Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of the human 80S ribosome at 1.9 Å resolution reveals the molecular role of chemical modifications and ions in RNA

Abstract

The ribosomal RNA of the human protein synthesis machinery comprises numerous chemical modifications that are introduced during ribosome biogenesis. Here we present the 1.9 Å resolution cryo electron microscopy structure of the 80S human ribosome resolving numerous new ribosomal RNA modifications and functionally important ions such as Zn2+, K+ and Mg2+, including their associated individual water molecules. The 2′-O-methylation, pseudo-uridine and base modifications were confirmed by mass spectrometry, resulting in a complete investigation of the >230 sites, many of which could not be addressed previously. They choreograph key interactions within the RNA and at the interface with proteins, including at the ribosomal subunit interfaces of the fully assembled 80S ribosome. Uridine isomerization turns out to be a key mechanism for U–A base pair stabilization in RNA in general. The structural environment of chemical modifications and ions is primordial for the RNA architecture of the mature human ribosome, hence providing a structural framework to address their role in healthy states and in human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High-resolution features, ions and water molecules in the human 80S ribosome.
Fig. 2: Assignment of ion coordinations in the human 80S ribosome.
Fig. 3: 2′-O-methylation sites in the human 80S ribosome.
Fig. 4: Pseudo-uridines in the human 80S ribosome.
Fig. 5: Nucleotide base modifications in the human 80S ribosome.
Fig. 6: Complete annotation of chemical modification in the human 80S ribosome through MS and structural analysis.
Fig. 7: Comparison of chemical modifications and conserved ion sites in the human 80S and E.coli 70S ribosome.

Similar content being viewed by others

Data availability

Atomic coordinates and cryo-EM maps have been deposited in the PDB and Electron Microscopy Data Bank (EMDB) under accession codes 8QOI and EMD-18539 (full 80S ribosome); EMD-18812, EMD-18813 and EMD-18814 for the focused refinements of the 60S ribosomal subunit, the 40S ribosomal subunit body and head regions, respectively; and EMD-18815 for the last global refinement of the 80S ribosome before the focused refinements. MS data have been deposited in the ProteomeXchange Consortium available via the PRIDE database at http://www.ebi.ac.uk/pride (ref. 109) with the dataset identifiers PXD046739, PXD046743, PXD046744 and PXD046747 for the 28S, 18S, 5.8S and 5S rRNAs, respectively. All other materials such as cells are available on reasonable request.

References

  1. Penzo, M. & Montanaro, L. Turning uridines around: role of rRNA pseudouridylation in ribosome biogenesis and ribosomal function. Biomolecules 8, 38 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chow, C. S., Lamichhane, T. N. & Mahto, S. K. Expanding the nucleotide repertoire of the ribosome with post-transcriptional modifications. ACS Chem. Biol. 2, 610–619 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maden, B. E. Identification of the locations of the methyl groups in 18S ribosomal RNA from Xenopus laevis and man. J. Mol. Biol. 189, 681–699 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Maden, B. E. Locations of methyl groups in 28S rRNA of Xenopus laevis and man. Clustering in the conserved core of molecule. J. Mol. Biol. 201, 289–314 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Maden, E. H. & Wakeman, J. A. Pseudouridine distribution in mammalian 18S ribosomal RNA. A major cluster in the central region of the molecule. Biochem. J. 249, 459–464 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ofengand, J. & Bakin, A. Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J. Mol. Biol. 266, 246–268 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Maden, B. E. Mapping 2′-O-methyl groups in ribosomal RNA. Methods 25, 374–382 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Birkedal, U. et al. Profiling of ribose methylations in RNA by high-throughput sequencing. Angew. Chem. Int. Ed. 54, 451–455 (2015).

    Article  CAS  Google Scholar 

  9. Krogh, N. et al. Profiling of ribose methylations in ribosomal RNA from diffuse large B-cell lymphoma patients for evaluation of ribosomes as drug targets. NAR Cancer 2, zcaa035 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Marchand, V., Bourguignon-Igel, V., Helm, M. & Motorin, Y. Mapping of 7-methylguanosine (m7G), 3-methylcytidine (m3C), dihydrouridine (D) and 5-hydroxycytidine (ho5C) RNA modifications by AlkAniline-Seq. Methods Enzymol. 658, 25–47 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Marchand, V. et al. HydraPsiSeq: a method for systematic and quantitative mapping of pseudouridines in RNA. Nucleic Acids Res. 48, e110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Taoka, M. et al. Landscape of the complete RNA chemical modifications in the human 80S ribosome. Nucleic Acids Res. 46, 9289–9298 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46, D303–D307 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. van Tran, N. et al. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 47, 7719–7733 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ma, H. et al. N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat. Chem. Biol. 15, 88–94 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Gonzales, B. et al. The Treacher Collins syndrome (TCOF1) gene product is involved in pre-rRNA methylation. Hum. Mol. Genet. 14, 2035–2043 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Wirmer, J. & Westhof, E. Molecular contacts between antibiotics and the 30S ribosomal particle. Methods Enzymol. 415, 180–202 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Baxter-Roshek, J. L., Petrov, A. N. & Dinman, J. D. Optimization of ribosome structure and function by rRNA base modification. PLoS ONE 2, e174 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Freed, E. F., Bleichert, F., Dutca, L. M. & Baserga, S. J. When ribosomes go bad: diseases of ribosome biogenesis. Mol. Biosyst. 6, 481–493 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Long, K. S. & Vester, B. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob. Agents Chemother. 56, 603–612 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lafontaine, D. L. J. Noncoding RNAs in eukaryotic ribosome biogenesis and function. Nat. Struct. Mol. Biol. 22, 11–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Stojković, V., Noda-Garcia, L., Tawfik, D. S. & Fujimori, D. G. Antibiotic resistance evolved via inactivation of a ribosomal RNA methylating enzyme. Nucleic Acids Res. 44, 8897–8907 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Penzo, M., Galbiati, A., Treré, D. & Montanaro, L. The importance of being (slightly) modified: the role of rRNA editing on gene expression control and its connections with cancer. Biochim. Biophys. Acta 1866, 330–338 (2016).

    CAS  PubMed  Google Scholar 

  24. Sloan, K. E. et al. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol. 14, 1138–1152 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Natchiar, S. K., Myasnikov, A. G., Hazemann, I. & Klaholz, B. P. Visualizing the role of 2'-OH rRNA methylations in the human ribosome structure. Biomolecules 8, 125 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Catez, F. et al. Ribosome biogenesis: an emerging druggable pathway for cancer therapeutics. Biochem. Pharmacol. 159, 74–81 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Khoshnevis, S. et al. 2′-O-methylations regulate translation by impacting ribosome dynamics. Proc. Natl Acad. Sci. USA 119, e2117334119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marcel, V., Catez, F. & Diaz, J.-J. Ribosome heterogeneity in tumorigenesis: the rRNA point of view. Mol. Cell. Oncol. 2, e983755 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Erales, J. et al. Evidence for rRNA 2′-O-methylation plasticity: control of intrinsic translational capabilities of human ribosomes. Proc. Natl Acad. Sci. USA 114, 12934–12939 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jansson, M. D. et al. Regulation of translation by site-specific ribosomal RNA methylation. Nat. Struct. Mol. Biol. 28, 889–899 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Motorin, Y., Quinternet, M., Rhalloussi, W. & Marchand, V. Constitutive and variable 2′-O-methylation (Nm) in human ribosomal RNA. RNA Biol. 18, 88–97 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marcel, V. et al. Ribosomal RNA 2′O-methylation as a novel layer of inter-tumour heterogeneity in breast cancer. NAR Cancer 2, zcaa036 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Barozzi, C. et al. Alterations of ribosomal RNA pseudouridylation in human breast cancer. NAR Cancer 5, zcad026 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Barros-Silva, D. et al. The role of OncoSnoRNAs and ribosomal RNA 2′-O-methylation in cancer. RNA Biol. 18, 61–74 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pauli, C. et al. Site-specific methylation of 18S ribosomal RNA by SNORD42A is required for acute myeloid leukemia cell proliferation. Blood 135, 2059–2070 (2020).

    Article  PubMed  Google Scholar 

  36. Myasnikov, A. G. et al. Structure-function insights reveal the human ribosome as a cancer target for antibiotics. Nat. Commun. 7, 12856 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gilles, A. et al. Targeting the human 80S ribosome in cancer: from structure to function and drug design for innovative adjuvant therapeutic strategies. Cells 9, 629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Natchiar, S. K., Myasnikov, A. G., Kratzat, H., Hazemann, I. & Klaholz, B. P. Visualization of chemical modifications in the human 80S ribosome structure. Nature 551, 472–477 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Orlov, I. et al. The integrative role of cryo electron microscopy in molecular and cellular structural biology. Biol. Cell 109, 81–93 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, J., Natchiar, S. K., Moore, P. B. & Klaholz, B. P. Identification of Mg2+ ions next to nucleotides in cryo-EM maps using electrostatic potential maps. Acta Crystallogr. D 77, 534–539 (2021).

  41. Klaholz, B. P., Myasnikov, A. G. & van Heel, M. Visualization of release factor 3 on the ribosome during termination of protein synthesis. Nature 427, 862–865 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. White, H. E., Saibil, H. R., Ignatiou, A. & Orlova, E. V. Recognition and separation of single particles with size variation by statistical analysis of their images. J. Mol. Biol. 336, 453–460 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Penczek, P. A., Frank, J. & Spahn, C. M. T. A method of focused classification, based on the bootstrap 3D variance analysis, and its application to EF-G-dependent translocation. J. Struct. Biol. 154, 184–194 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Simonetti, A. et al. Structure of the 30S translation initiation complex. Nature 455, 416–420 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Klaholz, B. P. Structure sorting of multiple macromolecular states in heterogeneous cryo-EM samples by 3D multivariate statistical analysis. Open J. Stat. 5, 820–836 (2015).

    Article  Google Scholar 

  46. Ilca, S. L. et al. Localized reconstruction of subunits from electron cryomicroscopy images of macromolecular complexes. Nat. Commun. 6, 8843 (2015).

    Article  PubMed  Google Scholar 

  47. Scheres, S. H. W. Processing of structurally heterogeneous cryo-EM data in RELION. Methods Enzymol. 579, 125–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. von Loeffelholz, O. et al. Focused classification and refinement in high-resolution cryo-EM structural analysis of ribosome complexes. Curr. Opin. Struct. Biol. 46, 140–148 (2017).

    Article  Google Scholar 

  49. Nakane, T., Kimanius, D., Lindahl, E. & Scheres, S. H. Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. eLife 7, e36861 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang, C. et al. Analysis of discrete local variability and structural covariance in macromolecular assemblies using cryo-EM and focused classification. Ultramicroscopy 203, 170–180 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Barchet, C. et al. Focused classifications and refinements in high-resolution single particle cryo-EM analysis. J. Struct. Biol. 215, 108015 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Khatter, H. et al. Purification, characterization and crystallization of the human 80S ribosome. Nucleic Acids Res. 42, e49 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Khatter, H., Myasnikov, A. G., Natchiar, S. K. & Klaholz, B. P. Structure of the human 80S ribosome. Nature 520, 640–645 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Lechner, A., Wolff, P., Leize-Wagner, E. & François, Y.-N. Characterization of post-transcriptional RNA modifications by sheathless capillary electrophoresis-high resolution mass spectrometry. Anal. Chem. 92, 7363–7370 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Roovers, M. et al. The Bacillus subtilis open reading frame ysgA encodes the SPOUT methyltransferase RlmP forming 2′-O-methylguanosine at position 2553 in the A-loop of 23S rRNA. RNA 28, 1185–1196 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Taoka, M. et al. A mass spectrometry-based method for comprehensive quantitative determination of post-transcriptional RNA modifications: the complete chemical structure of Schizosaccharomyces pombe ribosomal RNAs. Nucleic Acids Res. 43, e115 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article  CAS  Google Scholar 

  58. Yanshina, D. D., Gopanenko, A. V., Karpova, G. G. & Malygin, A. A. Replacement of hydroxylated His39 in ribosomal protein uL15 with Ala or Thr impairs the translational activity of human ribosomes. Mol. Biol. 54, 512–521 (2020).

    Article  CAS  Google Scholar 

  59. Watson, Z. L. et al. Structure of the bacterial ribosome at 2 Å resolution. eLife 9, e60482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cottilli, P. et al. Cryo-EM structure and rRNA modification sites of a plant ribosome. Plant Commun. 3, 100342 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smirnova, J. et al. Structure of the actively translating plant 80S ribosome at 2.2 Å resolution. Nat. Plants 9, 987–1000 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shimizu, T., Matsuoka, Y. & Shirasawa, T. Biological significance of isoaspartate and its repair system. Biol. Pharm. Bull. 28, 1590–1596 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Reissner, K. J. & Aswad, D. W. Deamidation and isoaspartate formation in proteins: unwanted alterations or surreptitious signals? Cell. Mol. Life Sci. 60, 1281–1295 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, K., Pintilie, G. D., Li, S., Schmid, M. F. & Chiu, W. Resolving individual atoms of protein complex by cryo-electron microscopy. Cell Res. 30, 1136–1139 (2020).

    Article  PubMed  Google Scholar 

  65. Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr. D 74, 814–840 (2018).

    Article  CAS  Google Scholar 

  66. Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution. Nature 414, 43–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Rozov, A. et al. Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction. Nat. Commun. 10, 2519 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Näslund, P. H. & Hultin, T. Structural and functional defects in mammalian ribosomes after potassium deficiency. Biochim. Biophys. Acta 254, 104–116 (1971).

    Article  PubMed  Google Scholar 

  69. Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Piekna-Przybylska, D., Decatur, W. A. & Fournier, M. J. The 3D rRNA modification maps database: with interactive tools for ribosome analysis. Nucleic Acids Res. 36, D178–D183 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Carlile, T. M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Incarnato, D. et al. High-throughput single-base resolution mapping of RNA 2΄-O-methylated residues. Nucleic Acids Res. 45, 1433–1441 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Marchand, V. et al. AlkAniline-Seq: profiling of m7 G and m3 C RNA modifications at single nucleotide resolution. Angew. Chem. Int. Ed. 57, 16785–16790 (2018).

    Article  CAS  Google Scholar 

  74. Leontis, N. B., Stombaugh, J. & Westhof, E. The non-Watson–Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 30, 3497–3531 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhao, Y., Rai, J., Yu, H. & Li, H. CryoEM structures of pseudouridine-free ribosome suggest impacts of chemical modifications on ribosome conformations. Structure 30, 983–992.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Meyer, B. et al. Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans. Nucleic Acids Res. 44, 4304–4316 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Milicevic, N., Jenner, L., Myasnikov, A., Yusupov, M. & Yusupova, G. mRNA reading frame maintenance during eukaryotic ribosome translocation. Nature 625, 393–400 (2024).

    Article  CAS  PubMed  Google Scholar 

  78. Babaian, A. et al. Loss of m1acp3Ψ ribosomal RNA modification is a major feature of cancer. Cell Rep. 31, 107611 (2020).

  79. Liang, X.-H., Liu, Q. & Fournier, M. J. Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. RNA 15, 1716–1728 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zorbas, C. et al. The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis. Mol. Biol. Cell 26, 2080–2095 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ito, S. et al. A single acetylation of 18 S rRNA is essential for biogenesis of the small ribosomal subunit in Saccharomyces cerevisiae. J. Biol. Chem. 289, 26201–26212 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li, W., Chang, S. T.-L., Ward, F. R. & Cate, J. H. D. Selective inhibition of human translation termination by a drug-like compound. Nat. Commun. 11, 4941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pellegrino, S., Dent, K. C., Spikes, T. & Warren, A. J. Cryo-EM reconstruction of the human 40S ribosomal subunit at 2.15 Å resolution. Nucleic Acids Res. 51, 4043–4054 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fischer, N. et al. Structure of the E. coli ribosome-EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM. Nature 520, 567–570 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Bhatt, P. R. et al. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science 372, 1306–1313 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Baudin-Baillieu, A. et al. Nucleotide modifications in three functionally important regions of the Saccharomyces cerevisiae ribosome affect translation accuracy. Nucleic Acids Res. 37, 7665–7677 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cappannini, A. et al. MODOMICS: a database of RNA modifications and related information. 2023 update. Nucleic Acids Res. 52, D239–D244 (2024).

    Article  PubMed  Google Scholar 

  88. Fréchin, L., Holvec, S., von Loeffelholz, O., Hazemann, I. & Klaholz, B. P. High-resolution cryo-EM performance comparison of two latest-generation cryo electron microscopes on the human ribosome. J. Struct. Biol. 215, 107905 (2023).

  89. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. van Heel, M. & Schatz, M. Fourier shell correlation threshold criteria. J. Struct. Biol. 151, 250–262 (2005).

  94. van Heel, M., Keegstra, W., Schutter W. G. & van Bruggen, E. F. J. Arthropod hemocyanin studied by image analysis. Life Chem. Rep. Suppl. 1, 69–73 (1982).

  95. Saxton, W. O. & Baumeister, W. The correlation averaging of a regularly arranged bacterial cell envelope protein. J. Microsc. 127, 127–138 (1982).

    Article  CAS  PubMed  Google Scholar 

  96. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Dunin-Horkawicz, S. MODOMICS: a database of RNA modification pathways. Nucleic Acids Res. 34, D145–D149 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Machnicka, M. A. et al. MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res. 41, D262–D267 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Auffinger, P., Grover, N. & Westhof, E. Metal ion binding to RNA. Met. Ions Life Sci. 9, 1–35 (2011).

    CAS  PubMed  Google Scholar 

  101. Lebedev, A. A. et al. JLigand: a graphical tool for the CCP4 template-restraint library. Acta Crystallogr. D 68, 431–440 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Delano, W. The PyMOL Molecular Graphics System (DeLano Scientific, 2002); http://www.pymol.org

  105. Mengel-Jørgensen, J. & Kirpekar, F. Detection of pseudouridine and other modifications in tRNA by cyanoethylation and MALDI mass spectrometry. Nucleic Acids Res. 30, e135 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wolff, P. et al. Comparative patterns of modified nucleotides in individual tRNA species from a mesophilic and two thermophilic archaea. RNA 26, 1957–1975 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Goyon, A. et al. Full sequencing of CRISPR–Cas9 single guide RNA (sgRNA) via parallel ribonuclease digestions and hydrophilic interaction liquid chromatography–high-resolution mass spectrometry analysis. Anal. Chem. 93, 14792–14801 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Antoine, L. & Wolff, P. in RNA Spectroscopy: Methods and Protocols (eds Arluison, V. & Wien, F.) 101–110 (Springer, 2020).

  109. Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the TFS and Jeol companies for kindly making their microscope setups available for test data collection, which was performed by Evgeniya Pechnikova (TFS, Eindhoven, NL) and Fumiaki Makino (on behalf of Jeol, Osaka, Japan). We acknowledge J. Michalon, M. Schaeffer and S. Ballet for IT support and the IGBMC cell culture facilities for HeLa cell production, members of the integrated structural biology platform at CBI for support and the late J.-F. Ménétret for his constant interest. A.L. and P.W. thank B. Chane-Woon-Ming for the implementation of the MassSpec-Toolkit for RNAs software. This work was supported by CNRS (Centre national de la recherche scientifique), Association pour la Recherche sur le Cancer, Institut National du Cancer (INCa_16099), the Fondation pour la Recherche Médicale (FRM and FDT202304016898), Ligue nationale contre le cancer (Ligue), Agence Nationale pour la Recherche and the University of Strasbourg Institute for Advanced Study (USIAS-2018-012). This work of the Interdisciplinary Thematic Institute IMCBio, as part of the ITI 2021-2028 program of the University of Strasbourg, CNRS and Inserm, was supported by IdEx Unistra (ANR-10-IDEX-0002) and by SFRI-STRAT’US project (ANR 20-SFRI-0012), EUR IMCBio (ANR-17-EURE-0023) under the framework of the France 2030 program and LabexNetRNA (ANR-10-LABX-0036_NETRNA) administered by Agence Nationale pour la Recherche and by the epiRNA funding from the Region Grand Est. The electron microscope facility was supported by the Region Grand Est, FEDER, the French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INSB-05-01/France 2030 program, Instruct-ERIC and iNEXT-Discovery.

Author information

Authors and Affiliations

Authors

Contributions

I.H., L.F. and S.H. performed sample preparation. L.F., S.H. and O.v.L. carried out the image processing. A.L. and P.W. carried out the MS analysis and annotations. S.N.T.D.S. and O.v.L. performed the rRNA sequencing, and C.B., L.F., S.H., O.v.L. and B.P.K. performed the structure refinement and model building, structural analysis and annotations. All authors analyzed the data. B.P.K. supervised the project and wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Bruno P. Klaholz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Sara Osman and Carolina Perdigoto, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Particle sorting scheme.

Extended Data Fig. 2

Resolution improvement of features in the cryo-EM map (present work compared to our previous study38).

Extended Data Fig. 3 Post-translational modifications of ribosomal proteins in the human ribosome.

Iso-Asp138 (uS11), methyl-arginine (ribosomal protein eS19), hydroxy-histidine (uL15) and methyl-histidine (uL3).

Extended Data Fig. 4

Visualization of endogenous polyamines (2 spermidines) in the human ribosome.

Extended Data Fig. 5 Assignment of octahedral Mg2+ coordinations with water molecules at N7, O6 and O4 positions of nucleotide bases.

Confirmation of Mg2+-coordinated rRNA bases that were identified previously by electrostatic potential map calculations40; respective σ-levels are indicated.

Extended Data Fig. 6 MS analysis using chimeric oligo nucleotides.

Deconvoluted MS/MS spectrum of 1770AUCUCAACC[Ψ]A[Ψ][Ψ]1783C from HeLa 28S rRNA with fragmentation assignments. x-axis: mass (Da); y-axis: Relative abundance.

Extended Data Fig. 7 RNA & DNA oligos used for mass spectrometry analysis.

Deoxyribonucleotides are in parenthesis; Nm corresponds to 2′-O-methylated nucleotides.

Extended Data Fig. 8 Correction of the rRNA reference sequence as found by sequencing and confirmed from the structure and MS analysis.

A4910 is labeled in red in the 28S rRNA sequence (see Supplementary Fig. 4).

Extended Data Fig. 9 Primer sequences used for human 18S, 28S, 5.8S and 5S rRNA sequencing.

Oligonucleotide primers used for PCR.

Supplementary information

Supplementary Information

Supplementary Fig. 1: Chemical modifications seen in the cryo-EM map (40S ribosomal subunit).

Supplementary Fig. 2: Chemical modifications seen in the cryo-EM map (60S ribosomal subunit).

Supplementary Fig. 3: MS analysis of 18S, 28S, 5.8S and 5S rRNA fragments with 2′-O-Me’s, Ψs and nucleotide base modifications.

Supplementary Fig. 4: The 18S, 28S, 5.8S and 5S rRNA sequencing with annotations of chemically modified nucleotides.

Reporting Summary

Supplementary Table 1

Legend to Supplementary File 1. Complete list of sites analyzed by MS and cryo-EM and the corresponding annotations, including previously reported rRNA modifications38,88,89. RNAses that were used to identify the respective modifications are indicated. Chemical modifications from E.coli, rabbit and plant ribosome structures58,59,60,84 are included for comparison.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holvec, S., Barchet, C., Lechner, A. et al. The structure of the human 80S ribosome at 1.9 Å resolution reveals the molecular role of chemical modifications and ions in RNA. Nat Struct Mol Biol (2024). https://doi.org/10.1038/s41594-024-01274-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41594-024-01274-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing