. We thank David MacDonald, MSc, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Jiang, Lin Chen or Anquan Jiang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Wang, T., Zhang, W. et al. Analog ferroelectric domain-wall memories and synaptic devices integrated with Si substrates. Nano Res. 15, 3606–3613 (2022). https://doi.org/10.1007/s12274-021-3899-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3899-5

Keywords

Navigation