Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene therapy for CNS disorders: modalities, delivery and translational challenges

Abstract

Gene therapy is emerging as a powerful tool to modulate abnormal gene expression, a hallmark of most CNS disorders. The transformative potentials of recently approved gene therapies for the treatment of spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and active cerebral adrenoleukodystrophy are encouraging further development of this approach. However, most attempts to translate gene therapy to the clinic have failed to make it to market. There is an urgent need not only to tailor the genes that are targeted to the pathology of interest but to also address delivery challenges and thereby maximize the utility of genetic tools. In this Review, we provide an overview of gene therapy modalities for CNS diseases, emphasizing the interconnectedness of different delivery strategies and routes of administration. Important gaps in understanding that could accelerate the clinical translatability of CNS genetic interventions are addressed, and we present lessons learned from failed clinical trials that may guide the future development of gene therapies for the treatment and management of CNS disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gene augmentation and gene editing strategies.
Fig. 2: Gene silencing modalities.
Fig. 3: A comparison of viral and non-viral delivery systems.
Fig. 4: Interconnectedness between gene manipulation modality, delivery vehicle and administration route.

Similar content being viewed by others

References

  1. Marks, P. & Witten, C. Toward a new framework for the development of individualized therapies. Gene Ther. 28, 615–617 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Kulkarni, J. A. et al. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 16, 630–643 (2021). This landmark review article comprehensively summarizes biological and technological advancements in four major platforms that accelerated the clinical utility of nucleic acid therapeutics.

    Article  CAS  PubMed  Google Scholar 

  3. Deverman, B. E., Ravina, B. M., Bankiewicz, K. S., Paul, S. M. & Sah, D. W. Y. Gene therapy for neurological disorders: progress and prospects. Nat. Rev. Drug. Discov. 17, 641–659 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Bulaklak, K. & Gersbach, C. A. The once and future gene therapy. Nat. Commun. 11, 5820 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nance, E., Pun, S. H., Saigal, R. & Sellers, D. L. Drug delivery to the central nervous system. Nat. Rev. Mater. 7, 314–331 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Ling, Q., Herstine, J. A., Bradbury, A. & Gray, S. J. AAV-based in vivo gene therapy for neurological disorders. Nat. Rev. Drug. Discov. 22, 789–806 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Terstappen, G. C., Meyer, A. H., Bell, R. D. & Zhang, W. Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug. Discov. 20, 362–383 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. van Haasteren, J., Li, J., Scheideler, O. J., Murthy, N. & Schaffer, D. V. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat. Biotechnol. 38, 845–855 (2020).

    Article  PubMed  Google Scholar 

  9. Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Nóbrega, C., Mendonça, L. & Matos, C. A. in A Handbook of Gene and Cell Therapy (eds Nóbrega, C., Mendonça, L. & Matos, C. A.) 117–126 (Springer International, 2020).

  11. Lunn, M. R. & Wang, C. H. Spinal muscular atrophy. Lancet 371, 2120–2133 (2008).

    Article  PubMed  Google Scholar 

  12. Mendell, J. R. et al. Five-year extension results of the phase 1 START trial of onasemnogene abeparvovec in spinal muscular atrophy. JAMA Neurol. 78, 834–841 (2021). This key paper presents the findings of a clinical trial of Zolgensma — a one-time-only gene therapy product used to treat monogenic SMA in paediatric patients.

    Article  PubMed  Google Scholar 

  13. Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Eichler, F. et al. Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N. Engl. J. Med. 377, 1630–1638 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Keam, S. J. Eladocagene exuparvovec: first approval. Drugs 82, 1427–1432 (2022).

    CAS  PubMed  Google Scholar 

  16. Rafii, M. S. et al. A phase1 study of stereotactic gene delivery of AAV2-NGF for Alzheimer’s disease. Alzheimers Dement. 10, 571–581 (2014).

    Article  PubMed  Google Scholar 

  17. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00876863 (2020).

  18. Klein, C. & Schlossmacher, M. G. The genetics of Parkinson disease: implications for neurological care. Nat. Clin. Pract. Neurol. 2, 136–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Trinh, J. & Farrer, M. Advances in the genetics of Parkinson disease. Nat. Rev. Neurol. 9, 445–454 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Bandres-Ciga, S., Diez-Fairen, M., Kim, J. J. & Singleton, A. B. Genetics of Parkinson’s disease: an introspection of its journey towards precision medicine. Neurobiol. Dis. 137, 104782 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xiao, X. et al. APP, PSEN1, and PSEN2 variants in Alzheimer’s disease: systematic re-evaluation according to ACMG guidelines. Front. Aging Neurosci. 13, 695808 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pilotto, A., Padovani, A. & Borroni, B. Clinical, biological, and imaging features of monogenic Alzheimer’s disease. BioMed. Res. Int. 2013, e689591 (2013).

    Article  Google Scholar 

  23. Bertram, L. & Tanzi, R. E. Genomic mechanisms in Alzheimer’s disease. Brain Pathol. 30, 966–977 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moore, B. et al. Developing a gene therapy for the treatment of autosomal dominant Alzheimer’s disease. Hum. Gene Ther. 34, 1049–1063 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Moore, B. D. & Schaeffer, E. Gene replacement of mutant presenilin1 normalizes γ-secretase function in models of autosomal dominant Alzheimer’s disease. Alzheimers Dement. 18, e067938 (2022).

    Article  Google Scholar 

  26. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00627588 (2013).

  27. Palfi, S. et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383, 1138–1146 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Palfi, S. et al. Long-term follow-up of a phase I/II study of prosavin, a lentiviral vector gene therapy for Parkinson’s disease. Hum. Gene Ther. Clin. Dev. 29, 148–155 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stewart, H. J. et al. Optimizing transgene configuration and protein fusions to maximize dopamine production for the gene therapy of Parkinson’s disease. Hum. Gene Ther. Clin. Dev. 27, 100–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Badin, R. A. et al. Gene therapy for Parkinson’s disease: preclinical evaluation of optimally configured TH:CH1 fusion for maximal dopamine synthesis. Mol. Ther. Methods Clin. Dev. 14, 206–216 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03720418 (2022).

  32. Bartus, R. T., Weinberg, M. S. & Samulski, R. J. Parkinson’s disease gene therapy: success by design meets failure by efficacy. Mol. Ther. 22, 487–497 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Khan, S. H. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol. Ther. Nucleic Acids 16, 326–334 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paschon, D. E. et al. Diversifying the structure of zinc finger nucleases for high-precision genome editing. Nat. Commun. 10, 1133 (2019). This study showcases a novel engineered zinc finger architecture possessing 64-fold greater degrees of configuration, enabling it to target any given base with enhanced precision and specificity.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Miller, J. C. et al. Enhancing gene editing specificity by attenuating DNA cleavage kinetics. Nat. Biotechnol. 37, 945–952 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Harmatz, P. et al. First-in-human in vivo genome editing via AAV–zinc-finger nucleases for mucopolysaccharidosis I/II and hemophilia B. Mol. Ther. 30, 3587–3600 (2022). This article highlights three in-human clinical studies that successfully and safely employed genome editing for mucopolysaccharidosis I/II and haemophilia B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04560790 (2022).

  39. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04122742 (2024).

  40. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04601051 (2023).

  41. Heidersbach, A. J., Dorighi, K. M., Gomez, J. A., Jacobi, A. M. & Haley, B. A versatile, high-efficiency platform for CRISPR-based gene activation. Nat. Commun. 14, 902 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Casas-Mollano, J. A., Zinselmeier, M. H., Erickson, S. E. & Smanski, M. J. CRISPR–Cas activators for engineering gene expression in higher eukaryotes. CRISPR J. 3, 350–364 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Colasante, G. et al. In vivo CRISPRa decreases seizures and rescues cognitive deficits in a rodent model of epilepsy. Brain 143, 891–905 (2020). This proof-of-principle study highlights the therapeutic potential of CRISPRa in reducing the incidence of spontaneous seizures in vivo.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gupta, R. M. & Musunuru, K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR–Cas9. J. Clin. Invest. 124, 4154–4161 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chauhan, V. P., Sharp, P. A. & Langer, R. Altered DNA repair pathway engagement by engineered CRISPR–Cas9 nucleases. Proc. Natl Acad. Sci. USA 120, e2300605120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xue, C. & Greene, E. C. DNA repair pathway choices in CRISPR–Cas9-mediated genome editing. Trends Genet. 37, 639–656 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang, H. et al. Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks. Int. J. Mol. Sci. 21, 6461 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ceccaldi, R., Rondinelli, B. & D’Andrea, A. D. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26, 52–64 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stinson, B. M. & Loparo, J. J. Repair of DNA double-strand breaks by the non-homologous end joining pathway. Annu. Rev. Biochem. 90, 137–164 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Davis, A. J. & Chen, D. J. DNA double strand break repair via non-homologous end-joining. Transl. Cancer Res. 2, 130 (2013).

    CAS  PubMed  Google Scholar 

  52. Liang, F., Han, M., Romanienko, P. J. & Jasin, M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc. Natl Acad. Sci. USA 95, 5172–5177 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, H. & Xu, X. Microhomology-mediated end joining: new players join the team. Cell Biosci. 7, 6 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bhargava, R., Onyango, D. O. & Stark, J. M. Regulation of single strand annealing and its role in genome maintenance. Trends Genet. 32, 566–575 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ali, A., Xiao, W., Babar, M. E. & Bi, Y. Double-stranded break repair in mammalian cells and precise genome editing. Genes 13, 737 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang, J. & Cook, D. E. The contribution of DNA repair pathways to genome editing and evolution in filamentous pathogens. FEMS Microbiol. Rev. 46, fuac035 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schimmel, J. et al. Modulating mutational outcomes and improving precise gene editing at CRISPR–Cas9-induced breaks by chemical inhibition of end-joining pathways. Cell Rep. 42, 112019 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Liu, M. et al. Global detection of DNA repair outcomes induced by CRISPR–Cas9. Nucleic Acids Res. 49, 8732–8742 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sun, W. et al. Strategies for enhancing the homology-directed repair efficiency of CRISPR–Cas systems. CRISPR J. 5, 7–18 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Finney, M., Romanowski, J. & Adelman, Z. N. Strategies to improve homology-based repair outcomes following CRISPR-based gene editing in mosquitoes: lessons in how to keep any repair disruptions local. Virol. J. 19, 128 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chu, V. T. et al. Increasing the efficiency of homology-directed repair for CRISPR–Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33, 543–548 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Devkota, S. The road less traveled: strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Cas-mediated transgenesis. BMB Rep. 51, 437–443 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ray, U. & Raghavan, S. C. Modulation of DNA double-strand break repair as a strategy to improve precise genome editing. Oncogene 39, 6393–6405 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Naeem, M., Majeed, S., Hoque, M. Z. & Ahmad, I. Latest developed strategies to minimize the off-target effects in CRISPR–Cas-mediated genome editing. Cells 9, 1608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao, Z., Shang, P., Mohanraju, P. & Geijsen, N. Prime editing: advances and therapeutic applications. Trends Biotechnol. 41, 1000–1012 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. Huang, Z. & Liu, G. Current advancement in the application of prime editing. Front. Bioeng. Biotechnol. 11, 1039315 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Keogh, M. J. & Chinnery, P. F. Mitochondrial DNA mutations in neurodegeneration. Biochim. Biophys. Acta Bioenerg. 1847, 1401–1411 (2015).

    Article  CAS  Google Scholar 

  68. Kar, B., Castillo, S. R., Sabharwal, A., Clark, K. J. & Ekker, S. C. Mitochondrial base editing: recent advances towards therapeutic opportunities. Int. J. Mol. Sci. 24, 5798 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lim, K. Mitochondrial genome editing: strategies, challenges, and applications. BMB Rep. 57, 19–29 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lim, C. K. W. et al. Treatment of a mouse model of ALS by in vivo base editing. Mol. Ther. 28, 1177–1189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Arbab, M. et al. Base editing rescue of spinal muscular atrophy in cells and in mice. Science 380, eadg6518 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brown, K. M. et al. Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates. Nat. Biotechnol. 40, 1500–1508 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05231785 (2024).

  74. Alnylam Pharmaceuticals, Inc. Alnylam and regeneron report positive interim phase 1 clinical data on ALN-APP, an investigational RNAi therapeutic for Alzheimer’s disease and cerebral amyloid angiopathy. https://investors.alnylam.com/press-release?id=27441 (2023).

  75. Singer, O. et al. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat. Neurosci. 8, 1343–1349 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Manczak, M. & Reddy, P. H. RNA silencing of genes involved in Alzheimer’s disease enhances mitochondrial function and synaptic activity. Biochim. Biophys. Acta Mol. Basis Dis. 1832, 2368–2378 (2013).

    Article  CAS  Google Scholar 

  77. Liu, Y. et al. Investigation of the performance of PEG–PEI/ROCK-II-siRNA complexes for Alzheimer’s disease in vitro. Brain Res. 1490, 43–51 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Kandimalla, R. J., Wani, W. Y., BK, B. & Gill, K. D. siRNA against presenilin 1 (PS1) down regulates amyloid β42 production in IMR-32 cells. J. Biomed. Sci. 19, 2 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huttunen, H. J., Greco, C. & Kovacs, D. M. Knockdown of ACAT-1 reduces amyloidogenic processing of APP. FEBS Lett. 581, 1688–1692 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Acharya, R., Chakraborty, M. & Chakraborty, J. Prospective treatment of Parkinson’s disease by a siRNA–LDH nanoconjugate. Med. Chem. Commun. 10, 227–233 (2019).

    Article  CAS  Google Scholar 

  81. Lovett-Racke, A. E. et al. Silencing T-bet defines a critical role in the differentiation of autoreactive T lymphocytes. Immunity 21, 719–731 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Fan, H. et al. Effect of Notch1 gene on remyelination in multiple sclerosis in mouse models of acute demyelination. J. Cell. Biochem. 119, 9284–9294 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Youssef, A. E. H., Dief, A. E., El Azhary, N. M., Abdelmonsif, D. A. & El-fetiany, O. S. LINGO-1 siRNA nanoparticles promote central remyelination in ethidium bromide-induced demyelination in rats. J. Physiol. Biochem. 75, 89–99 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Ding, Y. et al. Nischarin-siRNA delivered by polyethylenimine–alginate nanoparticles accelerates motor function recovery after spinal cord injury. Neural Regen. Res. 12, 1687 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Qu, Y., Zhao, J., Wang, Y. & Gao, Z. Silencing ephrinB3 improves functional recovery following spinal cord injury. Mol. Med. Rep. 9, 1761–1766 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Toyooka, T., Nawashiro, H., Shinomiya, N. & Shima, K. Down-regulation of glial fibrillary acidic protein and vimentin by RNA interference improves acute urinary dysfunction associated with spinal cord injury in rats. J. Neurotrauma 28, 607–618 (2011).

    Article  PubMed  Google Scholar 

  87. Karnati, H. K., Panigrahi, M. K., Gutti, R. K., Greig, N. H. & Tamargo, I. A. miRNAs: key players in neurodegenerative disorders and epilepsy. J. Alzheimers Dis. 48, 563–580 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Borel, F. et al. Therapeutic rAAVrh10 mediated SOD1 silencing in adult SOD1G93A mice and nonhuman primates. Hum. Gene Ther. 27, 19–31 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Mueller, C. et al. SOD1 suppression with adeno-associated virus and microRNA in familial ALS. N. Engl. J. Med. 383, 151–158 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04120493 (2024).

  91. Stimming, E. et al. Interim results from cohort 1 of the double-blind, dose-escalation phase I/II clinical trial of AMT-130 (HD-Genetrx-1) for early-stage Hungtington’s disease (HD). J. Neurol. Neurosurg. Psychiatry 93, A95 (2022).

    Google Scholar 

  92. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06063850 (2023).

  93. Tang, Z., Zhao, J., Pearson, Z. J., Boskovic, Z. V. & Wang, J. RNA-targeting splicing modifiers: drug development and screening assays. Molecules 26, 2263 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Biogen Canada Inc. Clinical Review Report: Nusinersen (Spinraza): Indication: Treatment of patients with 5q SMA (Canadian Agency for Drugs and Technologies in Health, 2018).

  95. Kim, J. et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 381, 1644–1652 (2019). This landmark clinical trial led to the development of a personalized ASO therapy for Batten’s disease within a span of 1 year.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04856982 (2024).

  97. Bennett, C. F., Kordasiewicz, H. & Cleveland, D. W. Antisense drugs make sense for neurological diseases. Annu. Rev. Pharmacol. Toxicol. 61, 831–852 (2021). This comprehensive review article summarizes the pharmacological properties and advancements of ASO therapies for CNS diseases.

    Article  CAS  PubMed  Google Scholar 

  98. Wurster, C. D. & Ludolph, A. C. Antisense oligonucleotides in neurological disorders. Ther. Adv. Neurol. Disord. 11, 1756286418776932 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bennett, C. F., Krainer, A. R. & Cleveland, D. W. Antisense oligonucleotide therapies for neurodegenerative diseases. Annu. Rev. Neurosci. 42, 385–406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Amanat, M., Nemeth, C. L., Fine, A. S., Leung, D. G. & Fatemi, A. Antisense oligonucleotide therapy for the nervous system: from bench to bedside with emphasis on pediatric neurology. Pharmaceutics 14, 2389 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Boros, B. D., Schoch, K. M., Kreple, C. J. & Miller, T. M. Antisense oligonucleotides for the study and treatment of ALS. Neurotherapeutics 19, 1145–1158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03761849 (2024).

  103. McColgan, P. et al. Tominersen in adults with manifest Huntington’s disease. N. Engl. J. Med. 389, 2203–2205 (2023).

    Article  PubMed  Google Scholar 

  104. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03225846 (2022).

  105. Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8, 2180–2196 (2013). This detailed protocol elucidates the steps involved in the design and expression of customized guide RNAs for precise CRISPRi-mediated transcriptional silencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kampmann, M. CRISPR-based functional genomics for neurological disease. Nat. Rev. Neurol. 16, 465–480 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Duke, C. G. et al. An improved CRISPR/dCas9 interference tool for neuronal gene suppression. Front. Genome Ed. 2, 9 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Seo, J. H. et al. DNA double-strand break-free CRISPR interference delays Huntington’s disease progression in mice. Commun. Biol. 6, 1–12 (2023).

    Article  Google Scholar 

  109. Powell, J. E. et al. Targeted gene silencing in the nervous system with CRISPR–Cas13. Sci. Adv. 8, eabk2485 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zeballos C, M. A. et al. Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins. Nat. Commun. 14, 6492 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Morelli, K. H. et al. An RNA-targeting CRISPR–Cas13d system alleviates disease-related phenotypes in Huntington’s disease models. Nat. Neurosci. 26, 27–38 (2023). This proof-of-principle study shows selective and allele-sensitive CRISPR–Cas13d-mediated-targeting of mutant HTT, while retaining expression levels of normal HTT.

    Article  CAS  PubMed  Google Scholar 

  112. Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yen, L., Strittmatter, S. M. & Kalb, R. G. Sequence-specific cleavage of Huntingtin mRNA by catalytic DNA. Ann. Neurol. 46, 366–373 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Nawrot, B. et al. Efficient inhibition of β-secretase gene expression in HEK293 cells by tRNAVal-driven and CTE-helicase associated hammerhead ribozymes. Eur. J. Biochem. 270, 3962–3970 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Hayashita-Kinoh, H., Yamada, M., Yokota, T., Mizuno, Y. & Mochizuki, H. Down-regulation of α-synuclein expression can rescue dopaminergic cells from cell death in the substantia nigra of Parkinson’s disease rat model. Biochem. Biophys. Res. Commun. 341, 1088–1095 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Wanjek, C. Gene therapy turns 30 years old. The NIH Catalyst. https://irp.nih.gov/catalyst/27/3/gene-therapy-turns-30-years-old (2019).

  117. Biffi, A. et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341, 1233158 (2013).

    Article  PubMed  Google Scholar 

  118. White, M., Whittaker, R., Gándara, C. & Stoll, E. A. A guide to approaching regulatory considerations for lentiviral-mediated gene therapies. Hum. Gene Ther. Methods 28, 163–176 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kingwell, K. Lentiviral vector gene therapies come of age with two FDA approvals. Nat. Rev. Drug. Discov. 21, 790–791 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Gowing, G., Svendsen, S. & Svendsen, C. N. in Progress in Brain Research Vol 230 (eds Dunnett, S. B. & Björklund, A.) 99–132 (Elsevier, 2017).

  121. Davidson, B. L. & Breakefield, X. O. Viral vectors for gene delivery to the nervous system. Nat. Rev. Neurosci. 4, 353–364 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Zheng, C.-X. et al. Lentiviral vectors and adeno-associated virus vectors: useful tools for gene transfer in pain research. Anat. Rec. 301, 825–836 (2018).

    Article  Google Scholar 

  123. Duque, S. et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol. Ther. 17, 1187–1196 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Foust, K. D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Hoshino, Y. et al. The adeno-associated virus rh10 vector is an effective gene transfer system for chronic spinal cord injury. Sci. Rep. 9, 9844 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Yang, B. et al. Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. Mol. Ther. 22, 1299–1309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Watanabe, S. et al. Tropisms of AAV for subretinal delivery to the neonatal mouse retina and its application for in vivo rescue of developmental photoreceptor disorders. PLoS ONE 8, e54146 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Palfi, A. et al. Efficacy of codelivery of dual AAV2/5 vectors in the murine retina and hippocampus. Hum. Gene Ther. 23, 847–858 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Issa, S. S., Shaimardanova, A. A., Solovyeva, V. V. & Rizvanov, A. A. Various AAV serotypes and their applications in gene therapy: an overview. Cells 12, 785 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Haery, L. et al. Adeno-associated virus technologies and methods for targeted neuronal manipulation. Front. Neuroanat. 13, 93 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016). This landmark study demonstrates the capacity of purposeful engineering and rational development to build a capsid selection platform for the creation of novel, brain-targeted AAV gene transfer systems.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yao, Y. et al. Variants of the adeno-associated virus serotype 9 with enhanced penetration of the blood–brain barrier in rodents and primates. Nat. Biomed. Eng. 6, 1257–1271 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Sangster, M. et al. A blood–brain-barrier penetrant AAV gene therapy rescues neurological deficits in mucolipidosis IV mice. Mol. Ther. Methods Clin. Dev. 23, 01269 (2024).

    Google Scholar 

  134. Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chuapoco, M. R. et al. Adeno-associated viral vectors for functional intravenous gene transfer throughout the non-human primate brain. Nat. Nanotechnol. 18, 1241–1251 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Goertsen, D. et al. AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat. Neurosci. 25, 106–115 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Campos, L. J. et al. Advances in AAV technology for delivering genetically encoded cargo to the nonhuman primate nervous system. Curr. Res. Neurobiol. 4, 100086 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ramirez, S. H. et al. An engineered adeno-associated virus capsid mediates efficient transduction of pericytes and smooth muscle cells of the brain vasculature. Hum. Gene Ther. 34, 682–696 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Chen, X. et al. Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates. Nat. Commun. 14, 3345 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Krolak, T. et al. A high-efficiency AAV for endothelial cell transduction throughout the central nervous system. Nat. Cardiovasc. Res. 1, 389–400 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Griffin, J. M. et al. Astrocyte-selective AAV-ADAMTS4 gene therapy combined with hindlimb rehabilitation promotes functional recovery after spinal cord injury. Exp. Neurol. 327, 113232 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Heidenreich, M. & Zhang, F. Applications of CRISPR–Cas systems in neuroscience. Nat. Rev. Neurosci. 17, 36–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Abbasi, S. et al. Co-encapsulation of Cas9 mRNA and guide RNA in polyplex micelles enables genome editing in mouse brain. J. Control. Rel. 332, 260–268 (2021).

    Article  CAS  Google Scholar 

  144. Hu, Z. et al. A compact Cas9 ortholog from Staphylococcus auricularis (SauriCas9) expands the DNA targeting scope. PLOS Biol. 18, e3000686 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kim, E. et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8, 14500 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wei, J. et al. Closely related type II-C Cas9 orthologs recognize diverse PAMs. eLife 11, e77825 (2024).

    Article  Google Scholar 

  147. Gao, S. et al. Genome editing with natural and engineered CjCas9 orthologs. Mol. Ther. 31, 1177–1187 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gasiunas, G. et al. A catalogue of biochemically diverse CRISPR–Cas9 orthologs. Nat. Commun. 11, 5512 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Riedmayr, L. M. et al. mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy. Nat. Commun. 14, 6578 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fine, E. J. et al. Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes. Sci. Rep. 5, 10777 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Bak, R. O. & Porteus, M. H. CRISPR-mediated integration of large gene cassettes using AAV donor vectors. Cell Rep. 20, 750–756 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cota-Coronado, A., Díaz-Martínez, N. F., Padilla-Camberos, E. & Díaz-Martínez, N. E. Editing the central nervous system through CRISPR/Cas9 systems. Front. Mol. Neurosci. 12, 110 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Jiménez, C. & Crosetto, N. Discovering CRISPR–Cas off-target breaks. Nat. Methods 20, 641–642 (2023).

    Article  PubMed  Google Scholar 

  154. Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Sig Transduct. Target. Ther. 6, 1–24 (2021).

    Article  Google Scholar 

  155. Abdelrahman, M., Wei, Z., Rohila, J. S. & Zhao, K. Multiplex genome-editing technologies for revolutionizing plant biology and crop improvement. Front. Plant. Sci. 12, 721203 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  156. McCarty, N. S., Graham, A. E., Studená, L. & Ledesma-Amaro, R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat. Commun. 11, 1281 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bellou, E., Stevenson-Hoare, J. & Escott-Price, V. Polygenic risk and pleiotropy in neurodegenerative diseases. Neurobiol. Dis. 142, 104953 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Qi, M. et al. Identifying common genes, cell types and brain regions between diseases of the nervous system. Front. Genet. 10, 1202 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hanlon, K. S. et al. High levels of AAV vector integration into CRISPR-induced DNA breaks. Nat. Commun. 10, 4439 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Choudhury, S. R. et al. Widespread central nervous system gene transfer and silencing after systemic delivery of novel AAV-AS vector. Mol. Ther. 24, 726–735 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bravo-Hernandez, M. et al. Spinal subpial delivery of AAV9 enables widespread gene silencing and blocks motoneuron degeneration in ALS. Nat. Med. 26, 118–130 (2020).

    Article  CAS  PubMed  Google Scholar 

  162. Duan, D. Lethal immunotoxicity in high-dose systemic AAV therapy. Mol. Ther. 31, 3123–3126 (2023).

    Article  CAS  PubMed  Google Scholar 

  163. Hinderer, C. et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum. Gene Ther. 29, 285–298 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lek, A. et al. Death after high-dose rAAV9 gene therapy in a patient with Duchenne’s muscular dystrophy. N. Engl. J. Med. 389, 1203–1210 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Philippidis, A. Novartis confirms deaths of two patients treated with gene therapy Zolgensma. Hum. Gene Ther. 33, 842–844 (2022). This work presents brief coverage of the toxicity concerns associated with AAV vectors and implications for future clinical trial designs.

    Article  CAS  PubMed  Google Scholar 

  166. Jagadisan, B. & Dhawan, A. Hepatotoxicity in adeno-associated viral vector gene therapy. Curr. Hepatol. Rep. 22, 276–290 (2023).

    Article  Google Scholar 

  167. Ertl, H. C. J. Immunogenicity and toxicity of AAV gene therapy. Front. Immunol. 13, 975803 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kishimoto, T. K. & Samulski, R. J. Addressing high dose AAV toxicity—‘one and done’ or ‘slower and lower’? Expert. Opin. Biol. Ther. 22, 1067–1071 (2022).

    Article  PubMed  Google Scholar 

  169. Davé, U. P. & Cornetta, K. AAV joins the rank of genotoxic vectors. Mol. Ther. 29, 418–419 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Kohn, D. B., Chen, Y. Y. & Spencer, M. J. Successes and challenges in clinical gene therapy. Gene Ther. 30, 738–746 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Srivastava, A., Mallela, K. M. G., Deorkar, N. & Brophy, G. Manufacturing challenges and rational formulation development for AAV viral vectors. JPharmSci 110, 2609–2624 (2021).

    CAS  Google Scholar 

  172. Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug. Discov. 18, 358–378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Butt, M. H. et al. Appraisal for the potential of viral and nonviral vectors in gene therapy: a review. Genes 13, 1370 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ohta, S. et al. Investigating the optimum size of nanoparticles for their delivery into the brain assisted by focused ultrasound-induced blood–brain barrier opening. Sci. Rep. 10, 18220 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Niu, X., Chen, J. & Gao, J. Nanocarriers as a powerful vehicle to overcome blood–brain barrier in treating neurodegenerative diseases: focus on recent advances. Asian J. Pharm. Sci. 14, 480–496 (2019).

    Article  PubMed  Google Scholar 

  176. Li, W. et al. BBB pathophysiology-independent delivery of siRNA in traumatic brain injury. Sci. Adv. 7, eabd6889 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Asil, S. M., Ahlawat, J., Barroso, G. G. & Narayan, M. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater. Sci. 8, 4109–4128 (2020).

    Article  PubMed Central  Google Scholar 

  178. Saeedi, M., Eslamifar, M., Khezri, K. & Dizaj, S. M. Applications of nanotechnology in drug delivery to the central nervous system. Biomed. Pharmacother. 111, 666–675 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Sizikov, A. A., Nikitin, P. I. & Nikitin, M. P. Magnetofection in vivo by nanomagnetic carriers systemically administered into the bloodstream. Pharmaceutics 13, 1927 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lin, C.-Y. et al. Focused ultrasound-induced blood–brain-barrier opening enhanced vascular permeability for GDNF delivery in Huntington’s disease mouse model. Brain Stimul. 12, 1143–1150 (2019).

    Article  PubMed  Google Scholar 

  181. Singh, J., Mohanty, I., Sobti, R. C. & Rattan, S. in Biomedical Translational Research: Drug Design and Discovery (eds Sobti, R. C. & Dhalla, N. S.) 303–314 (Springer Nature, 2022).

  182. Prosen, L. et al. Magnetofection: a reproducible method for gene delivery to melanoma cells. Biomed. Res. Int. 2013, 209452 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Mathew, A. S., Gorick, C. M. & Price, R. J. Single-cell mapping of focused ultrasound-transfected brain. Gene Ther. 30, 255–263 (2023).

    Article  CAS  PubMed  Google Scholar 

  184. Bretsztajn, L. & Gedroyc, W. Brain-focussed ultrasound: what’s the “FUS” all about? A review of current and emerging neurological applications. BJR 91, 20170481 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Fishman, P. S. & Frenkel, V. Focused ultrasound: an emerging therapeutic modality for neurologic disease. Neurotherapeutics 14, 393–404 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Lin, C.-Y. et al. Focused ultrasound-induced blood–brain barrier opening for non-viral, non-invasive, and targeted gene delivery. J. Control. Rel. 212, 1–9 (2015).

    Article  CAS  Google Scholar 

  187. Liu, X., Naomi, S. S. M., Sharon, W. L. & Russell, E. J. The applications of focused ultrasound (FUS) in Alzheimer’s disease treatment: a systematic review on both animal and human studies. Aging Dis. 12, 1977–2002 (2022).

    Article  Google Scholar 

  188. Lin, C.-Y. et al. Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood–brain barrier opening in Parkinson’s disease mouse model. J. Control. Rel. 235, 72–81 (2016).

    Article  CAS  Google Scholar 

  189. Mead, B. P. et al. Novel focused ultrasound gene therapy approach noninvasively restores dopaminergic neuron function in a rat Parkinson’s disease model. Nano Lett. 17, 3533–3542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Fan, C.-H. et al. Noninvasive, targeted and non-viral ultrasound-mediated GDNF-plasmid delivery for treatment of Parkinson’s disease. Sci. Rep. 6, 19579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Gallego, I. et al. Brain angiogenesis induced by nonviral gene therapy with potential therapeutic benefits for central nervous system diseases. Mol. Pharm. 17, 1848–1858 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. Stahl, E. C. et al. Genome editing in the mouse brain with minimally immunogenic Cas9 RNPs. Mol. Ther. 31, 2422–2438 (2023).

    Article  CAS  PubMed  Google Scholar 

  193. Shalaby, K. E., Aouida, M., Gupta, V., Abdesselem, H. & El-Agnaf, O. M. A. Development of non-viral vectors for neuronal-targeted delivery of CRISPR–Cas9 RNA-proteins as a therapeutic strategy for neurological disorders. Biomater. Sci. 10, 4959–4977 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Zu, H. & Gao, D. Non-viral vectors in gene therapy: recent development, challenges, and prospects. AAPS J. 23, 78 (2021). This review article provides an in-depth summary of the challenges and promises offered by nanomaterial systems in delivering genetic payloads.

    Article  PubMed  Google Scholar 

  195. Ramamoorth, M. & Narvekar, A. Non viral vectors in gene therapy—an overview. J. Clin. Diagn. Res. 9, GE01–GE06 (2015).

    PubMed  PubMed Central  Google Scholar 

  196. Johnsen, K. B. & Moos, T. Revisiting nanoparticle technology for blood–brain barrier transport: unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes. J. Control. Rel. 222, 32–46 (2016).

    Article  CAS  Google Scholar 

  197. Kwon, E. J., Skalak, M., Lo Bu, R. & Bhatia, S. N. Neuron-targeted nanoparticle for siRNA delivery to traumatic brain injuries. ACS Nano 10, 7926–7933 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Paunovska, K. et al. Analyzing 2000 in vivo drug delivery data points reveals cholesterol structure impacts nanoparticle delivery. ACS Nano 12, 8341–8349 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Rhym, L. H., Manan, R. S., Koller, A., Stephanie, G. & Anderson, D. G. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat. Biomed. Eng. 7, 901–910 (2023).

    Article  CAS  PubMed  Google Scholar 

  200. Puhl, D. L., D’Amato, A. R. & Gilbert, R. J. Challenges of gene delivery to the central nervous system and the growing use of biomaterial vectors. Brain Res. Bull. 150, 216–230 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zhao, Z., Anselmo, A. C. & Mitragotri, S. Viral vector-based gene therapies in the clinic. Bioeng. Transl. Med. 7, e10258 (2022).

    Article  PubMed  Google Scholar 

  202. Kontogiannis, O. & Karalis, V. On the in vivo kinetics of gene delivery vectors. Preprint at MedRxiv https://doi.org/10.1101/2022.02.11.22269834 (2022).

  203. Brandon, E. F. A., Hermsen, H. P. H., Eijkeren, J. C. Hvan & Tiesjema, B. Effect of administration route on the biodistribution and shedding of replication-deficient AAV2: a qualitative modelling approach. Curr. Gene Ther. 10, 91–106 (2010).

    Article  CAS  PubMed  Google Scholar 

  204. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Grames, M. S., Jackson, K. L., Dayton, R. D., Stanford, J. A. & Klein, R. L. Methods and tips for intravenous administration of adeno-associated virus to rats and evaluation of central nervous system transduction. J. Vis. Exp. https://doi.org/10.3791/55994 (2017)

  206. Marchi, P. M., Marrone, L. & Azzouz, M. Delivery of therapeutic AAV9 vectors via cisterna magna to treat neurological disorders. Trends Mol. Med. 28, 79–80 (2022).

    Article  CAS  PubMed  Google Scholar 

  207. Song, K.-H., Harvey, B. K. & Borden, M. A. State-of-the-art of microbubble-assisted blood–brain barrier disruption. Theranostics 8, 4393–4408 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Guo, Y. et al. Single-cell analysis reveals effective siRNA delivery in brain tumors with microbubble-enhanced ultrasound and cationic nanoparticles. Sci. Adv. 7, eabf7390 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06064890 (2024).

  210. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05243017 (2024).

  211. Mehta, A. M., Sonabend, A. M. & Bruce, J. N. Convection-enhanced delivery. Neurotherapeutics 14, 358–371 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Sisodia, V. et al. Bidirectional interplay between deep brain stimulation and cognition in Parkinson’s disease: a systematic review. Mov. Disord. 39, 910–915 (2024).

    Article  PubMed  Google Scholar 

  213. Nau, R., Sörgel, F. & Eiffert, H. Penetration of drugs through the blood–cerebrospinal fluid/blood–brain barrier for treatment of central nervous system infections. Clin. Microbiol. Rev. 23, 858–883 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Pardridge, W. M. Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS 8, 7 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Naseri Kouzehgarani, G. et al. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv. Drug. Deliv. Rev. 173, 20–59 (2021).

    Article  CAS  PubMed  Google Scholar 

  216. Soderquist, R. G. & Mahoney, M. J. Central nervous system delivery of large molecules: challenges and new frontiers for intrathecally administered therapeutics. Expert. Opin. Drug. Deliv. 7, 285–293 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Hanson, L. R. & Frey, W. H. Intranasal delivery bypasses the blood–brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 9, S5 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Crowe, T. P., Greenlee, M. H. W., Kanthasamy, A. G. & Hsu, W. H. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 195, 44–52 (2018).

    Article  CAS  PubMed  Google Scholar 

  219. Malhotra, M., Tomaro-Duchesneau, C., Saha, S. & Prakash, S. Intranasal, siRNA delivery to the brain by TAT/MGF tagged PEGylated chitosan nanoparticles. J. Pharm. 2013, e812387 (2013).

    Google Scholar 

  220. Fortuna, A., Schindowski, K. & Sonvico, F. Editorial: Intranasal drug delivery: challenges and opportunities. Front. Pharmacol. 13, 868986 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Ingber, D. E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 23, 467–491 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article  CAS  PubMed  Google Scholar 

  223. Dawson, T. M., Golde, T. E. & Lagier-Tourenne, C. Animal models of neurodegenerative diseases. Nat. Neurosci. 21, 1370–1379 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Singh, M., Brooks, A., Toofan, P. & McLuckie, K. Selection of appropriate non-clinical animal models to ensure translatability of novel AAV-gene therapies to the clinic. Gene Ther. 31, 56–63 (2023).

    Article  PubMed  Google Scholar 

  225. Young, J. E., Wu, M. & Hunsberger, H. C. Editorial: sex and gender differences in neurodegenerative diseases. Front. Neurosci. 17, 1175674 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Piscopo, P. et al. A sex perspective in neurodegenerative diseases: microRNAs as possible peripheral biomarkers. Int. J. Mol. Sci. 22, 4423 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ionis Pharmaceuticals, Inc. Ionis’ partner to evaluate tominersen for Huntington’s disease in new phase 2 trial. https://ir.ionispharma.com/news-releases/news-release-details/ionis-partner-evaluate-tominersen-huntingtons-disease-new-phase (2022).

  228. Wu, J., Tang, B. & Tang, Y. Allele-specific genome targeting in the development of precision medicine. Theranostics 10, 3118–3137 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Rabinowitz, R., Almog, S., Darnell, R. & Offen, D. CrisPam: SNP-derived PAM analysis tool for allele-specific targeting of genetic variants using CRISPR–Cas systems. Front. Genet. 11, 851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Christie, K. A. et al. Towards personalised allele-specific CRISPR gene editing to treat autosomal dominant disorders. Sci. Rep. 7, 16174 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Yoshimi, K., Kaneko, T., Voigt, B. & Mashimo, T. Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR–Cas platform. Nat. Commun. 5, 4240 (2014).

    Article  CAS  PubMed  Google Scholar 

  232. Giorgio, E. et al. Allele-specific silencing as treatment for gene duplication disorders: proof-of-principle in autosomal dominant leukodystrophy. Brain 142, 1905–1920 (2019).

    Article  PubMed  Google Scholar 

  233. Nishimura, A. L. et al. Allele-specific knockdown of ALS-associated mutant TDP-43 in neural stem cells derived from induced pluripotent stem cells. PLoS ONE 9, e91269 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Monteys, A. M., Ebanks, S. A., Keiser, M. S. & Davidson, B. L. CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol. Ther. 25, 12–23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Shin, J. W. et al. Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum. Mol. Genet. 25, 4566–4576 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Perez-Sanchez, J. et al. A humanized chemogenetic system inhibits murine pain-related behavior and hyperactivity in human sensory neurons. Sci. Transl. Med. 15, eadh3839 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Pickering, C. A. & Mazarakis, N. D. Viral vector delivery of DREADDs for CNS therapy. Curr. Gene Ther. 21, 191–206 (2021).

    Article  CAS  PubMed  Google Scholar 

  238. Mueller, J.-S., Tescarollo, F. C. & Sun, H. DREADDs in epilepsy research: network-based review. Front. Mol. Neurosci. 15, 863003 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Song, J., Patel, R. V., Sharif, M., Ashokan, A. & Michaelides, M. Chemogenetics as a neuromodulatory approach to treating neuropsychiatric diseases and disorders. Mol. Ther. 30, 990–1005 (2022).

    Article  CAS  PubMed  Google Scholar 

  240. Ingusci, S., Verlengia, G., Soukupova, M., Zucchini, S. & Simonato, M. Gene therapy tools for brain diseases. Front. Pharmacol. 10, 724 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Sternson, S. M. & Bleakman, D. Chemogenetics: drug-controlled gene therapies for neural circuit disorders. Cell Gene Ther. Insights 6, 1079–1094 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Paschon, V. et al. CRISPR, prime editing, optogenetics, and DREADDs: new therapeutic approaches provided by emerging technologies in the treatment of spinal cord injury. Mol. Neurobiol. 57, 2085–2100 (2020).

    Article  CAS  PubMed  Google Scholar 

  243. Xiao, M., Xiao, Z. J., Yang, B., Lan, Z. & Fang, F. Blood–brain barrier: more contributor to disruption of central nervous system homeostasis than victim in neurological disorders. Front. Neurosci. 14, 764 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Huntley, M. A., Bien-Ly, N., Daneman, R. & Watts, R. J. Dissecting gene expression at the blood–brain barrier. Front. Neurosci. 8, 355 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Sweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R. & Zlokovic, B. V. Blood–brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21–78 (2019).

    Article  CAS  PubMed  Google Scholar 

  246. Munji, R. N. et al. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood–brain barrier dysfunction module. Nat. Neurosci. 22, 1892–1902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Pulido, R. S. et al. Neuronal activity regulates blood–brain barrier efflux transport through endothelial circadian genes. Neuron 108, 937–952.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Picher-Martel, V., Valdmanis, P. N., Gould, P. V., Julien, J.-P. & Dupré, N. From animal models to human disease: a genetic approach for personalized medicine in ALS. Acta Neuropathol. Commun. 4, 70 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Lee, C. S. et al. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes. Dis. 4, 43–63 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Melin, E. et al. Combinatorial gene therapy for epilepsy: gene sequence positioning and AAV serotype influence expression and inhibitory effect on seizures. Gene Ther. 30, 649–658 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Yuan, J. et al. First-in-human prospective trial of sonobiopsy in high-grade glioma patients using neuronavigation-guided focused ultrasound. npj Precis. Onc. 7, 1–11 (2023).

    Article  CAS  Google Scholar 

  252. Roberts, J. W., Powlovich, L., Sheybani, N. & LeBlang, S. Focused ultrasound for the treatment of glioblastoma. J. Neurooncol. 157, 237–247 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Chen, K.-T. et al. Neuronavigation-guided focused ultrasound for transcranial blood–brain barrier opening and immunostimulation in brain tumors. Sci. Adv. 7, eabd0772 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. McMahon, M. A. & Cleveland, D. W. Gene-editing therapy for neurological disease. Nat. Rev. Neurol. 13, 7–9 (2017).

    Article  CAS  PubMed  Google Scholar 

  255. Sinha, S., Villarreal, D., Shim, E. Y. & Lee, S. E. Risky business: microhomology-mediated end joining. Mutat. Res. 788, 17–24 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Kim, D. H. & Rossi, J. J. Strategies for silencing human disease using RNA interference. Nat. Rev. Genet. 8, 173–184 (2007).

    Article  CAS  PubMed  Google Scholar 

  257. Wittrup, A. & Lieberman, J. Knocking down disease: a progress report on siRNA therapeutics. Nat. Rev. Genet. 16, 543–552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Kim, V. N. RNA-targeting CRISPR comes of age. Nat. Biotechnol. 36, 44–45 (2018).

    Article  CAS  PubMed  Google Scholar 

  260. Zhou, Y. & Zhou, C. Designing in vivo active DNAzymes. Nat. Chem. 13, 299–301 (2021).

    Article  CAS  PubMed  Google Scholar 

  261. Challis, R. C. et al. Adeno-associated virus toolkit to target diverse brain cells. Annu. Rev. Neurosci. 45, 447–469 (2022).

    Article  CAS  PubMed  Google Scholar 

  262. Klug, A. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Q. Rev. Biophys. 43, 1–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  263. Chou, S.-T., Leng, Q. & Mixson, A. J. Zinc finger nucleases: tailor-made for gene therapy. Drugs Future 37, 183–196 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Carroll, D. Genome engineering with zinc-finger nucleases. Genetics 188, 773–782 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Kim, Y. G. & Chandrasegaran, S. Chimeric restriction endonuclease. Proc. Natl Acad. Sci. USA 91, 883–887 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Davis, D. & Stokoe, D. Zinc finger nucleases as tools to understand and treat human diseases. BMC Med. 8, 42 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Maeder, M. L. & Gersbach, C. A. Genome-editing technologies for gene and cell therapy. Mol. Ther. 24, 430–446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Garriga-Canut, M. et al. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc. Natl Acad. Sci. USA 109, E3136–E3145 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Zahur, M., Tolö, J., Bähr, M. & Kügler, S. Long-term assessment of AAV-mediated zinc finger nuclease expression in the mouse brain. Front. Mol. Neurosci. 10, 142 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Strang, K. H., Golde, T. E. & Giasson, B. I. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab. Invest. 99, 912–928 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Wegmann, S. et al. Persistent repression of tau in the brain using engineered zinc finger protein transcription factors. Sci. Adv. 7, eabe1611 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Zhang, X. et al. An over expression APP model for anti-Alzheimer disease drug screening created by zinc finger nuclease technology. PLoS ONE 8, e75493 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Dansithong, W., Paul, S., Scoles, D. R., Pulst, S. M. & Huynh, D. P. Generation of SNCA cell models using zinc finger nuclease (ZFN) technology for efficient high-throughput drug screening. PLoS ONE 10, e0136930 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Swarthout, J. T., Raisinghani, M. & Cui, X. Zinc finger nucleases: a new era for transgenic animals. Ann. Neurosci. 18, 25–28 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Khalil, A. M. The genome editing revolution: review. J. Genet. Eng. Biotechnol. 18, 68 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Gaj, T., Sirk, S. J., Shui, S. & Liu, J. Genome-editing technologies: principles and applications. Cold Spring Harb. Perspect. Biol. 8, a023754 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Miller, J. C. et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143–148 (2011).

    Article  CAS  PubMed  Google Scholar 

  278. Bhardwaj, A. & Nain, V. TALENs—an indispensable tool in the era of CRISPR: a mini review. J. Genet. Eng. Biotechnol. 19, 125 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Scholze, H. & Boch, J. TAL effector-DNA specificity. Virulence 1, 428–432 (2010).

    Article  PubMed  Google Scholar 

  280. Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512 (2009).

    Article  CAS  PubMed  Google Scholar 

  281. Deng, P., Carter, S. & Fink, K. in Viral Vectors for Gene Therapy: Methods and Protocols (eds Manfredsson, F. P. & Benskey, M. J.) 47–58 (Springer, 2019).

  282. Nemudryi, A. A., Valetdinova, K. R., Medvedev, S. P. & Zakian, S. M. TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Nat. 6, 19–40 (2014).

    Article  CAS  Google Scholar 

  283. Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  284. Fink, K. D. et al. Allele-specific reduction of the mutant huntingtin allele using transcription activator-like effectors in human Huntington’s disease fibroblasts. Cell Transpl. 25, 677–686 (2016).

    Article  Google Scholar 

  285. Woodruff, G. et al. The presenilin-1 ΔE9 mutation results in reduced γ-secretase activity, but not total loss of PS1 function, in isogenic human stem cells. Cell Rep. 5, 974–985 (2013).

    Article  CAS  PubMed  Google Scholar 

  286. Sasaguri, H. et al. Generation of nonhuman primate models of Alzheimer’s disease. Alzheimers Dement. 16, e042244 (2020).

    Article  Google Scholar 

  287. Wang, Y. et al. Lost region in amyloid precursor protein (APP) through TALEN-mediated genome editing alters mitochondrial morphology. Sci. Rep. 6, 22244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Nanjidsuren, T. et al. TALEN-mediated gene editing method for GRK5-KO mice. Reprod. Dev. Biol. 37, 32–33 (2013).

    Google Scholar 

  289. Ke, Q. et al. TALEN-based generation of a cynomolgus monkey disease model for human microcephaly. Cell Res. 26, 1048–1061 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Chen, W. et al. Generation of the SCN1A epilepsy mutation in hiPS cells using the TALEN technique. Sci. Rep. 4, 5404 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Jones, J. M. & Meisler, M. H. Modeling human epilepsy by TALEN targeting of mouse sodium channel Scn8a. Genesis 52, 141–148 (2014).

    Article  CAS  PubMed  Google Scholar 

  292. Ohta, E. et al. Generation of gene-corrected iPSCs line (KEIUi001-A) from a PARK8 patient iPSCs with familial Parkinson’s disease carrying the I2020T mutation in LRRK2. Stem Cell Res. 49, 102073 (2020).

    Article  CAS  PubMed  Google Scholar 

  293. Zhao, H. et al. Generation of corrected-hiPSC (USTCi001-A-1) from epilepsy patient iPSCs using TALEN-mediated editing of the SCN1A gene. Stem Cell Res. 46, 101864 (2020).

    Article  CAS  PubMed  Google Scholar 

  294. Bhattacharya, S. & Satpati, P. Insights into the mechanism of CRISPR/Cas9-based genome editing from molecular dynamics simulations. ACS Omega 8, 1817–1837 (2023).

    Article  CAS  PubMed  Google Scholar 

  295. Hille, F. & Charpentier, E. CRISPR–Cas: biology, mechanisms and relevance. Philos. Trans. R. Soc. B: Biol. Sci. 371, 20150496 (2016).

    Article  Google Scholar 

  296. Jiang, F. & Doudna, J. A. CRISPR–Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505–529 (2017).

    Article  CAS  PubMed  Google Scholar 

  297. György, B. et al. CRISPR/Cas9 mediated disruption of the swedish APP allele as a therapeutic approach for early-onset Alzheimer’s disease. Mol. Ther. Nucleic Acids 11, 429–440 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Park, H. et al. In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat. Neurosci. 22, 524–528 (2019). This study elucidates the potential of CRISPR–Cas9 carried by a non-viral nanocomplex vector to efficiently and selectively edit genes in post-mitotic neurons.

    Article  CAS  PubMed  Google Scholar 

  299. Park, H., Hwang, Y. & Kim, J. Transcriptional activation with Cas9 activator nanocomplexes rescues Alzheimer’s disease pathology. Biomaterials 279, 121229 (2021).

    Article  CAS  PubMed  Google Scholar 

  300. Pires, C. et al. Generation of a gene-corrected isogenic control cell line from an Alzheimer’s disease patient iPSC line carrying a A79V mutation in PSEN1. Stem Cell Res. 17, 285–288 (2016).

    Article  CAS  PubMed  Google Scholar 

  301. Rohn, T. T., Kim, N., Isho, N. F. & Mack, J. M. The potential of CRISPR/Cas9 gene editing as a treatment strategy for Alzheimer’s disease. J. Alzheimers Dis. Parkinsonism 8, 439 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  302. Sun, J. et al. CRISPR/Cas9 editing of APP C-terminus attenuates β-cleavage and promotes α-cleavage. Nat. Commun. 10, 53 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Ekman, F. K. et al. CRISPR–Cas9-mediated genome editing increases lifespan and improves motor deficits in a Huntington’s disease mouse model. Mol. Ther. Nucleic Acids 17, 829–839 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Yang, S. et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J. Clin. Invest. 127, 2719–2724 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Piao, X. et al. Dual-gRNA approach with limited off-target effect corrects C9ORF72 repeat expansion in vivo. Sci. Rep. 12, 5672 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Duan, W. et al. The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotrophic lateral sclerosis mouse model. Gene Ther. 27, 157–169 (2020).

    Article  CAS  PubMed  Google Scholar 

  307. Yoon, H. H. et al. CRISPR–Cas9 gene editing protects from the A53T-SNCA overexpression-induced pathology of Parkinson’s disease in vivo. CRISPR J. 5, 95–108 (2022).

    Article  CAS  PubMed  Google Scholar 

  308. Tong, S., Moyo, B., Lee, C. M., Leong, K. & Bao, G. Engineered materials for in vivo delivery of genome-editing machinery. Nat. Rev. Mater. 4, 726–737 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Zhang, X. et al. Functionalized lipid-like nanoparticles for in vivo mRNA delivery and base editing. Sci. Adv. 6, eabc2315 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Palanki, R. et al. Ionizable lipid nanoparticles for therapeutic base editing of congenital brain disease. ACS Nano 17, 13594–13610 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Mendes, B. B. et al. Nanodelivery of nucleic acids. Nat. Rev. Methods Prim. 2, 1–21 (2022).

    Google Scholar 

  312. Lu, Z.-G. et al. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Sig Transduct. Target. Ther. 8, 1–53 (2023).

    Article  Google Scholar 

  313. Helmschrodt, C. et al. Polyethylenimine nanoparticle-mediated siRNA delivery to reduce α-synuclein expression in a model of Parkinson’s disease. Mol. Ther. Nucleic Acids 9, 57–68 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Gao, S. et al. A non-viral suicide gene delivery system traversing the blood–brain barrier for non-invasive glioma targeting treatment. J. Control. Rel. 243, 357–369 (2016).

    Article  CAS  Google Scholar 

  315. Wang, Y. et al. Anti-seed PNAs targeting multiple oncomiRs for brain tumor therapy. Sci. Adv. 9, eabq7459 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Gao, Y. et al. RVG-peptide-linked trimethylated chitosan for delivery of siRNA to the brain. Biomacromolecules 15, 1010–1018 (2014).

    Article  CAS  PubMed  Google Scholar 

  317. Xiong, R., Ling, G., Zhang, Y., Guan, J. & Zhang, P. Nucleic acid delivery by ionizable nanocarriers for brain disease treatment. Brain-X 1, e7 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all authors whose work in CNS gene therapy, drug delivery and related areas contributed to this Review. This work was supported by Alzheimer’s Association (a grant to J.G.), the National Institutes of Health (NIH) grant 1R01AR077718 (to N.J.), and funding from the Department of Anaesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, and Football Players Health Study (funded by a grant from the National Football League Players Association) (to N.J.). The content is solely the responsibility of the authors and does not necessarily represent the official views of Harvard Medical School, Harvard University or its affiliated academic health-care centres, the National Football League Players Association or the Brigham and Women’s Hospital.

Author information

Authors and Affiliations

Authors

Contributions

J.G., S.G., Z.J.X., K.S., C.J., H.C., S.L., N.D.P., A.G., J.M.K., R.T. and N.J. researched data for the article. J.G., S.G., Z.J.X., C.J., H.C., D.L., S.L., N.D.P., J.N.L., A.G., J.M.K., R.T. and N.J. contributed substantially to discussion of the content. J.G., S.G., Z.J.X., K.S. and N.D.P. wrote the article. J.G., S.G., D.L., J.N.L., A.G., J.M.K., R.T. and N.J. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Jingjing Gao, Ana Griciuc, Jeffrey M. Karp, Rudolph Tanzi or Nitin Joshi.

Ethics declarations

Competing interests

A.G. and R.T. have issued patents on all forms of gene therapy and immunotherapy for neuroinflammation using CD33 as a target. N.J. and J.M.K. have one pending patent on nanoparticles for gene delivery in the brain.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Nicholas D. Mazarakis, Stephanie Schorge and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The Ionis antisense pipeline: https://www.ionispharma.com/ionis-technology/antisense-pipeline/

Supplementary information

Glossary

Adeno-associated viruses

(AAVs). Small, non-pathogenic viruses that are used as vectors for delivering genetic material into cells owing to their low immunogenicity and ability to infect both dividing and non-dividing cells.

Capsid

The protein shell that encloses viral genetic materials and facilitates the entry of viral genome to a target cell by binding to receptors on its surface.

Chemical conjugates

A non-viral delivery system formed by covalently attaching a therapeutic agent to another molecule, such as a ligand, polymer scaffold or antibody.

Convection-enhanced delivery

A local delivery method that directly infuses therapeutic agents in the brain through an implanted catheter that generates a pressure gradient at its tip.

DNA barcodes

Short, single-stranded, synthetic DNA oligonucleotides with unique sequences.

Immunogenicity

The ability of a foreign substance, such as a viral or non-viral vector, to provoke an undesirable immune response, which can lead to reduced efficacy of the drug, allergic reactions or other adverse reactions.

Lentiviral vector

One of the most commonly used tools for long-term and stable transgene expression in target cells and tissues owing to their ability to integrate into host genomes.

microRNA

(miRNA). A class of small non-coding RNA molecules, typically around 21–22 nucleotides in length, that play important regulatory roles in gene expression such as gene silencing or repression.

Monogenic disorders

A type of genetic disorder caused by mutation in a single gene, such as Rett syndrome or sickle cell disease.

mRNA splicing

A crucial process that happens during gene transcription and involves the removal of non-coding regions (introns) from the pre-mRNA. The remaining coding regions (exons) join to form the mature RNA molecule.

Nanoparticles

Nanosized particles ranging from 10 to 200 nm that are made of a range of biomaterials including polymers, peptides and lipids.

Organoids

Tiny, self-organized 3D structures composed of cells made in vitro. They recapitulate many aspects of the native tissues and are valuable models for modelling human genetics and disease mechanisms and for drug screening.

Polygenic diseases

Genetic disorders arising from the combined effects of multiple genetic variations.

Pseudotype

A modified version of a virus that is engineered to contain the envelope proteins of a different virus, allowing them to infect cells for which they do not have innate tropism.

RNA-induced silencing complex

(RISC). A multi-protein complex involved in the cell’s gene regulation process. It binds to small interfering RNA (siRNA) or microRNA (miRNA) to form a functional unit to recognize and bind to complementary sequences in the target RNA and exert inhibitory effects, through mRNA degradation or translational repression.

Serotype

A specific strain of a virus, defined by the specific composition or structure of its surface antigens.

Short hairpin RNA

(shRNA). Small non-coding RNA molecules that mimic the structure of microRNA (miRNA) and are effective in gene silencing. They consist of a stem–loop motif that is later processed by cellular enzymes and incorporated into the RNA-induced silencing complex (RISC) to silence complementary mRNA.

Small interfering RNA

(siRNA). Small non-coding RNA molecules around 20–25 nucleotides long, which function by interacting with the RNA-induced silencing complex (RISC) to enable gene silencing.

Transduction

The delivery of genetic materials to cells using viral vectors.

Transfection

The delivery of genetic materials to cells using non-viral methods.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Gunasekar, S., Xia, Z.(. et al. Gene therapy for CNS disorders: modalities, delivery and translational challenges. Nat. Rev. Neurosci. (2024). https://doi.org/10.1038/s41583-024-00829-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41583-024-00829-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research