Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Indirect neurogenesis in space and time

Abstract

During central nervous system (CNS) development, neural progenitor cells (NPCs) generate neurons and glia in two different ways. In direct neurogenesis, daughter cells differentiate directly into neurons or glia, whereas in indirect neurogenesis, neurons or glia are generated after one or more daughter cell divisions. Intriguingly, indirect neurogenesis is not stochastically deployed and plays instructive roles during CNS development: increased generation of cells from specific lineages; increased generation of early or late-born cell types within a lineage; and increased cell diversification. Increased indirect neurogenesis might contribute to the anterior CNS expansion evident throughout the Bilateria and help to modify brain-region size without requiring increased NPC numbers or extended neurogenesis. Increased indirect neurogenesis could be an evolutionary driver of the gyrencephalic (that is, folded) cortex that emerged during mammalian evolution and might even have increased during hominid evolution. Thus, selection of indirect versus direct neurogenesis provides a powerful developmental and evolutionary instrument that drives not only the evolution of CNS complexity but also brain expansion and modulation of brain-region size, and thereby the evolution of increasingly advanced cognitive abilities. This Review describes indirect neurogenesis in several model species and humans, and highlights some of the molecular genetic mechanisms that control this important process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Indirect neurogenesis modulates key aspects of neural development.
Fig. 2: Drosophila embryos display a gradient of indirect neurogenesis that results in a corresponding gradient in average lineage size.
Fig. 3: Brain region-specific modulation of indirect neurogenesis can result in region-specific changes in size.
Fig. 4: Evolutionary increase in indirect neurogenesis in the vertebrate developing neocortex.

Similar content being viewed by others

References

  1. Allan, D. W. & Thor, S. Transcriptional selectors, masters, and combinatorial codes: regulatory principles of neural subtype specification. Wiley Interdiscip. Rev. Dev. Biol. 4, 505–528 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arendt, D. & Nubler-Jung, K. Comparison of early nerve cord development in insects and vertebrates. Development 126, 2309–2325 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Cadwell, C. R., Bhaduri, A., Mostajo-Radji, M. A., Keefe, M. G. & Nowakowski, T. J. Development and arealization of the cerebral cortex. Neuron 103, 980–1004 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lumsden, A. & Krumlauf, R. Patterning the vertebrate neuraxis. Science 274, 1109–1115 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Doe, C. Q. Temporal patterning in the Drosophila CNS. Annu. Rev. Cell Dev. Biol. 33, 219–240 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. El-Danaf, R. N., Rajesh, R. & Desplan, C. Temporal regulation of neural diversity in Drosophila and vertebrates. Semin. Cell Dev. Biol. 142, 13–22 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Oberst, P., Agirman, G. & Jabaudon, D. Principles of progenitor temporal patterning in the developing invertebrate and vertebrate nervous system. Curr. Opin. Neurobiol. 56, 185–193 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Santos-Franca, P. L., David, L. A., Kassem, F., Meng, X. Q. & Cayouette, M. Time to see: how temporal identity factors specify the developing mammalian retina. Semin. Cell Dev. Biol. 142, 36–42 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Casas Gimeno, G. & Paridaen, J. The symmetry of neural stem cell and progenitor divisions in the vertebrate brain. Front. Cell Dev. Biol. 10, 885269 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sousa-Nunes, R. & Somers, W. G. Mechanisms of asymmetric progenitor divisions in the Drosophila central nervous system. Adv. Exp. Med. Biol. 786, 79–102 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Espinos, A., Fernandez-Ortuno, E., Negri, E. & Borrell, V. Evolution of genetic mechanisms regulating cortical neurogenesis. Dev. Neurobiol. 82, 428–453 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kalebic, N. & Huttner, W. B. Basal progenitor morphology and neocortex evolution. Trends Neurosci. 43, 843–853 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Kriegstein, A., Noctor, S. & Martinez-Cerdeno, V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat. Rev. Neurosci. 7, 883–890 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Del-Valle-Anton, L. et al. Multiple parallel cell lineages in the developing mammalian cerebral cortex. Sci. Adv. 10, eadn9998 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Monedero Cobeta, I., Salmani, B. Y. & Thor, S. Anterior–posterior gradient in neural stem and daughter cell proliferation governed by spatial and temporal Hox control. Curr. Biol. 27, 1161–1172 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Ulvklo, C. et al. Control of neuronal cell fate and number by integration of distinct daughter cell proliferation modes with temporal progression. Development 139, 678–689 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Cardenas, A. & Borrell, V. Molecular and cellular evolution of corticogenesis in amniotes. Cell Mol. Life Sci. 77, 1435–1460 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Huilgol, D. et al. Direct and indirect neurogenesis generate a mosaic of distinct glutamatergic projection neuron types in cerebral cortex. Neuron 111, 2557–2569.e4 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Huilgol, D., Russ, J. B., Srivas, S. & Huang, Z. J. The progenitor basis of cortical projection neuron diversity. Curr. Opin. Neurobiol. 81, 102726 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Suryanarayana, S. M. & Huilgol, D. Conservation and diversification of pallial cell types across vertebrates: an evo-devo perspective. Brain Behav. Evol. 98, 210–228 (2023).

    Article  PubMed  Google Scholar 

  21. Yaghmaeian Salmani, B. & Thor, S. Genetic mechanisms controlling anterior expansion of the central nervous system. Curr. Top. Dev. Biol. 137, 333–361 (2020).

    Article  PubMed  Google Scholar 

  22. Haubensak, W., Attardo, A., Denk, W. & Huttner, W. B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl Acad. Sci. USA 101, 3196–3201 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McIntosh, R., Norris, J., Clarke, J. D. & Alexandre, P. Spatial distribution and characterization of non-apical progenitors in the zebrafish embryo central nervous system. Open Biol. 7, 160312 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Smart, I. H. Proliferative characteristics of the ependymal layer during the early development of the mouse diencephalon, as revealed by recording the number, location, and plane of cleavage of mitotic figures. J. Anat. 113, 109–129 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pinson, A. et al. Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals. Science 377, eabl6422 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Ostrem, B., Di Lullo, E. & Kriegstein, A. oRGs and mitotic somal translocation — a role in development and disease. Curr. Opin. Neurobiol. 42, 61–67 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Denoth-Lippuner, A. & Jessberger, S. Formation and integration of new neurons in the adult hippocampus. Nat. Rev. Neurosci. 22, 223–236 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Jurkowski, M. P. et al. Beyond the hippocampus and the SVZ: adult neurogenesis throughout the brain. Front. Cell Neurosci. 14, 576444 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Obernier, K. & Alvarez-Buylla, A. Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development 146, dev156059 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Adameyko, I. Evolutionary origin of the neural tube in basal deuterostomes. Curr. Biol. 33, R319–R331 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Arendt, D., Tosches, M. A. & Marlow, H. From nerve net to nerve ring, nerve cord and brain—evolution of the nervous system. Nat. Rev. Neurosci. 17, 61–72 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Northcutt, R. G. Understanding vertebrate brain evolution. Integr. Comp. Biol. 42, 743–756 (2002).

    Article  PubMed  Google Scholar 

  33. Birkholz, O., Rickert, C., Berger, C., Urbach, R. & Technau, G. M. Neuroblast pattern and identity in the Drosophila tail region and role of doublesex in the survival of sex-specific precursors. Development 140, 1830–1842 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Bossing, T., Udolph, G., Doe, C. Q. & Technau, G. M. The embryonic central nervous system lineages of Drosophila melanogaster. I. Neuroblast lineages derived from the ventral half of the neuroectoderm. Dev. Biol. 179, 41–64 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Schmid, A., Chiba, A. & Doe, C. Q. Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. Development 126, 4653–4689 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Schmidt, H. et al. The embryonic central nervous system lineages of Drosophila melanogaster. II. Neuroblast lineages derived from the dorsal part of the neuroectoderm. Dev. Biol. 189, 186–204 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Wheeler, S. R., Stagg, S. B. & Crews, S. T. MidExDB: a database of Drosophila CNS midline cell gene expression. BMC Dev. Biol. 9, 56 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Urbach, R., Schnabel, R. & Technau, G. M. The pattern of neuroblast formation, mitotic domains and proneural gene expression during early brain development in Drosophila. Development 130, 3589–3606 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Younossi-Hartenstein, A., Nassif, C., Green, P. & Hartenstein, V. Early neurogenesis of the Drosophila brain. J. Comp. Neurol. 370, 313–329 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Urbach, R., Jussen, D. & Technau, G. M. Gene expression profiles uncover individual identities of gnathal neuroblasts and serial homologies in the embryonic CNS of Drosophila. Development 143, 1290–1301 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Doe, C. Q. Neural stem cells: balancing self-renewal with differentiation. Development 135, 1575–1587 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Knoblich, J. A. Asymmetric cell division: recent developments and their implications for tumour biology. Nat. Rev. Mol. Cell Biol. 11, 849–860 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rogulja-Ortmann, A., Luer, K., Seibert, J., Rickert, C. & Technau, G. M. Programmed cell death in the embryonic central nervous system of Drosophila melanogaster. Development 134, 105–116 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Boone, J. Q. & Doe, C. Q. Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells. Dev. Neurobiol. 68, 1185–1195 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bello, B. C., Izergina, N., Caussinus, E. & Reichert, H. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural Dev. 3, 5 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bowman, S. K. et al. The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev. Cell 14, 535–546 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Alvarez, J. A. & Diaz-Benjumea, F. J. Origin and specification of type II neuroblasts in the Drosophila embryo. Development 145, dev158394 (2018).

    Article  PubMed  Google Scholar 

  48. Walsh, K. T. & Doe, C. Q. Drosophila embryonic type II neuroblasts: origin, temporal patterning, and contribution to the adult central complex. Development 144, 4552–4562 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baumgardt, M., Karlsson, D., Terriente, J., Diaz-Benjumea, F. J. & Thor, S. Neuronal subtype specification within a lineage by opposing temporal feed-forward loops. Cell 139, 969–982 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Karcavich, R. & Doe, C. Q. Drosophila neuroblast 7-3 cell lineage: a model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity. J. Comp. Neurol. 481, 240–251 (2005).

    Article  PubMed  Google Scholar 

  51. Baumgardt, M. et al. Global programmed switch in neural daughter cell proliferation mode triggered by a temporal gene cascade. Dev. Cell 30, 192–208 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Bertet, C. et al. Temporal patterning of neuroblasts controls Notch-mediated cell survival through regulation of Hid or Reaper. Cell 158, 1173–1186 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bahrampour, S., Jonsson, C. & Thor, S. Brain expansion promoted by Polycomb-mediated anterior enhancement of a neural stem cell proliferation program. PLoS Biol. 17, e3000163 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yaghmaeian Salmani, B. et al. Evolutionarily conserved anterior expansion of the central nervous system promoted by a common PcG–Hox program. Development 145, dev160747 (2018).

    Article  PubMed  Google Scholar 

  55. Choksi, S. P. et al. Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Dev. Cell 11, 775–789 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Li, L. & Vaessin, H. Pan-neural Prospero terminates cell proliferation during Drosophila neurogenesis. Genes. Dev. 14, 147–151 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pollington, H. Q., Seroka, A. Q. & Doe, C. Q. From temporal patterning to neuronal connectivity in Drosophila type I neuroblast lineages. Semin. Cell Dev. Biol. 142, 4–12 (2023).

    Article  PubMed  Google Scholar 

  58. Bahrampour, S., Gunnar, E., Jonsson, C., Ekman, H. & Thor, S. Neural lineage progression controlled by a temporal proliferation program. Dev. Cell 43, 332–348.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Bivik, C. et al. Control of neural daughter cell proliferation by multi-level Notch/Su(H)/E(spl)-HLH signaling. PLoS Genet. 12, e1005984 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Guillamon-Vivancos, T. et al. Distinct neocortical progenitor lineages fine-tune neuronal diversity in a layer-specific manner. Cereb. Cortex 29, 1121–1138 (2019).

    Article  PubMed  Google Scholar 

  61. Li, Z. et al. Transcriptional priming as a conserved mechanism of lineage diversification in the developing mouse and human neocortex. Sci. Adv. 6, eabd2068 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tyler, W. A., Medalla, M., Guillamon-Vivancos, T., Luebke, J. I. & Haydar, T. F. Neural precursor lineages specify distinct neocortical pyramidal neuron types. J. Neurosci. 35, 6142–6152 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Curt, J. R., Yaghmaeian Salmani, B. & Thor, S. Anterior CNS expansion driven by brain transcription factors. eLife 8, e45274 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Younossi-Hartenstein, A. et al. Control of early neurogenesis of the Drosophila brain by the head gap genes tll, otd, ems, and btd. Dev. Biol. 182, 270–283 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Hirth, F., Hartmann, B. & Reichert, H. Homeotic gene action in embryonic brain development of Drosophila. Development 125, 1579–1589 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Philippidou, P. & Dasen, J. S. Hox genes: choreographers in neural development, architects of circuit organization. Neuron 80, 12–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Karlsson, D., Baumgardt, M. & Thor, S. Segment-specific neuronal subtype specification by the integration of anteroposterior and temporal cues. PLoS Biol. 8, e1000368 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rogulja-Ortmann, A. et al. The RNA-binding protein ELAV regulates Hox RNA processing, expression and function within the Drosophila nervous system. Development 141, 2046–2056 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tycko, J. et al. High-throughput discovery and characterization of human transcriptional effectors. Cell 183, 2020–2035.e16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Holland, P. W. Evolution of homeobox genes. Wiley Interdiscip. Rev. Dev. Biol. 2, 31–45 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Muller, J. & Verrijzer, P. Biochemical mechanisms of gene regulation by Polycomb group protein complexes. Curr. Opin. Genet. Dev. 19, 150–158 (2009).

    Article  PubMed  Google Scholar 

  72. Rajan, A., Ostgaard, C. M. & Lee, C. Y. Regulation of neural stem cell competency and commitment during indirect neurogenesis. Int. J. Mol. Sci. 22, 12871 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Haenfler, J. M., Kuang, C. & Lee, C. Y. Cortical aPKC kinase activity distinguishes neural stem cells from progenitor cells by ensuring asymmetric segregation of Numb. Dev. Biol. 365, 219–228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Komori, H., Golden, K. L., Kobayashi, T., Kageyama, R. & Lee, C. Y. Multilayered gene control drives timely exit from the stem cell state in uncommitted progenitors during Drosophila asymmetric neural stem cell division. Genes. Dev. 32, 1550–1561 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Reichardt, I. et al. The tumor suppressor Brat controls neuronal stem cell lineages by inhibiting Deadpan and Zelda. EMBO Rep. 19, 102–117 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Berger, C. et al. FACS purification and transcriptome analysis of Drosophila neural stem cells reveals a role for Klumpfuss in self-renewal. Cell Rep. 2, 407–418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Janssens, D. H. et al. An Hdac1/Rpd3-poised circuit balances continual self-renewal and rapid restriction of developmental potential during asymmetric stem cell division. Dev. Cell 40, 367–380.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Janssens, D. H. et al. Earmuff restricts progenitor cell potential by attenuating the competence to respond to self-renewal factors. Development 141, 1036–1046 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. San-Juan, B. P. & Baonza, A. The bHLH factor deadpan is a direct target of Notch signaling and regulates neuroblast self-renewal in Drosophila. Dev. Biol. 352, 70–82 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Xiao, Q., Komori, H. & Lee, C.-Y. klumpfuss distinguishes stem cells from progenitor cells during asymmetric neuroblast division. Development 139, 2670–2680 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zacharioudaki, E. et al. Genes implicated in stem cell identity and temporal programme are directly targeted by Notch in neuroblast tumours. Development 143, 219–231 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zacharioudaki, E., Magadi, S. S. & Delidakis, C. bHLH-O proteins are crucial for Drosophila neuroblast self-renewal and mediate Notch-induced overproliferation. Development 139, 1258–1269 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Zhu, S. et al. The bHLH repressor Deadpan regulates the self-renewal and specification of Drosophila larval neural stem cells independently of Notch. PLoS ONE 7, e46724 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hakes, A. E. & Brand, A. H. Tailless/TLX reverts intermediate neural progenitors to stem cells driving tumourigenesis via repression of asense/ASCL1. eLife 9, e53377 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rives-Quinto, N. et al. Sequential activation of transcriptional repressors promotes progenitor commitment by silencing stem cell identity genes. eLife 9, e56187 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xie, Y. et al. The Ets protein Pointed prevents both premature differentiation and dedifferentiation of Drosophila intermediate neural progenitors. Development 143, 3109–3118 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Xie, Y. et al. The Drosophila Sp8 transcription factor Buttonhead prevents premature differentiation of intermediate neural progenitors. eLife 3, e03596 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zhu, S., Barshow, S., Wildonger, J., Jan, L. Y. & Jan, Y. N. Ets transcription factor Pointed promotes the generation of intermediate neural progenitors in Drosophila larval brains. Proc. Natl Acad. Sci. USA 108, 20615–20620 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Weng, M., Golden, K. L. & Lee, C. Y. dFezf/Earmuff maintains the restricted developmental potential of intermediate neural progenitors in Drosophila. Dev. Cell 18, 126–135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Koe, C. T. et al. The Brm-HDAC3-Erm repressor complex suppresses dedifferentiation in Drosophila type II neuroblast lineages. eLife 3, e01906 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zhang, Y. et al. The Integrator complex prevents dedifferentiation of intermediate neural progenitors back into neural stem cells. Cell Rep. 27, 987–996.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Bayraktar, O. A. & Doe, C. Q. Combinatorial temporal patterning in progenitors expands neural diversity. Nature 498, 449–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Thor, S. Neuroscience: stem cells in multiple time zones. Nature 498, 441–443 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Farnsworth, D. R., Bayraktar, O. A. & Doe, C. Q. Aging neural progenitors lose competence to respond to mitogenic Notch signaling. Curr. Biol. 25, 3058–3068 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lacin, H., Zhu, Y., Wilson, B. A. & Skeath, J. B. Transcription factor expression uniquely identifies most postembryonic neuronal lineages in the Drosophila thoracic central nervous system. Development 141, 1011–1021 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee, Y. J. et al. Conservation and divergence of related neuronal lineages in the Drosophila central brain. eLife 9, e53518 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Truman, J. W., Moats, W., Altman, J., Marin, E. C. & Williams, D. W. Role of Notch signaling in establishing the hemilineages of secondary neurons in Drosophila melanogaster. Development 137, 53–61 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bentivoglio, M. & Mazzarello, P. The history of radial glia. Brain Res. Bull. 49, 305–315 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Alexandre, P., Reugels, A. M., Barker, D., Blanc, E. & Clarke, J. D. Neurons derive from the more apical daughter in asymmetric divisions in the zebrafish neural tube. Nat. Neurosci. 13, 673–679 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Dong, Z., Yang, N., Yeo, S. Y., Chitnis, A. & Guo, S. Intralineage directional Notch signaling regulates self-renewal and differentiation of asymmetrically dividing radial glia. Neuron 74, 65–78 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kimura, Y., Satou, C. & Higashijima, S. V2a and V2b neurons are generated by the final divisions of pair-producing progenitors in the zebrafish spinal cord. Development 135, 3001–3005 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Demski, L. S. & Beaver, J. A. The cytoarchitecture of the tectal-related pallium of squirrelfish, Holocentrus sp. Front. Neuroanat. 16, 819365 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sukhum, K. V., Shen, J. & Carlson, B. A. Extreme enlargement of the cerebellum in a clade of teleost fishes that evolved a novel active sensory system. Curr. Biol. 28, 3857–3863.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Naumann, R. K. et al. The reptilian brain. Curr. Biol. 25, R317–R321 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Benito-Gutierrez, E. et al. The dorsoanterior brain of adult amphioxus shares similarities in expression profile and neuronal composition with the vertebrate telencephalon. BMC Biol. 19, 110 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Briscoe, S. D. & Ragsdale, C. W. Evolution of the chordate telencephalon. Curr. Biol. 29, R647–R662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cardenas, A. et al. Evolution of cortical neurogenesis in amniotes controlled by Robo signaling levels. Cell 174, 590–606.e21 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nomura, T., Gotoh, H. & Ono, K. Changes in the regulation of cortical neurogenesis contribute to encephalization during amniote brain evolution. Nat. Commun. 4, 2206 (2013).

    Article  PubMed  Google Scholar 

  109. Garcia-Moreno, F. & Molnar, Z. Variations of telencephalic development that paved the way for neocortical evolution. Prog. Neurobiol. 194, 101865 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Cheung, A. F. P., Pollen, A. A., Tavare, A., DeProto, J. & Molnár, Z. Comparative aspects of cortical neurogenesis in vertebrates. J. Anat. 211, 164–176 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Martinez-Cerdeno, V. & Noctor, S. C. Cortical evolution 2015: discussion of neural progenitor cell nomenclature. J. Comp. Neurol. 524, 704–709 (2016).

    Article  PubMed  Google Scholar 

  112. Nomura, T. et al. The evolution of basal progenitors in the developing non-mammalian brain. Development 143, 66–74 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Striedter, G. F. & Charvet, C. J. Telencephalon enlargement by the convergent evolution of expanded subventricular zones. Biol. Lett. 5, 134–137 (2009).

    Article  PubMed  Google Scholar 

  114. Das, R. M. & Storey, K. G. Apical abscission alters cell polarity and dismantles the primary cilium during neurogenesis. Science 343, 200–204 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Le Dreau, G., Saade, M., Gutierrez-Vallejo, I. & Marti, E. The strength of SMAD1/5 activity determines the mode of stem cell division in the developing spinal cord. J. Cell Biol. 204, 591–605 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Saade, M. et al. Sonic hedgehog signaling switches the mode of division in the developing nervous system. Cell Rep. 4, 492–503 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Gotz, M. & Huttner, W. B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  PubMed  Google Scholar 

  118. Llinares-Benadero, C. & Borrell, V. Deconstructing cortical folding: genetic, cellular and mechanical determinants. Nat. Rev. Neurosci. 20, 161–176 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Franco, S. J. & Muller, U. Shaping our minds: stem and progenitor cell diversity in the mammalian neocortex. Neuron 77, 19–34 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Taverna, E., Gotz, M. & Huttner, W. B. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu. Rev. Cell Dev. Biol. 30, 465–502 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Betizeau, M. et al. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron 80, 442–457 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Baala, L. et al. Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis. Nat. Genet. 39, 454–456 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human neocortex. Cell 146, 18–36 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cheung, A. F. et al. The subventricular zone is the developmental milestone of a 6-layered neocortex: comparisons in metatherian and eutherian mammals. Cereb. Cortex 20, 1071–1081 (2010).

    Article  PubMed  Google Scholar 

  125. Dos Santos, S. E. et al. Cellular scaling rules for the brains of marsupials: not as “primitive” as expected. Brain Behav. Evol. 89, 48–63 (2017).

    Article  PubMed  Google Scholar 

  126. Paolino, A. et al. Non-uniform temporal scaling of developmental processes in the mammalian cortex. Nat. Commun. 14, 5950 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Puzzolo, E. & Mallamaci, A. Cortico-cerebral histogenesis in the opossum Monodelphis domestica: generation of a hexalaminar neocortex in the absence of a basal proliferative compartment. Neural Dev. 5, 8 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Sauerland, C. et al. The basal radial glia occurs in marsupials and underlies the evolution of an expanded neocortex in therian mammals. Cereb. Cortex 28, 145–157 (2018).

    Article  PubMed  Google Scholar 

  129. Saunders, N. R., Adam, E., Reader, M. & Mollgard, K. Monodelphis domestica (grey short-tailed opossum): an accessible model for studies of early neocortical development. Anat. Embryol. 180, 227–236 (1989).

    Article  CAS  Google Scholar 

  130. deAzevedo, L. C. et al. Cortical radial glial cells in human fetuses: depth-correlated transformation into astrocytes. J. Neurobiol. 55, 288–298 (2003).

    Article  PubMed  Google Scholar 

  131. Nowakowski, T. J., Pollen, A. A., Sandoval-Espinosa, C. & Kriegstein, A. R. Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development. Neuron 91, 1219–1227 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bilgic, M. et al. Truncated radial glia as a common precursor in the late corticogenesis of gyrencephalic mammals. eLife 12, e91406 (2023).

    Article  Google Scholar 

  133. Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318–1323 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Pebworth, M. P., Ross, J., Andrews, M., Bhaduri, A. & Kriegstein, A. R. Human intermediate progenitor diversity during cortical development. Proc. Natl Acad. Sci. USA 118, e2019415118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pollen, A. A. et al. Molecular identity of human outer radial glia during cortical development. Cell 163, 55–67 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Thomsen, E. R. et al. Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat. Methods 13, 87–93 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Fietz, S. A. & Huttner, W. B. Cortical progenitor expansion, self-renewal and neurogenesis—a polarized perspective. Curr. Opin. Neurobiol. 21, 23–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. LaMonica, B. E., Lui, J. H., Wang, X. & Kriegstein, A. R. OSVZ progenitors in the human cortex: an updated perspective on neurodevelopmental disease. Curr. Opin. Neurobiol. 22, 747–753 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shitamukai, A., Konno, D. & Matsuzaki, F. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J. Neurosci. 31, 3683–3695 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang, X., Tsai, J. W., LaMonica, B. & Kriegstein, A. R. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat. Neurosci. 14, 555–561 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. vasistha, N. A. et al. Cortical and clonal contribution of Tbr2 expressing progenitors in the developing mouse brain. Cereb. Cortex 25, 3290–3302 (2015).

    Article  PubMed  Google Scholar 

  142. Martinez-Cerdeno, V. et al. Comparative analysis of the subventricular zone in rat, ferret and macaque: evidence for an outer subventricular zone in rodents. PLoS ONE 7, e30178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hansen, D. V., Lui, J. H., Parker, P. R. & Kriegstein, A. R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Fietz, S. A. et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat. Neurosci. 13, 690–699 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Smart, I. H. Proliferative characteristics of the ependymal layer during the early development of the spinal cord in the mouse. J. Anat. 111, 365–380 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Smart, I. H. Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: a pilot study based on recording the number, location and plane of cleavage of mitotic figures. J. Anat. 116, 67–91 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Smart, I. H. A pilot study of cell production by the ganglionic eminences of the developing mouse brain. J. Anat. 121, 71–84 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Tarabykin, V., Stoykova, A., Usman, N. & Gruss, P. Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development 128, 1983–1993 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Wang, L., Bluske, K. K., Dickel, L. K. & Nakagawa, Y. Basal progenitor cells in the embryonic mouse thalamus—their molecular characterization and the role of neurogenins and Pax6. Neural Dev. 6, 35 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhou, X. et al. Cellular and molecular properties of neural progenitors in the developing mammalian hypothalamus. Nat. Commun. 11, 4063 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Xu, H. T. et al. Distinct lineage-dependent structural and functional organization of the hippocampus. Cell 157, 1552–1564 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gao, P. et al. Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell 159, 775–788 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lin, Y. et al. Behavior and lineage progression of neural progenitors in the mammalian cortex. Curr. Opin. Neurobiol. 66, 144–157 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. Llorca, A. et al. A stochastic framework of neurogenesis underlies the assembly of neocortical cytoarchitecture. eLife 8, e51381 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Mihalas, A. B. & Hevner, R. F. Clonal analysis reveals laminar fate multipotency and daughter cell apoptosis of mouse cortical intermediate progenitors. Development 145, dev164335 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Andrews, M. G., Subramanian, L., Salma, J. & Kriegstein, A. R. How mechanisms of stem cell polarity shape the human cerebral cortex. Nat. Rev. Neurosci. 23, 711–724 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Penisson, M., Ladewig, J., Belvindrah, R. & Francis, F. Genes and mechanisms involved in the generation and amplification of basal radial glial cells. Front. Cell Neurosci. 13, 381 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Vaid, S. & Huttner, W. B. Progenitor-based cell biological aspects of neocortex development and evolution. Front. Cell Dev. Biol. 10, 892922 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Molnar, Z. et al. New insights into the development of the human cerebral cortex. J. Anat. 235, 432–451 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Delaunay, D., Kawaguchi, A., Dehay, C. & Matsuzaki, F. Division modes and physical asymmetry in cerebral cortex progenitors. Curr. Opin. Neurobiol. 42, 75–83 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Mizutani, K., Yoon, K., Dang, L., Tokunaga, A. & Gaiano, N. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449, 351–355 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Shimojo, H., Ohtsuka, T. & Kageyama, R. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58, 52–64 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Cheng, S. et al. Conditional inactivation of Pen-2 in the developing neocortex leads to rapid switch of apical progenitors to basal progenitors. J. Neurosci. 39, 2195–2207 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tiberi, L. et al. BCL6 controls neurogenesis through Sirt1-dependent epigenetic repression of selective Notch targets. Nat. Neurosci. 15, 1627–1635 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Bylund, M., Andersson, E., Novitch, B. G. & Muhr, J. Vertebrate neurogenesis is counteracted by Sox1–3 activity. Nat. Neurosci. 6, 1162–1168 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Ochiai, W. et al. Periventricular notch activation and asymmetric Ngn2 and Tbr2 expression in pair-generated neocortical daughter cells. Mol. Cell Neurosci. 40, 225–233 (2009).

    Article  CAS  PubMed  Google Scholar 

  167. Lacomme, M., Liaubet, L., Pituello, F. & Bel-Vialar, S. NEUROG2 drives cell cycle exit of neuronal precursors by specifically repressing a subset of cyclins acting at the G1 and S phases of the cell cycle. Mol. Cell Biol. 32, 2596–2607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Nguyen, L. et al. p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes. Dev. 20, 1511–1524 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Siegenthaler, J. A., Tremper-Wells, B. A. & Miller, M. W. Foxg1 haploinsufficiency reduces the population of cortical intermediate progenitor cells: effect of increased p21 expression. Cereb. Cortex 18, 1865–1875 (2008).

    Article  PubMed  Google Scholar 

  170. Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci. 25, 247–251 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Arnold, S. J. et al. The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes. Dev. 22, 2479–2484 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mihalas, A. B. et al. Intermediate progenitor cohorts differentially generate cortical layers and require Tbr2 for timely acquisition of neuronal subtype identity. Cell Rep. 16, 92–105 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hevner, R. F. Intermediate progenitors and Tbr2 in cortical development. J. Anat. 235, 616–625 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Maric, D., Fiorio Pla, A., Chang, Y. H. & Barker, J. L. Self-renewing and differentiating properties of cortical neural stem cells are selectively regulated by basic fibroblast growth factor (FGF) signaling via specific FGF receptors. J. Neurosci. 27, 1836–1852 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kang, W., Wong, L. C., Shi, S. H. & Hebert, J. M. The transition from radial glial to intermediate progenitor cell is inhibited by FGF signaling during corticogenesis. J. Neurosci. 29, 14571–14580 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Rash, B. G., Lim, H. D., Breunig, J. J. & Vaccarino, F. M. FGF signaling expands embryonic cortical surface area by regulating Notch-dependent neurogenesis. J. Neurosci. 31, 15604–15617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Rash, B. G., Tomasi, S., Lim, H. D., Suh, C. Y. & Vaccarino, F. M. Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain. J. Neurosci. 33, 10802–10814 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lange, C., Huttner, W. B. & Calegari, F. Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell 5, 320–331 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. Pilaz, L. J. et al. Forced G1-phase reduction alters mode of division, neuron number, and laminar phenotype in the cerebral cortex. Proc. Natl Acad. Sci. USA 106, 21924–21929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Nonaka-Kinoshita, M. et al. Regulation of cerebral cortex size and folding by expansion of basal progenitors. EMBO J. 32, 1817–1828 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Lukaszewicz, A., Savatier, P., Cortay, V., Kennedy, H. & Dehay, C. Contrasting effects of basic fibroblast growth factor and neurotrophin 3 on cell cycle kinetics of mouse cortical stem cells. J. Neurosci. 22, 6610–6622 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Heng, X., Guo, Q., Leung, A. W. & Li, J. Y. Analogous mechanism regulating formation of neocortical basal radial glia and cerebellar Bergmann glia. eLife 6, e23253 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Matsumoto, N., Shinmyo, Y., Ichikawa, Y. & Kawasaki, H. Gyrification of the cerebral cortex requires FGF signaling in the mammalian brain. eLife 6, e29285 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Kelava, I. et al. Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus. Cereb. Cortex 22, 469–481 (2012).

    Article  PubMed  Google Scholar 

  185. Konno, D. et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat. Cell Biol. 10, 93–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Kosodo, Y. & Huttner, W. B. Basal process and cell divisions of neural progenitors in the developing brain. Dev. Growth Differ. 51, 251–261 (2009).

    Article  PubMed  Google Scholar 

  187. Loulier, K. et al. β1 integrin maintains integrity of the embryonic neocortical stem cell niche. PLoS Biol. 7, e1000176 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Radakovits, R., Barros, C. S., Belvindrah, R., Patton, B. & Muller, U. Regulation of radial glial survival by signals from the meninges. J. Neurosci. 29, 7694–7705 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Reillo, I., de Juan Romero, C., Garcia-Cabezas, M. A. & Borrell, V. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb. Cortex 21, 1674–1694 (2011).

    Article  PubMed  Google Scholar 

  190. Kalebic, N. et al. Neocortical expansion due to increased proliferation of basal progenitors is linked to changes in their morphology. Cell Stem Cell 24, 535–550.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Stenzel, D., Wilsch-Brauninger, M., Wong, F. K., Heuer, H. & Huttner, W. B. Integrin αvβ3 and thyroid hormones promote expansion of progenitors in embryonic neocortex. Development 141, 795–806 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Moreno-Layseca, P. & Streuli, C. H. Signalling pathways linking integrins with cell cycle progression. Matrix Biol. 34, 144–153 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Tomasello, U. et al. miR-137 and miR-122, two outer subventricular zone non-coding RNAs, regulate basal progenitor expansion and neuronal differentiation. Cell Rep. 38, 110381 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wagenfuhr, L., Meyer, A. K., Braunschweig, L., Marrone, L. & Storch, A. Brain oxygen tension controls the expansion of outer subventricular zone-like basal progenitors in the developing mouse brain. Development 142, 2904–2915 (2015).

    Article  PubMed  Google Scholar 

  195. Wang, L., Hou, S. & Han, Y. G. Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex. Nat. Neurosci. 19, 888–896 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Matsumoto, N., Tanaka, S., Horiike, T., Shinmyo, Y. & Kawasaki, H. A discrete subtype of neural progenitor crucial for cortical folding in the gyrencephalic mammalian brain. eLife 9, e54873 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Shimada, I. S. et al. Derepression of sonic hedgehog signaling upon Gpr161 deletion unravels forebrain and ventricular abnormalities. Dev. Biol. 450, 47–62 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Hirabayashi, Y. & Gotoh, Y. Epigenetic control of neural precursor cell fate during development. Nat. Rev. Neurosci. 11, 377–388 (2010).

    Article  CAS  PubMed  Google Scholar 

  199. Pereira, J. D. et al. Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc. Natl Acad. Sci. USA 107, 15957–15962 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Bruggeman, S. W. et al. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes. Dev. 19, 1438–1443 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Fasano, C. A. et al. Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes. Dev. 23, 561–574 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Molofsky, A. V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Economides, K. D., Zeltser, L. & Capecchi, M. R. Hoxb13 mutations cause overgrowth of caudal spinal cord and tail vertebrae. Dev. Biol. 256, 317–330 (2003).

    Article  CAS  PubMed  Google Scholar 

  204. Isono, K. et al. Mammalian polyhomeotic homologues Phc2 and Phc1 act in synergy to mediate polycomb repression of Hox genes. Mol. Cell Biol. 25, 6694–6706 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Li, X. et al. Mammalian polycomb-like Pcl2/Mtf2 is a novel regulatory component of PRC2 that can differentially modulate polycomb activity both at the Hox gene cluster and at Cdkn2a genes. Mol. Cell Biol. 31, 351–364 (2011).

    Article  CAS  PubMed  Google Scholar 

  206. Suzuki, M. et al. Involvement of the Polycomb-group gene Ring1B in the specification of the anterior–posterior axis in mice. Development 129, 4171–4183 (2002).

    Article  CAS  PubMed  Google Scholar 

  207. Wang, J., Mager, J., Schnedier, E. & Magnuson, T. The mouse PcG gene Eed is required for Hox gene repression and extraembryonic development. Mamm. Genome 13, 493–503 (2002).

    Article  CAS  PubMed  Google Scholar 

  208. Mora, A. et al. Variational autoencoding of gene landscapes during mouse CNS development uncovers layered roles of Polycomb repressor complex 2. Nucleic Acids Res. 50, 1280–1296 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Eckler, M. J. & Chen, B. Fez family transcription factors: controlling neurogenesis and cell fate in the developing mammalian nervous system. Bioessays 36, 788–797 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Islam, M. M. & Zhang, C. L. TLX: a master regulator for neural stem cell maintenance and neurogenesis. Biochim. Biophys. Acta 1849, 210–216 (2015).

    Article  CAS  PubMed  Google Scholar 

  211. Kitamura, K. et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat. Genet. 32, 359–369 (2002).

    Article  CAS  PubMed  Google Scholar 

  212. Wang, W. & Lufkin, T. The murine Otp homeobox gene plays an essential role in the specification of neuronal cell lineages in the developing hypothalamus. Dev. Biol. 227, 432–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  213. Bishop, K. M., Garel, S., Nakagawa, Y., Rubenstein, J. L. & O’Leary, D. D. Emx1 and Emx2 cooperate to regulate cortical size, lamination, neuronal differentiation, development of cortical efferents, and thalamocortical pathfinding. J. Comp. Neurol. 457, 345–360 (2003).

    Article  CAS  PubMed  Google Scholar 

  214. Manuel, M. N. et al. The transcription factor Foxg1 regulates telencephalic progenitor proliferation cell autonomously, in part by controlling Pax6 expression levels. Neural Dev. 6, 9 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Stenman, J. M., Wang, B. & Campbell, K. Tlx controls proliferation and patterning of lateral telencephalic progenitor domains. J. Neurosci. 23, 10568–10576 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Telley, L. et al. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science 364, eaav2522 (2019).

    Article  CAS  PubMed  Google Scholar 

  217. Kerimoglu, C. et al. H3 acetylation selectively promotes basal progenitor proliferation and neocortex expansion. Sci. Adv. 7, eabc6792 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Tapias, A. et al. Trrap-dependent histone acetylation specifically regulates cell-cycle gene transcription to control neural progenitor fate decisions. Cell Stem Cell 14, 632–643 (2014).

    Article  CAS  PubMed  Google Scholar 

  219. Fish, J. L., Dehay, C., Kennedy, H. & Huttner, W. B. Making bigger brains—the evolution of neural-progenitor-cell division. J. Cell Sci. 121, 2783–2793 (2008).

    Article  CAS  PubMed  Google Scholar 

  220. Florio, M., Borrell, V. & Huttner, W. B. Human-specific genomic signatures of neocortical expansion. Curr. Opin. Neurobiol. 42, 33–44 (2017).

    Article  CAS  PubMed  Google Scholar 

  221. Fietz, S. A. et al. Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self-renewal. Proc. Natl Acad. Sci. USA 109, 11836–11841 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Florio, M. et al. Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex. eLife 7, e32332 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Johnson, M. B. et al. Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex. Nat. Neurosci. 18, 637–646 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Miller, J. A. et al. Transcriptional landscape of the prenatal human brain. Nature 508, 199–206 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Ochi, S., Manabe, S., Kikkawa, T. & Osumi, N. Thirty years’ history since the discovery of Pax6: from central nervous system development to neurodevelopmental disorders. Int. J. Mol. Sci. 23, 6115 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Wong, F. K. et al. Sustained Pax6 expression generates primate-like basal radial glia in developing mouse neocortex. PLoS Biol. 13, e1002217 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Krontira, A. C. et al. Human cortical neurogenesis is altered via glucocorticoid-mediated regulation of ZBTB16 expression. Neuron 112, 1426–1446.e11 (2024).

    Article  CAS  PubMed  Google Scholar 

  228. Stahl, R. et al. Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell 153, 535–549 (2013).

    Article  CAS  PubMed  Google Scholar 

  229. Esgleas, M. et al. Trnp1 organizes diverse nuclear membrane-less compartments in neural stem cells. EMBO J. 39, e103373 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Martinez-Martinez, M. A. et al. A restricted period for formation of outer subventricular zone defined by Cdh1 and Trnp1 levels. Nat. Commun. 7, 11812 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Currey, L., Thor, S. & Piper, M. TEAD family transcription factors in development and disease. Development 148, dev196675 (2021).

    Article  CAS  PubMed  Google Scholar 

  232. Kostic, M. et al. YAP activity is necessary and sufficient for basal progenitor abundance and proliferation in the developing neocortex. Cell Rep. 27, 1103–1118.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Cubillos, P. et al. The growth factor epiregulin promotes basal progenitor cell proliferation in the developing neocortex. EMBO J. 43, 1388–1419 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Tsui, D., Vessey, J. P., Tomita, H., Kaplan, D. R. & Miller, F. D. FoxP2 regulates neurogenesis during embryonic cortical development. J. Neurosci. 33, 244–258 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Enard, W. et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872 (2002).

    Article  CAS  PubMed  Google Scholar 

  236. Konopka, G. et al. Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature 462, 213–217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Hodzic, D. et al. TBC1D3, a hominoid oncoprotein, is encoded by a cluster of paralogues located on chromosome 17q12. Genomics 88, 731–736 (2006).

    Article  CAS  PubMed  Google Scholar 

  238. Zody, M. C. et al. DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage. Nature 440, 1045–1049 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Ju, X. C. et al. The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice. eLife 5, e18197 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Liu, J. et al. The primate-specific gene TMEM14B marks outer radial glia cells and promotes cortical expansion and folding. Cell Stem Cell 21, 635–649.e8 (2017).

    Article  CAS  PubMed  Google Scholar 

  241. Florio, M. et al. Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 347, 1465–1470 (2015).

    Article  CAS  PubMed  Google Scholar 

  242. Fischer, J. et al. Human-specific ARHGAP11B ensures human-like basal progenitor levels in hominid cerebral organoids. EMBO Rep. 23, e54728 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Florio, M., Namba, T., Paabo, S., Hiller, M. & Huttner, W. B. A single splice site mutation in human-specific ARHGAP11B causes basal progenitor amplification. Sci. Adv. 2, e1601941 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Heide, M. et al. Human-specific ARHGAP11B increases size and folding of primate neocortex in the fetal marmoset. Science 369, 546–550 (2020).

    Article  CAS  PubMed  Google Scholar 

  245. Kalebic, N. et al. Human-specific ARHGAP11B induces hallmarks of neocortical expansion in developing ferret neocortex. eLife 7, e41241 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Xing, L. et al. Expression of human-specific ARHGAP11B in mice leads to neocortex expansion and increased memory flexibility. EMBO J. 40, e107093 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Namba, T. et al. Human-specific ARHGAP11B acts in mitochondria to expand neocortical progenitors by glutaminolysis. Neuron 105, 867–881.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  248. Namba, T., Nardelli, J., Gressens, P. & Huttner, W. B. Metabolic regulation of neocortical expansion in development and evolution. Neuron 109, 408–419 (2021).

    Article  CAS  PubMed  Google Scholar 

  249. Xing, L. et al. Functional synergy of a human-specific and an ape-specific metabolic regulator in human neocortex development. Nat. Commun. 15, 3468 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Van Heurck, R. et al. CROCCP2 acts as a human-specific modifier of cilia dynamics and mTOR signaling to promote expansion of cortical progenitors. Neuron 111, 65–80.e6 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Prufer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014).

    Article  PubMed  Google Scholar 

  252. Urbach, R. & Technau, G. M. Neuroblast formation and patterning during early brain development in Drosophila. Bioessays 26, 739–751 (2004).

    Article  CAS  PubMed  Google Scholar 

  253. Benito-Kwiecinski, S. et al. An early cell shape transition drives evolutionary expansion of the human forebrain. Cell 184, 2084–2102.e19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Caviness, V. S. Jr, Takahashi, T. & Nowakowski, R. S. Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci. 18, 379–383 (1995).

    Article  CAS  PubMed  Google Scholar 

  255. Rakic, P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 18, 383–388 (1995).

    Article  CAS  PubMed  Google Scholar 

  256. Emery, N. J. Cognitive ornithology: the evolution of avian intelligence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 23–43 (2006).

    Article  PubMed  Google Scholar 

  257. Olkowicz, S. et al. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl Acad. Sci. USA 113, 7255–7260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Ke, F. F. S. et al. Embryogenesis and adult life in the absence of intrinsic apoptosis effectors BAX, BAK, and BOK. Cell 173, 1217–1230.e17 (2018).

    Article  CAS  PubMed  Google Scholar 

  259. Lewitus, E., Kelava, I., Kalinka, A. T., Tomancak, P. & Huttner, W. B. An adaptive threshold in mammalian neocortical evolution. PLoS Biol. 12, e1002000 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Fernandez, V. & Borrell, V. Developmental mechanisms of gyrification. Curr. Opin. Neurobiol. 80, 102711 (2023).

    Article  CAS  PubMed  Google Scholar 

  261. Han, S. et al. Proneural genes define ground-state rules to regulate neurogenic patterning and cortical folding. Neuron 109, 2847–2863.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  262. Friedrich, R. W., Jacobson, G. A. & Zhu, P. Circuit neuroscience in zebrafish. Curr. Biol. 20, R371–R381 (2010).

    Article  CAS  PubMed  Google Scholar 

  263. Kelava, I., Lewitus, E. & Huttner, W. B. The secondary loss of gyrencephaly as an example of evolutionary phenotypical reversal. Front. Neuroanat. 7, 16 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Vanderhaeghen, P. & Polleux, F. Developmental mechanisms underlying the evolution of human cortical circuits. Nat. Rev. Neurosci. 24, 213–232 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Haynes, E. M., Ulland, T. K. & Eliceiri, K. W. A model of discovery: the role of imaging established and emerging non-mammalian models in neuroscience. Front. Mol. Neurosci. 15, 867010 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.T. thanks S. Temple, H. Wang, L. Fenlon and C. Q. Doe for advice or comments on the manuscript, and A. Kallstrand Thor for help with the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Thor.

Ethics declarations

Competing interests

S.T. has received research grants from the Australian Research Council (DP220100985, DP230101750), the Australian National Health and Medical Research Council (230101750) and The University of Queensland, Australia.

Peer review

Peer review information

Nature Reviews Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thor, S. Indirect neurogenesis in space and time. Nat. Rev. Neurosci. (2024). https://doi.org/10.1038/s41583-024-00833-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41583-024-00833-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing