Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Early intermediates in bacterial RNA polymerase promoter melting visualized by time-resolved cryo-electron microscopy

Abstract

During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAPs), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, here we use time-resolved cryogenic electron microscopy (cryo-EM) to capture four intermediates populated 120 ms or 500 ms after mixing Escherichia coli σ70–RNAP and the λPR promoter. Cryo-EM snapshots revealed that the upstream edge of the transcription bubble unpairs rapidly, followed by stepwise insertion of two conserved nontemplate strand (nt-strand) bases into RNAP pockets. As the nt-strand ‘read-out’ extends, the RNAP clamp closes, expelling an inhibitory σ70 domain from the active-site cleft. The template strand is fully unpaired by 120 ms but remains dynamic, indicating that yet unknown conformational changes complete RPo formation in subsequent steps. Given that these events likely describe DNA opening at many bacterial promoters, this study provides insights into how DNA sequence regulates steps of RPo formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: λPR promoter melting intermediates.
Fig. 2: Transcription bubble nucleation.
Fig. 3: Capture of T−7(nt) before A−11(nt).
Fig. 4: RNAP clamp closure is coupled to partial unfolding and ejection of σ701.1.
Fig. 5: σ701.1–H4 unfolding is necessary for RPo formation.
Fig. 6: Schematic overview of the initial steps of DNA opening at λPR after promoter binding.

Similar content being viewed by others

Data availability

Atomic coordinates used for data analysis (PDB 6PSQ, PDB 7MKD) are available from the Protein Data Bank (PDB; https://www.rcsb.org). All unique and stable reagents generated in this study are available without restriction from the lead contact, Seth A. Darst (darst@rockefeller.edu). The cryo-EM density maps and atomic coordinates have been deposited in the Electron Microscopy Data Bank (EMDB) and PDB as follows: RPc5°C (EMD-41456, PDB 8TOM), I1a (EMD-41433, PDB 8TO1), I1b (EMD-41439, PDB 8TO8), I1c (EMD-41448, PDB 8TOE) and I1d (EMD-41437, PDB 8TO6). Source data are provided with this paper.

References

  1. Feklistov, A., Sharon, B. D., Darst, S. A. & Gross, C. A. Bacterial sigma factors: a historical, structural, and genomic perspective. Annu. Rev. Microbiol. 68, 357–376 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Gruber, T. M. & Gross, C. A. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57, 441–466 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, G. et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell 98, 811–824 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Shultzaberger, R. K., Chen, Z., Lewis, K. A. & Schneider, T. D. Anatomy of Escherichia coli σ70 promoters. Nucleic Acids Res. 35, 771–788 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Haugen, S. P. et al. rRNA promoter regulation by nonoptimal binding of σ region 1.2: an additional recognition element for RNA polymerase. Cell 125, 1069–1082 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Ruff, E. F., Record, M. T. Jr & Artsimovitch, I. Initial events in bacterial transcription initiation. Biomolecules 5, 1035–1062 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saecker, R. M., Record, M. T. Jr & deHaseth, P. L. Mechanism of bacterial transcription initiation: RNA polymerase–promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J. Mol. Biol. 412, 754–771 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saecker, R. M. et al. Structural origins of Escherichia coli RNA polymerase open promoter complex stability. Proc. Natl Acad. Sci. USA 118, e2112877118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Basu, R. S. et al. Structural basis of transcription initiation by bacterial RNA polymerase holoenzyme. J. Biol. Chem. 289, 24549–24559 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McClure, W. R. Rate-limiting steps in RNA chain initiation. Proc. Natl Acad. Sci. USA 77, 5634–5638 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, J. et al. Stepwise promoter melting by bacterial RNA polymerase. Mol. Cell 78, 275–288.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hubin, E. A. et al. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA. eLife 6, e22520 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Campbell, E. A. et al. Structure of the bacterial RNA polymerase promoter specificity σ subunit. Mol. Cell 9, 527–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Feklistov, A. & Darst, S. A. Structural basis for promoter −10 element recognition by the bacterial RNA polymerase σ subunit. Cell 147, 1257–1269 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bae, B., Feklistov, A., Lass-Napiorkowska, A., Landick, R. & Darst, S. A. Structure of a bacterial RNA polymerase holoenzyme open promoter complex. eLife 4, e08504 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mekler, V. et al. Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase–promoter open complex. Cell 108, 599–614 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Bae, B. et al. Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of σ70 domain 1.1. Proc. Natl Acad. Sci. USA 110, 19772–19777 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hubin, E. A., Lilic, M., Darst, S. A. & Campbell, E. A. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures. Nat. Commun. 8, 16072 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, J., Boyaci, H. & Campbell, E. A. Diverse and unified mechanisms of transcription initiation in bacteria. Nat. Rev. Microbiol. 19, 95–109 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Boyaci, H., Chen, J., Jansen, R., Darst, S. A. & Campbell, E. A. Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding. Nature 565, 382–385 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dandey, V. P. et al. Time-resolved cryo-EM using Spotiton. Nat. Methods 17, 897–900 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Wei, H. et al. Optimizing ‘self-wicking’ nanowire grids. J. Struct. Biol. 202, 170–174 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu, J. L. Y., Tellkamp, F., Khajehpour, M., Robertson, W. D. & Miller, R. J. D. Rapid mixing of colliding picoliter liquid droplets delivered through-space from piezoelectric-actuated pipettes characterized by time-resolved fluorescence monitoring. Rev. Sci. Instrum. 90, 055109 (2019).

    Article  PubMed  Google Scholar 

  25. Chen, J., Noble, A. J., Kang, J. Y. & Darst, S. A. Eliminating effects of particle adsorption to the air/water interface in single-particle cryo-electron microscopy: bacterial RNA polymerase and CHAPSO. J. Struct. Biol. X 1, 100005 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tsodikov, O. V. & Record, M. T. Jr General method of analysis of kinetic equations for multistep reversible mechanisms in the single-exponential regime: application to kinetics of open complex formation between Eσ70 RNA polymerase and λPR promoter DNA. Biophys. J. 76, 1320–1329 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saecker, R. M. et al. Kinetic studies and structural models of the association of E. coli σ70 RNA polymerase with the λPR promoter: large scale conformational changes in forming the kinetically significant intermediates. J. Mol. Biol. 319, 649–671 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science 292, 1876–1882 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Landick, R. RNA polymerase clamps down. Cell 105, 567–570 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Darst, S. A. et al. Conformational flexibility of bacterial RNA polymerase. Proc. Natl Acad. Sci. USA 99, 4296–4301 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weixlbaumer, A., Leon, K., Landick, R. & Darst, S. A. Structural basis of transcriptional pausing in bacteria. Cell 152, 431–441 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chakraborty, A. et al. Opening and closing of the bacterial RNA polymerase clamp. Science 337, 591–595 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, J. et al. E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation. eLife 8, e49375 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Unarta, I. C. et al. Role of bacterial RNA polymerase gate opening dynamics in DNA loading and antibiotics inhibition elucidated by quasi-Markov state model. Proc. Natl Acad. Sci. USA 118, e2024324118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dey, S. et al. Structural insights into RNA-mediated transcription regulation in bacteria. Mol. Cell 82, 3885–3900.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Mukhopadhyay, J. et al. The RNA polymerase ‘switch region’ is a target for inhibitors. Cell 135, 295–307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Belogurov, G. A. et al. Transcription inactivation through local refolding of the RNA polymerase structure. Nature 457, 332–335 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Srivastava, A. et al. New target for inhibition of bacterial RNA polymerase: a ’switch region'. Curr. Opin. Microbiol. 14, 532–543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin, W. et al. Structural basis of transcription inhibition by fidaxomicin (lipiarmycin A3). Mol. Cell 70, 60–71.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boyaci, H. et al. Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts. eLife 7, e34823 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cao, X. et al. Basis of narrow-spectrum activity of fidaxomicin on Clostridioides difficile. Nature 604, 541–545 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Endres, D. M. & Schindelin, J. E. A new metric for probability distributions. IEEE Trans. Inf. Theory 49, 1858 (2003).

    Article  Google Scholar 

  43. Sreenivasan, R. et al. Fluorescence-detected conformational changes in duplex DNA in open complex formation by Escherichia coli RNA polymerase: upstream wrapping and downstream bending precede clamp opening and insertion of the downstream duplex. Biochemistry 59, 1565–1581 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Davis, C. A., Bingman, C. A., Landick, R., Record, M. T. Jr & Saecker, R. M. Real-time footprinting of DNA in the first kinetically significant intermediate in open complex formation by Escherichia coli RNA polymerase. Proc. Natl Acad. Sci. USA 104, 7833–7838 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Craig, M. L. et al. DNA footprints of the two kinetically significant intermediates in formation of an RNA polymerase–promoter open complex: evidence that interactions with start site and downstream DNA induce sequential conformational changes in polymerase and DNA. J. Mol. Biol. 283, 741–756 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Roy, S., Lim, H. M., Liu, M. & Adhya, S. Asynchronous basepair openings in transcription initiation: CRP enhances the rate-limiting step. EMBO J. 23, 869–875 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Heyduk, E. & Heyduk, T. Next generation sequencing-based parallel analysis of melting kinetics of 4096 variants of a bacterial promoter. Biochemistry 53, 282–292 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Callaci, S., Heyduk, E. & Heyduk, T. Conformational changes of Escherichia coli RNA polymerase σ70 factor induced by binding to the core enzyme. J. Biol. Chem. 273, 32995–33001 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Lilic, M., Darst, S. A. & Campbell, E. A. Structural basis of transcriptional activation by the Mycobacterium tuberculosis intrinsic antibiotic-resistance transcription factor WhiB7. Mol. Cell 81, 2875–2886.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Feklistov, A. et al. RNA polymerase motions during promoter melting. Science 356, 863–866 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. He, Y., Fang, J., Taatjes, D. J. & Nogales, E. Structural visualization of key steps in human transcription initiation. Nature 495, 481–486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schulz, S. et al. TFE and Spt4/5 open and close the RNA polymerase clamp during the transcription cycle. Proc. Natl Acad. Sci. USA 113, E1816–E1825 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 Ångstrom resolution. Science 292, 1863–1876 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Lane, W. J. & Darst, S. A. Molecular evolution of multisubunit RNA polymerases: structural analysis. J. Mol. Biol. 395, 686–704 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Travers, A. A. Promoter sequence for stringent control of bacterial ribonucleic acid synthesis. J. Bacteriol. 141, 973–976 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Haugen, S. P., Ross, W., Manrique, M. & Gourse, R. L. Fine structure of the promoter–σ region 1.2 interaction. Proc. Natl Acad. Sci. USA 105, 3292–3297 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vvedenskaya, I. O. et al. Massively Systematic Transcript End Readout, ‘MASTER’: transcription start site selection, transcriptional slippage, and transcript yields. Mol. Cell 60, 953–965 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Winkelman, J. T. et al. Multiplexed protein–DNA cross-linking: scrunching in transcription start site selection. Science 351, 1090–1093 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gourse, R. L. et al. Transcriptional responses to ppGpp and DksA. Annu. Rev. Microbiol. 72, 163–184 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Roche, J. & Royer, C. A. Lessons from pressure denaturation of proteins. J. R. Soc. Interface 15, 20180244 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Guvench, O. & Brooks, C. L. Tryptophan side chain electrostatic interactions determine edge-to-face vs parallel-displaced tryptophan side chain geometries in the designed β-hairpin ‘trpzip2’. J. Am. Chem. Soc. 127, 4668–4674 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Kovacic, R. T. The 0°C closed complexes between Escherichia coli RNA polymerase and two promoters, T7-A3 and lacUV5. J. Biol. Chem. 262, 13654–13661 (1987).

    Article  CAS  PubMed  Google Scholar 

  63. Cowing, D. W., Mecsas, J., Record, M. T. & Gross, C. A. Intermediates in the formation of the open complex by RNA polymerase holoenzyme containing the sigma factor σ32 at the groE promoter. J. Mol. Biol. 210, 521–530 (1989).

    Article  CAS  PubMed  Google Scholar 

  64. Schickor, P., Metzger, W., Werel, W., Lederer, H. & Heumann, H. Topography of intermediates in transcription initiation of E. coli. EMBO J. 9, 2215–2220 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rutherford, S. T., Villers, C. L., Lee, J.-H., Ross, W. & Gourse, R. L. Allosteric control of Escherichia coli rRNA promoter complexes by DksA. Genes Dev. 23, 236–248 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sasse-Dwight, S. & Gralla, J. D. KMnO4 as a probe for lac promoter DNA melting and mechanism in vivo. J. Biol. Chem. 264, 8074–8081 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Galas, D. J. & Schmitz, A. DNAse footprinting: a simple method for the detection of protein–DNA binding specificity. Nucleic Acids Res. 5, 3157–3170 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tullius, T. D. DNA footprinting with hydroxyl radical. Nature 332, 663–664 (1988).

    Article  CAS  PubMed  Google Scholar 

  69. Gries, T. J., Kontur, W. S., Capp, M. W., Saecker, R. M. & Record, M. T. Jr One-step DNA melting in the RNA polymerase cleft opens the initiation bubble to form an unstable open complex. Proc. Natl Acad. Sci. USA 107, 10418–10423 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Altan-Bonnet, G., Libchaber, A. & Krichevsky, O. Bubble dynamics in double-stranded DNA. Phys. Rev. Lett. 90, 138101 (2003).

    Article  PubMed  Google Scholar 

  71. Nicy, Chakraborty, D. & Wales, D. J. Energy landscapes for base-flipping in a model DNA duplex. J. Phys. Chem. B 126, 3012–3028 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Łoziński, T. & Wierzchowski, K. L. Inactivation and destruction by KMnO4 of Escherichia coli RNA polymerase open transcription complex: recommendations for footprinting experiments. Anal. Biochem. 320, 239–251 (2003).

    Article  PubMed  Google Scholar 

  73. Rogozina, A., Zaychikov, E., Buckle, M., Heumann, H. & Sclavi, B. DNA melting by RNA polymerase at the T7A1 promoter precedes the rate-limiting step at 37°C and results in the accumulation of an off-pathway intermediate. Nucleic Acids Res. 37, 5390–5404 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schroeder, L. A. et al. Evidence for a tyrosine–adenine stacking interaction and for a short-lived open intermediate subsequent to initial binding of Escherichia coli RNA polymerase to promoter DNA. J. Mol. Biol. 385, 339–349 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2018).

    Article  Google Scholar 

  76. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Cardone, G., Heymann, J. B. & Steven, A. C. One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. J. Struct. Biol. 184, 226–236 (2013).

    Article  PubMed  Google Scholar 

  78. Davis, C. A., Capp, M. W., Record, M. T. Jr & Saecker, R. M. The effects of upstream DNA on open complex formation by Escherichia coli RNA polymerase. Proc. Natl Acad. Sci. USA 102, 285–290 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Budell, W. C., Allegri, L., Dandey, V., Potter, C. S. & Carragher, B. Cryo-electron microscopic grid preparation for time-resolved studies using a novel robotic system, Spotiton. J. Vis. Exp. https://doi.org/10.3791/62271 (2021).

    Article  PubMed  Google Scholar 

  80. Razinkov, I. et al. A new method for vitrifying samples for cryoEM. J. Struct. Biol. 195, 190–198 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Morin, A. et al. Collaboration gets the most out of software. eLife 2, e01456 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bai, X., Rajendra, E., Yang, G., Shi, Y. & Scheres, S. H. W. Sampling the conformational space of the catalytic subunit of human γ-secretase. eLife 4, e11182 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kang, J. Y. et al. An ensemble of interconverting conformations of the elemental paused transcription complex creates regulatory options. Proc. Natl Acad. Sci. USA 120, e2215945120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Henderson, R. et al. Outcome of the first electron microscopy validation task force meeting. Structure 20, 205–214 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. A. Campbell, R. Gourse, D. Jensen, R. Landick, W. Ross and members of the Darst–Campbell laboratory for helpful discussions. We are grateful to the reviewers for their critiques, which improved the clarity and scientific rigor of this article. Some of the work reported here was conducted at the Simons Electron Microscopy Center and the National Resource for Automated Molecular Microscopy, located at the New York Structural Biology Center, supported by grants from the National Institutes of Health National Institute of General Medical Sciences (P41 GM103310), NYSTAR and the Simons Foundation (SF349247). A.U.M. received support through a fellowship from the Swiss National Science Foundation. A.U.M. is an Agouron Institute Awardee of the Life Sciences Research Foundation. This work was supported by the National Institutes of Health grant R35 GM118130 and Re-Entry Supplement R35 GM118130-04S1 to S.A.D.

Author information

Authors and Affiliations

Authors

Contributions

R.M.S, A.U.M., J.C., B.M., C.S.P., B.C. and S.A.D. conceived the study. R.M.S, A.U.M., J.C., B.M. and N.M. performed protein purification and biochemistry analyses. R.M.S., A.U.M., J.C., B.M., W.C.B. and V.P.D. prepared cryo-EM specimens. R.M.S., A.U.M., J.C., B.M., V.P.D., K.M., J.H.M., E.T.E. and L.Y.Y. collected and processed cryo-EM data. R.M.S., A.U.M., B.M. and S.A.D. built the models and performed structural analysis. C.S.P., B.C. and S.A.D. acquired funding and supervised the project. R.M.S., A.U.M. and S.A.D. wrote the first draft of the manuscript; all authors contributed to finalizing the written manuscript.

Corresponding author

Correspondence to Seth A. Darst.

Ethics declarations

Competing interests

The authors declare there are no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Andreas Boland, Christian Dienemann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Sara Osman, in collaboration with the Nature Structural & Molecular Biology team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 λPR promoter fragment and tr-Spotiton.

a. λPR promoter DNA construct (−85 to +20) used for cryo-EM studies. The sequence from −40 to +10 is magnified below. b. Schematic diagram illustrating the principle of the tr-Spotiton device. For more details see ref. 21. c. Representative micrograph (dataset 4500 ms; t = 500 ms).

Extended Data Fig. 2 Cryo-EM processing pipeline for tr-Spotiton datasets.

Cryo-EM processing pipelines for Eco RNAP mixed with λPR DNA using tr-Spotiton. a. Datasets 1120 ms and 2120 ms (t = 120 ms, 8 mM CHAPSO). b. Dataset 3120 ms (t = 120 ms, 8 mM CHAPSO) c. Dataset 4500 ms (t = 500 ms, 8 mM CHAPSO).

Extended Data Fig. 3 Cryo-EM processing pipeline for combined datasets and comparison of particle population distributions.

a. Cryo-EM processing pipeline for combining polished particles from Spotiton datasets 1–3 (t = 120 ms) and dataset 4 (t = 500 ms; see Extended Data Fig. 2). b. Histogram plots showing the fraction of particles that contribute to each intermedate. The open bars show the mean particle fraction for the three 120 ms datasets ( < 123120 ms > ); the error bars denote ± SD for n = 3 (one point for each cryo-EM dataset). The gray bars denote the particle fraction for the single 500 ms dataset (4500 ms).

Source data

Extended Data Fig. 4 Cryo-EM of I1a, I1b, I1c, and I1d.

a.-d. Cryo-EM of I1a. a. Three views of the combined nominal 2.8 Å resolution cryo-EM map, filtered by local resolution77. The bottom row is colored according to the subunit (αI, αII, light grey; αCTD, limon; β, cyan; β‘, pink; σ70, orange; DNA t-strand, dark grey; DNA nt-strand, grey). The top row shows the same views but colored by local resolution77. The right view is a cross-section through the middle view. b. Directional 3D FSC, determined with 3DFSC90. c. Gold-standard FSC plot95, calculated by comparing two half maps. The dotted line represents the 0.143 FSC cutoff. d. Angular distribution plot, calculated in cryoSPARC. Scale depicts number of particles assigned to a specific angular bin. e.-h. Cryo-EM of I1b. e. Three views of the combined nominal 3.0 Å resolution cryo-EM map, filtered by local resolution77, colored as in (a). f. Directional 3D FSC, determined with 3DFSC90. g. Gold-standard FSC plot95, calculated by comparing two half maps. The dotted line represents the 0.143 FSC cutoff. h. Angular distribution plot, calculated in cryoSPARC. Scale depicts number of particles assigned to a specific angular bin. i.-l Cryo-EM of I1c. i. Three views of the combined nominal 3.0 Å resolution cryo-EM map, filtered by local resolution77, colored as in (a). j. Directional 3D FSC, determined with 3DFSC90. k. Gold-standard FSC plot95, calculated by comparing two half maps. The dotted line represents the 0.143 FSC cutoff. l. Angular distribution plot, calculated in cryoSPARC. Scale depicts number of particles assigned to a specific angular bin. m.-p Cryo-EM of I1d. m. Three views of the combined nominal 2.9 Å resolution cryo-EM map, filtered by local resolution77, colored as in (a). n. Directional 3D FSC, determined with 3DFSC90. o. Gold-standard FSC plot95, calculated by comparing two half maps. The dotted line represents the 0.143 FSC cutoff. p. Angular distribution plot, calculated in cryoSPARC. Scale depicts number of particles assigned to a specific angular bin.

Extended Data Fig. 5 Cryo-EM processing pipeline for dataset 5500 ms,FC8F.

Cryo-EM processing pipeline for Eco RNAP mixed with λPR DNA using tr-Spotiton (t = 500 ms, 1.5 mM FC8F).

Extended Data Fig. 6 Cryo-EM processing pipeline for 5 °C dataset.

a. λPR promoter DNA construct used for 5 °C cryo-EM studies. b. Cryo-EM processing pipeline for Eco RNAP and λPR DNA (−60 to +30) mixed manually and allowed to come to equilibrium at 5 °C (See Methods).

Extended Data Fig. 7 Cryo-EM of RPc5 °C, I1c5 °C, and I1d5 °C.

a.-d. Cryo-EM of RPc5 °C. a. Three views of the combined nominal 3.1 Å resolution cryo-EM map, filtered by local resolution77. The bottom row is colored according to the subunit (αI, αII, light grey; αCTD, limon; β, cyan; β‘, pink; σ70, orange; DNA t-strand, dark grey; DNA nt-strand, grey). The top row shows the same views but colored by local resolution77. The right view is a cross-section through the middle view. b. Directional 3D FSC, determined with 3DFSC90. c. Gold-standard FSC plot95, calculated by comparing two half maps. The dotted line represents the 0.143 FSC cutoff. d. Angular distribution plot, calculated in cryoSPARC. Scale depicts number of particles assigned to a specific angular bin. e.-h. CryoEM of I1c5 °C. e. Three views of the combined nominal 3.4 Å resolution cryo-EM map, filtered by local resolution77. The bottom row is colored according to the subunit (αI, αII, light grey; αCTD, limon; β, cyan; β‘, pink; σ70, orange; DNA t-strand, dark grey; DNA nt-strand, grey). The top row shows the same views but colored by local resolution77. The right view is a cross-section through the middle view. f. Directional 3D FSC, determined with 3DFSC90. g. Gold-standard FSC plot95, calculated by comparing two half maps. The dotted line represents the 0.143 FSC cutoff. h. Angular distribution plot, calculated in cryoSPARC. Scale depicts number of particles assigned to a specific angular bin. i.-l. CryoEM of I1d5 °C. i. Three views of the combined nominal 3.2 Å resolution cryo-EM map, filtered by local resolution77. The bottom row is colored according to the subunit (αI, αII, light grey; αCTD, limon; β, cyan; β‘, pink; σ70, orange; DNA t-strand, dark grey; DNA nt-strand, grey). The top row shows the same views but colored by local resolution77. The right view is a cross-section through the middle view. j. Directional 3D FSC, determined with 3DFSC90. k. Gold-standard FSC plot95, calculated by comparing two half maps. The dotted line represents the 0.143 FSC cutoff. l. Angular distribution plot, calculated in cryoSPARC. Scale depicts number of particles assigned to a specific angular bin.

Extended Data Fig. 8 Structural characteristics of λPR intermediates at 5 °C.

a. Comparison of λPR intermediates obtained by tr-Spotiton and at 5 °C. Eσ70 model of each state is shown as a transparent molecular surface, focusing on σ701.1 or duplex DNA occupying the RNAP cleft. Cryo-EM difference density (local-resolution filtered77) for σ701.1 (RPc5 °C) or for the DNA (I1d, RPo, I1d5 °C) is shown. The color-coding is shown in the legend at the upper left. The top row shows tr-Spotiton I1d and RPo (7MKD)8. The bottom row shows λPR-5 °C data (RPc5 °C and 1Id5 °C). A view of the entire structure (I1d5 °C) is shown in the lower right; the box denotes the region magnified in the other views. The orientation of the views shown is the same as the bottom view in each panel of Fig. 4. b. Each of the λPR-5 °C structures (RPc5 °C, I1c5 °C, I1d5 °C) were aligned pairwise with each of the tr-Spotiton structures (I1a, I1b, I1c, I1d) using the PyMOL align command on the RNAP structural core (α-carbons only), then the root-mean-square deviation was determined using the PyMOL rms_cur command over all matching α-carbons (the minimum number of overlapping α-carbon atoms was 3,709). The resulting rmsd values are plotted for each λPR-5 °C structure against each of the tr-Spotiton structures, showing that I1c5 °C matched most closely with I1c (orange arrow), and I1d5 °C matched most closely with I1d (red arrow).

Source data

Extended Data Fig. 9 The σ70 W-dyad and the −12 bp in λPR intermediates.

a. Top view of λPR-RPo (7MKD)8. Eσ70 is shown as a transparent molecular surface. The DNA is shown as atomic spheres, color-coded as in Fig. 2a. b-f. The boxed region in (a) is magnified, showing the region of the σ70 W-dyad and the −13 to −11 positions of the promoter. σ70 and DNA (color-coded as in Fig. 3) are shown in stick format; σ70 carbon atoms are colored orange but the W-dyad is highlighted in yellow. Transparent cryo-EM density (local-resolution filtered77) is superimposed. For reference, the positions of key RPo elements are shown in stick format and colored chartreuse (W-dyad in chair conformation and the −12 bp). For I1a, I1b, I1c, and I1d (b.-e.), the W-dyad is in the edge-on (wedge) conformation and the −12 bp is opened. Only in RPo is the W-dyad in the chair conformation and the −12 bp re-paired. b. I1a. c. I1b. d. I1c. e. I1d. f. RPo.

Extended Data Fig. 10 σ701.1 disulfide crosslinking, mass photometry, and a conformational change in the σ-finger.

a. The σ70 derivatives were analyzed by 10% SDS-polyacrylamide gel electrophoresis and visualized with Coomassie stain. Each σ70 derivative was analyzed under reducing (preventing formation of any disulfide bonds) or oxidizing (promoting the formation of disulfide bonds) conditions. Each Cys-pair mutant shows higher mobility under oxidizing conditions indicating formation of the relevant disulfide bond. Moreover, the difference in mobility between the reduced and oxidized condition correlates with the number of residues separating the two engineered Cys substitutions (I35C-S89C, 55 residues; Q8C-P32C, 25 residues; Y21C-Q54C, 34 residues). b. Average mass values and standard deviation determined by mass photometry of at least three individual reactions under oxidizing conditions of λPR promoter DNA (−60 to +30, see Extended Data Fig. 9a), σ70C-less, σ70I35C-S89C, core RNAP (E), and their respective holoenzyme complexes (E σ70C-less or E σ70I35C-S89C) with and without λPR are shown. The data are presented as mean values ± SD. A one-way analysis of variance (ANOVA) test was performed on all groups with a post-hoc analysis of planned comparisons using Fisher’s Least Significant Difference test with the p-values shown (only relevant comparisons are shown for visual clarity). c-j. Histograms of raw binding (positive mass)/unbinding (negative mass) event counts (binning of 5 kDa) where major individual peaks were approximated by a Gaussian distribution. Results of the curve fit for each replicate are displayed in the graphs. One raw frame from the recorded movie of one random replicate is shown above each graph. k. The λPR-RPo structure (7MKD)8 in the active-site region is shown; The RNAP is shown as a backbone cartoon (β, light cyan; β‘, light pink; σ70, orange); t-strand DNA is shown in stick format (carbon atoms dark grey); the RNAP active-site Mg2+ is shown as a yellow sphere. The structures of I1a, I1b, I1c, and I1d from the CHAPSO (light green) and FC8F (brown) datasets were superimposed by the RNAP structural core - shown is the σ-finger from each.

Source data

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Supplementary Figs. 1 and 2.

Reporting Summary

Peer Review File

Supplementary Video 1

Supplementary Video 1. Slow motion videos (240 fps; iPhone 8S) of the grid robot in the Spotiton device after initiation of plunges at the motion settings shown. The total plunge time is the entire time the robot is in motion. The reported mixing times begin when the grid has passed the second (lower) dispenser, visible in the lower part of the video, and ends when it enters the liquid ethane (not seen). Plunges shown are for demonstration only. No grid is held in the tweezer.

Supplementary Video 2

Supplementary Video 2. 3DVA video 1 showing the RNAP clamp open/close mode (dataset 4500ms). At the beginning of the video, the RNAP clamp is open. The clamp (light green labels) and σ701.1 in the RNAP cleft (orange labels) are identified. As the clamp closes, σ701.1 disappears and density corresponding to downstream duplex DNA appears (yellow labels). The video continues through three additional cycles of opening and closing.

Source data

Source Data Fig. 1

Statistical Source Data

Source Data Extended Data Fig. 3

Statistical Source Data

Source Data Extended Data Fig. 8

Statistical Source Data

Source Data Extended Data Fig. 10

Statistical Source Data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saecker, R.M., Mueller, A.U., Malone, B. et al. Early intermediates in bacterial RNA polymerase promoter melting visualized by time-resolved cryo-electron microscopy. Nat Struct Mol Biol (2024). https://doi.org/10.1038/s41594-024-01349-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41594-024-01349-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing