Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interactions between immune cell types facilitate the evolution of immune traits

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Abstract

An essential prerequisite for evolution by natural selection is variation among individuals in traits that affect fitness1. The ability of a system to produce selectable variation, known as evolvability2, thus greatly affects the rate of evolution. The immune system belongs to the fastest evolving components in mammals3, yet the sources of variation in immune traits remain largely unknown4,5. Here, we show that an important determinant of the immune system’s evolvability is its organisation into interacting modules represented by different immune cell types. By profiling immune cell variation in bone marrow of 54 genetically diverse mouse strains from the Collaborative Cross6, we found that variation in immune cell frequencies is polygenic and that many associated genes are involved in homeostatic balance through cell-intrinsic functions of proliferation, migration and cell death. However, we also found genes associated with the frequency of a particular cell type, which are expressed in a different cell type, exerting their effect in what we term cyto-trans. Vertebrate evolutionary record shows that genes associated in cyto-trans have faced weaker negative selection, thus increasing the robustness and hence evolvability2,7,8 of the immune system. This phenomenon is similarly observable in human blood. Our findings suggest that interactions between different components of the immune system provide a phenotypic space where mutations can produce variation without much detriment, underscoring the role of modularity in the evolution of complex systems9.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shai S. Shen-Orr.

Supplementary information

Supplementary Information

This file contains Supplementary Figure 1 and legends for Supplementary Tables 1-11

Reporting Summary

Peer Review file

Supplementary Tables

Supplementary Tables 1-11

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubovik, T., Lukačišin, M., Starosvetsky, E. et al. Interactions between immune cell types facilitate the evolution of immune traits. Nature (2024). https://doi.org/10.1038/s41586-024-07661-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-024-07661-0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing