Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The neuropathobiology of multiple sclerosis

Abstract

Chronic low-grade inflammation and neuronal deregulation are two components of a smoldering disease activity that drives the progression of disability in people with multiple sclerosis (MS). Although several therapies exist to dampen the acute inflammation that drives MS relapses, therapeutic options to halt chronic disability progression are a major unmet clinical need. The development of such therapies is hindered by our limited understanding of the neuron-intrinsic determinants of resilience or vulnerability to inflammation. In this Review, we provide a neuron-centric overview of recent advances in deciphering neuronal response patterns that drive the pathology of MS. We describe the inflammatory CNS environment that initiates neurotoxicity by imposing ion imbalance, excitotoxicity and oxidative stress, and by direct neuro-immune interactions, which collectively lead to mitochondrial dysfunction and epigenetic dysregulation. The neuronal demise is further amplified by breakdown of neuronal transport, accumulation of cytosolic proteins and activation of cell death pathways. Continuous neuronal damage perpetuates CNS inflammation by activating surrounding glia cells and by directly exerting toxicity on neighbouring neurons. Further, we explore strategies to overcome neuronal deregulation in MS and compile a selection of neuronal actuators shown to impact neurodegeneration in preclinical studies. We conclude by discussing the therapeutic potential of targeting such neuronal actuators in MS, including some that have already been tested in interventional clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical and paraclinical features of multiple sclerosis (MS).
Fig. 2: Low-grade inflammation and neuronal deregulation in multiple sclerosis (MS).
Fig. 3: Pathways of neurodegeneration in multiple sclerosis.
Fig. 4: Spiral of neuronal death and therapeutic targets.

Similar content being viewed by others

References

  1. Walton, C. et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult. Scler. J. 26, 1816–1821 (2020).

    Article  Google Scholar 

  2. Charabati, M., Wheeler, M. A., Weiner, H. L. & Quintana, F. J. Multiple sclerosis: neuroimmune crosstalk and therapeutic targeting. Cell 186, 1309–1327 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Attfield, K. E., Jensen, L. T., Kaufmann, M., Friese, M. A. & Fugger, L. The immunology of multiple sclerosis. Nat. Rev. Immunol. 22, 734–750 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Dendrou, C. A., Fugger, L. & Friese, M. A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15, 545–558 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Frischer, J. M. et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol. 78, 710–721 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lubetzki, C., Zalc, B., Williams, A., Stadelmann, C. & Stankoff, B. Remyelination in multiple sclerosis: from basic science to clinical translation. Lancet Neurol. 19, 678–688 (2020).

    Article  PubMed  Google Scholar 

  7. Reich, D. S., Lucchinetti, C. F. & Calabresi, P. A. Multiple sclerosis. N. Engl. J. Med. 378, 169–180 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McGinley, M. P., Goldschmidt, C. H. & Rae-Grant, A. D. Diagnosis and treatment of multiple sclerosis. JAMA 325, 765 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Kuhlmann, T. et al. Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol. 22, 78–88 (2023).

    Article  PubMed  Google Scholar 

  10. Thompson, A. J. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173 (2018).

    Article  PubMed  Google Scholar 

  11. Barkhof, F. The clinico-radiological paradox in multiple sclerosis revisited. Curr. Opin. Neurol. 15, 239–245 (2002).

    Article  PubMed  Google Scholar 

  12. Lie, I. A. et al. Relationship between white matter lesions and gray matter atrophy in multiple sclerosis. Neurology 98, e1562–e1573 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Preziosa, P. et al. Slowly expanding lesions predict 9-year multiple sclerosis disease progression. Neurol. Neuroimmunol. Neuroinflamm. 9, e1139 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Beynon, V. et al. Chronic lesion activity and disability progression in secondary progressive multiple sclerosis. BMJ Neurol. Open 4, e000240 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jäckle, K. et al. Molecular signature of slowly expanding lesions in progressive multiple sclerosis. Brain 143, 2073–2088 (2020).

    Article  PubMed  Google Scholar 

  16. Dal-Bianco, A. et al. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathol. 133, 25–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Dong, Y. et al. Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia. Nat. Neurosci. 24, 489–503 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Magliozzi, R. et al. A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann. Neurol. 68, 477–493 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Trapp, B. D. et al. Cortical neuronal densities and cerebral white matter demyelination in multiple sclerosis: a retrospective study. Lancet Neurol. 17, 870–884 (2018). This study defines a histopathological MS subtype that is characterized by extensive cortical neuronal loss and demyelination without subcortical demyelination.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Junker, A. et al. Extensive subpial cortical demyelination is specific to multiple sclerosis. Brain Pathol. 30, 641–652 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gilmore, C. P. et al. Regional variations in the extent and pattern of grey matter demyelination in multiple sclerosis: a comparison between the cerebral cortex, cerebellar cortex, deep grey matter nuclei and the spinal cord. J. Neurol. Neurosurg. Psychiatry 80, 182–187 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Reali, C. et al. B cell rich meningeal inflammation associates with increased spinal cord pathology in multiple sclerosis. Brain Pathol. 30, 779–793 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marrie, R. A. et al. A systematic review of the incidence and prevalence of sleep disorders and seizure disorders in multiple sclerosis. Mult. Scler. 21, 342–349 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Calabrese, M. et al. Exploring the origins of grey matter damage in multiple sclerosis. Nat. Rev. Neurosci. 16, 147–158 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Magliozzi, R. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130, 1089–1104 (2007).

    Article  PubMed  Google Scholar 

  26. Howell, O. W. et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134, 2755–2771 (2011).

    Article  PubMed  Google Scholar 

  27. Lucchinetti, C. F. et al. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med. 365, 2188–2197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Friese, M. A., Schattling, B. & Fugger, L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol. 10, 225–238 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Kappos, L. et al. Contribution of relapse-independent progression vs relapse-associated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials. JAMA Neurol. 77, 1132 (2020). This paper shows that most disability in relapsing MS accumulates without relapses, suggesting a continuous progression and questioning the separation between relapsing and progressive forms of the disease.

    Article  PubMed  Google Scholar 

  30. Lublin, F. D. et al. How patients with multiple sclerosis acquire disability. Brain 145, 3147–3161 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Portaccio, E. et al. Progression is independent of relapse activity in early multiple sclerosis: a real-life cohort study. Brain 145, 2796–2805 (2022).

    Article  PubMed  Google Scholar 

  32. Cagol, A. et al. Association of brain atrophy with disease progression independent of relapse activity in patients with relapsing multiple sclerosis. JAMA Neurol. 79, 682 (2022).

    Article  PubMed  Google Scholar 

  33. Cree, B. A. C. et al. Silent progression in disease activity-free relapsing multiple sclerosis. Ann. Neurol. 85, 653–666 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Abdel-mannan, O. A. et al. Use of disease-modifying therapies in pediatric relapsing-remitting multiple sclerosis in the United Kingdom. Neurol. Neuroimmunol. Neuroinflamm. 8, e1008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tur, C. et al. Association of early progression independent of relapse activity with long-term disability after a first demyelinating event in multiple sclerosis. JAMA Neurol. 80, 151 (2023).

    Article  PubMed  Google Scholar 

  36. Petzold, A. et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 16, 797–812 (2017).

    Article  PubMed  Google Scholar 

  37. Zimmermann, H. G. et al. Association of retinal ganglion cell layer thickness with future disease activity in patients with clinically isolated syndrome. JAMA Neurol. 75, 1071 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lambe, J. et al. Association of spectral-domain OCT with long-term disability worsening in multiple sclerosis. Neurology 96, e2058–e2069 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bsteh, G. et al. Retinal layer thinning is reflecting disability progression independent of relapse activity in multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 6, 205521732096634 (2020).

    Google Scholar 

  40. Cordano, C. et al. Differences in age-related retinal and cortical atrophy rates in multiple sclerosis. Neurology 99, e1685–e1693 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Benkert, P. et al. Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study. Lancet Neurol. 21, 246–257 (2022).

    Article  PubMed  Google Scholar 

  42. Uphaus, T. et al. NfL predicts relapse-free progression in a longitudinal multiple sclerosis cohort study. eBioMedicine 72, 103590 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dalla Costa, G. et al. Prognostic value of serum neurofilaments in patients with clinically isolated syndromes. Neurology 92, e733–e741 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cantó, E. et al. Association between serum neurofilament light chain levels and long-term disease course among patients with multiple sclerosis followed up for 12 years. JAMA Neurol. 76, 1359 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Barro, C. et al. Serum neurofilament as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis. Brain 141, 2382–2391 (2018).

    Article  PubMed  Google Scholar 

  46. Monreal, E. et al. Association of serum neurofilament light chain levels at disease onset with disability worsening in patients with a first demyelinating multiple sclerosis event not treated with high-efficacy drugs. JAMA Neurol. 80, 397 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gafson, A. R. et al. Serum neurofilament light and multiple sclerosis progression independent of acute inflammation. JAMA Netw. Open 5, e2147588 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bjornevik, K. et al. Serum neurofilament light chain levels in patients with presymptomatic multiple sclerosis. JAMA Neurol. 77, 58 (2020).

    Article  PubMed  Google Scholar 

  49. Bjornevik, K. et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375, 296–301 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Khalil, M. et al. Serum neurofilament light levels in normal aging and their association with morphologic brain changes. Nat. Commun. 11, 812 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Meier, S. et al. Serum glial fibrillary acidic protein compared with neurofilament light chain as a biomarker for disease progression in multiple sclerosis. JAMA Neurol. 80, 287 (2023). This study shows that serum GFAP predicts disease progression and is not elevated in relapses, in contrast to serum NfL, in people with MS.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bellaver, B. et al. Astrocyte reactivity influences amyloid-β effects on tau pathology in preclinical Alzheimer’s disease. Nat. Med. 29, 1775–1781 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Absinta, M. et al. A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Spelman, T. et al. Treatment escalation vs immediate initiation of highly effective treatment for patients with relapsing-remitting multiple sclerosis. JAMA Neurol. 78, 1197 (2021).

    Article  PubMed  Google Scholar 

  56. Masanneck, L. et al. Detecting ongoing disease activity in mildly affected multiple sclerosis patients under first-line therapies. Mult. Scler. Relat. Disord. 63, 103927 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Montalban, X. et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 376, 209–220 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Hauser, S. L. et al. Association of higher ocrelizumab exposure with reduced disability progression in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 10, e200094 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hauser, S. L. et al. Five years of ocrelizumab in relapsing multiple sclerosis. Neurology 95, e1854–e1867 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Scalfari, A. et al. Early relapses, onset of progression, and late outcome in multiple sclerosis. JAMA Neurol. 70, 214 (2013).

    Article  PubMed  Google Scholar 

  61. Healy, L. M., Stratton, J. A., Kuhlmann, T. & Antel, J. The role of glial cells in multiple sclerosis disease progression. Nat. Rev. Neurol. 18, 237–248 (2022).

    Article  PubMed  Google Scholar 

  62. Bierhansl, L. et al. Thinking outside the box: non-canonical targets in multiple sclerosis. Nat. Rev. Drug Discov. 21, 578–600 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schirmer, L., Schafer, D. P., Bartels, T., Rowitch, D. H. & Calabresi, P. A. Diversity and function of glial cell types in multiple sclerosis. Trends Immunol. 42, 228–247 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Harroud, A. et al. Locus for severity implicates CNS resilience in progression of multiple sclerosis. Nature 619, 323–331 (2023). This genome-wide association study identified gene variants that are significantly associated with MS disease severity.

    Article  Google Scholar 

  65. Jürgens, T. et al. Reconstruction of single cortical projection neurons reveals primary spine loss in multiple sclerosis. Brain 139, 39–46 (2016).

    Article  PubMed  Google Scholar 

  66. Lodygin, D. et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature 566, 503–508 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Di Filippo, M., Portaccio, E., Mancini, A. & Calabresi, P. Multiple sclerosis and cognition: synaptic failure and network dysfunction. Nat. Rev. Neurosci. 19, 599–609 (2018).

    Article  PubMed  Google Scholar 

  68. Filippi, M. et al. Multiple sclerosis. Nat. Rev. Dis. Prim. 4, 43 (2018).

    Article  PubMed  Google Scholar 

  69. De Meo, E. et al. Identifying the distinct cognitive phenotypes in multiple sclerosis. JAMA Neurol. 78, 414 (2021).

    Article  PubMed  Google Scholar 

  70. Rocca, M. A., Schoonheim, M. M., Valsasina, P., Geurts, J. J. G. & Filippi, M. Task- and resting-state fMRI studies in multiple sclerosis: from regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin. 35, 103076 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Fleischer, V. et al. Continuous reorganization of cortical information flow in multiple sclerosis: a longitudinal fMRI effective connectivity study. Sci. Rep. 10, 806 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zoupi, L. et al. Selective vulnerability of inhibitory networks in multiple sclerosis. Acta Neuropathol. 141, 415–429 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kapell, H. et al. Neuron-oligodendrocyte potassium shuttling at nodes of Ranvier protects against inflammatory demyelination. J. Clin. Invest. 133, e164223 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Friese, M. A. et al. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat. Med. 13, 1483–1489 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Alrashdi, B. et al. Nav1.6 promotes inflammation and neuronal degeneration in a mouse model of multiple sclerosis. J. Neuroinflamm. 16, 215 (2019).

    Article  Google Scholar 

  76. Schattling, B. et al. Activity of NaV1.2 promotes neurodegeneration in an animal model of multiple sclerosis. JCI Insight 1, e89810 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Pitt, D., Werner, P. & Raine, C. S. Glutamate excitotoxicity in a model of multiple sclerosis. Nat. Med. 6, 67–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Kanwar, J. R., Kanwar, R. K. & Krissansen, G. W. Simultaneous neuroprotection and blockade of inflammation reverses autoimmune encephalomyelitis. Brain 127, 1313–1331 (2004).

    Article  PubMed  Google Scholar 

  79. Jafari, M. et al. Phagocyte-mediated synapse removal in cortical neuroinflammation is promoted by local calcium accumulation. Nat. Neurosci. 24, 355–367 (2021). This paper determined that microglia during CNS inflammation remove synapses with local calcium accumulation.

    Article  CAS  PubMed  Google Scholar 

  80. Larochelle, C. et al. Pro-inflammatory T helper 17 directly harms oligodendrocytes in neuroinflammation. Proc. Natl. Acad. Sci. 118, e2025813118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Birkner, K. et al. β1-Integrin- and KV1.3 channel-dependent signaling stimulates glutamate release from Th17 cells. J. Clin. Invest. 130, 715–732 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang, J. et al. Glutamate-releasing SWELL1 channel in astrocytes modulates synaptic transmission and promotes brain damage in stroke. Neuron 102, 813–827.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Srinivasan, R., Sailasuta, N., Hurd, R., Nelson, S. & Pelletier, D. Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 128, 1016–1025 (2005).

    Article  PubMed  Google Scholar 

  84. Sarchielli, P., Greco, L., Floridi, A., Floridi, A. & Gallai, V. Excitatory amino acids and multiple sclerosis. Arch. Neurol. 60, 1082 (2003).

    Article  PubMed  Google Scholar 

  85. Bading, H. Nuclear calcium signalling in the regulation of brain function. Nat. Rev. Neurosci. 14, 593–608 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Goussakov, I., Miller, M. B. & Stutzmann, G. E. NMDA-mediated Ca2+ influx drives aberrant ryanodine receptor activation in dendrites of young Alzheimer’s disease mice. J. Neurosci. 30, 12128–12137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ruiz, A., Matute, C. & Alberdi, E. Endoplasmic reticulum Ca2+ release through ryanodine and IP3 receptors contributes to neuronal excitotoxicity. Cell Calcium 46, 273–281 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Woo, M. S. et al. Neuronal metabotropic glutamate receptor 8 protects against neurodegeneration in CNS inflammation. J. Exp. Med. 218, e20201290 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schattling, B. et al. TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 18, 1805–1811 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Yan, J., Bengtson, C. P., Buchthal, B., Hagenston, A. M. & Bading, H. Coupling of NMDA receptors and TRPM4 guides discovery of unconventional neuroprotectants. Science 370, eaay3302 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Maneshi, M. M. et al. Mechanical stress activates NMDA receptors in the absence of agonists. Sci. Rep. 7, 39610 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Belin, S., Maki, B. A., Catlin, J., Rein, B. A. & Popescu, G. K. Membrane stretch gates NMDA receptors. J. Neurosci. 42, 5672–5680 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hardingham, G. E. & Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11, 682–696 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ioannou, M. S. et al. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 177, 1522–1535.e14 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Schinder, A. F., Olson, E. C., Spitzer, N. C. & Montal, M. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J. Neurosci. 16, 6125–6133 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stanika, R. I. et al. Coupling diverse routes of calcium entry to mitochondrial dysfunction and glutamate excitotoxicity. Proc. Natl Acad. Sci. USA 106, 9854–9859 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Angelova, P. R. et al. Pharmacological sequestration of mitochondrial calcium uptake protects neurons against glutamate excitotoxicity. Mol. Neurobiol. 56, 2244–2255 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Forte, M. et al. Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Proc. Natl Acad. Sci. USA 104, 7558–7563 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Warne, J. et al. Selective inhibition of the mitochondrial permeability transition pore protects against neurodegeneration in experimental multiple sclerosis. J. Biol. Chem. 291, 4356–4373 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Magistretti, P. J. & Allaman, I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 86, 883–901 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Dutta, R. et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann. Neurol. 59, 478–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Broadwater, L. et al. Analysis of the mitochondrial proteome in multiple sclerosis cortex. Biochim. Biophys. Acta Mol. Basis Dis. 1812, 630–641 (2011).

    Article  CAS  Google Scholar 

  103. Fischer, M. T. et al. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain 135, 886–899 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Schattling, B. et al. Bassoon proteinopathy drives neurodegeneration in multiple sclerosis. Nat. Neurosci. 22, 887–896 (2019). This paper shows that somatic protein accumulation of the presynaptic protein bassoon is an important contributor to neurodegeneration in MS.

    Article  CAS  PubMed  Google Scholar 

  105. Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Witte, M. E. et al. Reduced expression of PGC-1α partly underlies mitochondrial changes and correlates with neuronal loss in multiple sclerosis cortex. Acta Neuropathol. 125, 231–243 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Rosenkranz, S. C. et al. Enhancing mitochondrial activity in neurons protects against neurodegeneration in a mouse model of multiple sclerosis. eLife 10, e61798 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tai, Y.-H. et al. Targeting the TCA cycle can ameliorate widespread axonal energy deficiency in neuroinflammatory lesions. Nat. Metab. 5, 1364–1381 (2023). This study shows that axonal energy shortage is driven by deficits in the mitochondrial respiration and tricarboxylic acid cycle in EAE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sadeghian, M. et al. Mitochondrial dysfunction is an important cause of neurological deficits in an inflammatory model of multiple sclerosis. Sci. Rep. 6, 33249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Varhaug, K. N., Kråkenes, T., Alme, M. N., Vedeler, C. A. & Bindoff, L. A. Mitochondrial complex IV is lost in neurons in the cuprizone mouse model. Mitochondrion 50, 58–62 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Kumleh, H. H. et al. Complex I deficiency in Persian multiple sclerosis patients. J. Neurol. Sci. 243, 65–69 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Blokhin, A., Vyshkina, T., Komoly, S. & Kalman, B. Variations in mitochondrial DNA copy numbers in MS brains. J. Mol. Neurosci. 35, 283–287 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Campbell, G. R. et al. Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann. Neurol. 69, 481–492 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Cagan, A. et al. Somatic mutation rates scale with lifespan across mammals. Nature 604, 517–524 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Atkinson, J. R. et al. Biological aging of CNS-resident cells alters the clinical course and immunopathology of autoimmune demyelinating disease. JCI Insight 7, e158153 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kaufmann, T. et al. Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat. Neurosci. 22, 1617–1623 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tsankova, N., Renthal, W., Kumar, A. & Nestler, E. J. Epigenetic regulation in psychiatric disorders. Nat. Rev. Neurosci. 8, 355–367 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Castro, K. & Casaccia, P. Epigenetic modifications in brain and immune cells of multiple sclerosis patients. Mult. Scler. J. 24, 69–74 (2018).

    Article  CAS  Google Scholar 

  120. Chomyk, A. M. et al. DNA methylation in demyelinated multiple sclerosis hippocampus. Sci. Rep. 7, 8696 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Meijer, M. et al. Epigenomic priming of immune genes implicates oligodendroglia in multiple sclerosis susceptibility. Neuron 110, 1193–1210.e13 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bartosovic, M., Kabbe, M. & Castelo-Branco, G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat. Biotechnol. 39, 825–835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Deng, Y. et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 609, 375–383 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Alcalá-Vida, R. et al. Age-related and disease locus-specific mechanisms contribute to early remodelling of chromatin structure in Huntington’s disease mice. Nat. Commun. 12, 364 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Nativio, R. et al. Dysregulation of the epigenetic landscape of normal aging in Alzheimer’s disease. Nat. Neurosci. 21, 497–505 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rothammer, N. et al. G9a dictates neuronal vulnerability to inflammatory stress via transcriptional control of ferroptosis. Sci. Adv. 8, eabm5500 (2022). This paper showed that ferroptosis regulators are epigenetically dysregulated in neurons during CNS inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Stockwell, B. R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pantel, K. & Alix-Panabières, C. Liquid biopsy and minimal residual disease — latest advances and implications for cure. Nat. Rev. Clin. Oncol. 16, 409–424 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Katsman, E. et al. Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from nanopore sequencing. Genome Biol. 23, 158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gebert, L. F. R. & MacRae, I. J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 20, 21–37 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Winkler, I. et al. MicroRNA-92a–CPEB3 axis protects neurons against inflammatory neurodegeneration. Sci. Adv. 9, eadi6855 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Regev, K. et al. Association between serum microRNAs and magnetic resonance imaging measures of multiple sclerosis severity. JAMA Neurol. 74, 275 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Juźwik, C. A. et al. Neuronal microRNA regulation in experimental autoimmune encephalomyelitis. Sci. Rep. 8, 13437 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Friedman, T. N. et al. Profiling the microRNA signature of the peripheral sensory ganglia in experimental autoimmune encephalomyelitis (EAE). J. Neuroinflamm. 16, 223 (2019).

    Article  CAS  Google Scholar 

  135. Miller, K. D., Schnell, M. J. & Rall, G. F. Keeping it in check: chronic viral infection and antiviral immunity in the brain. Nat. Rev. Neurosci. 17, 766–776 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Durrenberger, P. F. et al. Common mechanisms in neurodegeneration and neuroinflammation: a BrainNet Europe gene expression microarray study. J. Neural Transm. 122, 1055–1068 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. van Wageningen, T. A. et al. Distinct gene expression in demyelinated white and grey matter areas of patients with multiple sclerosis. Brain Commun. 4, fcac005 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hendrickx, D. A. E. et al. Gene expression profiling of multiple sclerosis pathology identifies early patterns of demyelination surrounding chronic active lesions. Front. Immunol. 8, 1810 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Di Liberto, G. et al. Neurons under T cell attack coordinate phagocyte-mediated synaptic stripping. Cell 175, 458–471.e19 (2018). This paper shows that neurons that are attacked by CD8+ T cells secrete CCL2 to regulate synaptic stripping by phagocytes.

    Article  PubMed  Google Scholar 

  140. Clarkson, B. D. S. et al. CD8+ T cells recognizing a neuron-restricted antigen injure axons in a model of multiple sclerosis. J. Clin. Invest. 133, e162788 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Werneburg, S. et al. Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. Immunity 52, 167–182.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Calvier, L. et al. Reelin depletion protects against autoimmune encephalomyelitis by decreasing vascular adhesion of leukocytes. Sci. Transl. Med. 12, eaay7675 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhu, Y. et al. Neuron-specific SALM5 limits inflammation in the CNS via its interaction with HVEM. Sci. Adv. 2, e1500637 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Jonas, A. et al. Axonally derived matrilin-2 induces proinflammatory responses that exacerbate autoimmune neuroinflammation. J. Clin. Invest. 124, 5042–5056 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Filiano, A. J. et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535, 425–429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sanmarco, L. M. et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature 590, 473–479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Warre-Cornish, K. et al. Interferon-γ signaling in human iPSC-derived neurons recapitulates neurodevelopmental disorder phenotypes. Sci. Adv. 6, eaay9506 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Clark, D. N. et al. Prolonged STAT1 activation in neurons drives a pathological transcriptional response. J. Neuroimmunol. 382, 578168 (2023).

    Article  CAS  PubMed  Google Scholar 

  149. Sonekatsu, M. et al. Interferon-gamma potentiates NMDA receptor signaling in spinal dorsal horn neurons via microglia–neuron interaction. Mol. Pain 12, 174480691664492 (2016).

    Article  Google Scholar 

  150. Alves de Lima, K. et al. Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nat. Immunol. 21, 1421–1429 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Ponomarev, E. D., Maresz, K., Tan, Y. & Dittel, B. N. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J. Neurosci. 27, 10714–10721 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ishizu, T. et al. Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain 128, 988–1002 (2005).

    Article  PubMed  Google Scholar 

  153. Herz, J. et al. GABAergic neuronal IL-4R mediates T cell effect on memory. Neuron 109, 3609–3618.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hanuscheck, N. et al. Interleukin-4 receptor signaling modulates neuronal network activity. J. Exp. Med. 219, e20211887 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Vogelaar, C. F. et al. Fast direct neuronal signaling via the IL-4 receptor as therapeutic target in neuroinflammation. Sci. Transl. Med. 10, eaao2304 (2018).

    Article  PubMed  Google Scholar 

  156. Andreadou, M. et al. IL-12 sensing in neurons induces neuroprotective CNS tissue adaptation and attenuates neuroinflammation in mice. Nat. Neurosci. 26, 1701–1712 (2023). This study shows that neurons sense IL-12 by their IL-12 receptor and, in response, dampen CNS inflammation by exerting trophic support.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sas, A. R. et al. A new neutrophil subset promotes CNS neuron survival and axon regeneration. Nat. Immunol. 21, 1496–1505 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Sleigh, J. N., Rossor, A. M., Fellows, A. D., Tosolini, A. P. & Schiavo, G. Axonal transport and neurological disease. Nat. Rev. Neurol. 15, 691–703 (2019).

    Article  PubMed  Google Scholar 

  159. Sorbara, C. D. et al. Pervasive axonal transport deficits in multiple sclerosis models. Neuron 84, 1183–1190 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Lin, T.-H. et al. Axonal transport rate decreased at the onset of optic neuritis in EAE mice. Neuroimage 100, 244–253 (2014).

    Article  PubMed  Google Scholar 

  161. Ineichen, B. V., Zhu, K. & Carlström, K. E. Axonal mitochondria adjust in size depending on g‐ratio of surrounding myelin during homeostasis and advanced remyelination. J. Neurosci. Res. 99, 793–805 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Kiryu-Seo, S., Ohno, N., Kidd, G. J., Komuro, H. & Trapp, B. D. Demyelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport. J. Neurosci. 30, 6658–6666 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zambonin, J. L. et al. Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis. Brain 134, 1901–1913 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Licht-Mayer, S. et al. Enhanced axonal response of mitochondria to demyelination offers neuroprotection: implications for multiple sclerosis. Acta Neuropathol. 140, 143–167 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Haines, J. D. et al. Nuclear export inhibitors avert progression in preclinical models of inflammatory demyelination. Nat. Neurosci. 18, 511–520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hares, K. et al. Axonal motor protein KIF5A and associated cargo deficits in multiple sclerosis lesional and normal‐appearing white matter. Neuropathol. Appl. Neurobiol. 43, 227–241 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Dutta, R. et al. Demyelination causes synaptic alterations in hippocampi from multiple sclerosis patients. Ann. Neurol. 69, 445–454 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hares, K. et al. KIF5A and the contribution of susceptibility genotypes as a predictive biomarker for multiple sclerosis. J. Neurol. 268, 2175–2184 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Baron, D. M. et al. ALS-associated KIF5A mutations abolish autoinhibition resulting in a toxic gain of function. Cell Rep. 39, 110598 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Rich, K. A. et al. Impaired motor unit recovery and maintenance in a knock-in mouse model of ALS-associated Kif5a variant. Neurobiol. Dis. 182, 106148 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Briggs, F. B. S. et al. Genome-wide association study of severity in multiple sclerosis. Genes Immun. 12, 615–625 (2011).

    Article  CAS  Google Scholar 

  172. Gasperi, C. et al. A genetic risk variant for multiple sclerosis severity is associated with brain atrophy. Ann. Neurol. 94, 1080–1085 (2023).

    Article  PubMed  Google Scholar 

  173. Matsuda, C. et al. Dysferlin is a surface membrane-associated protein that is absent in Miyoshi myopathy. Neurology 53, 1119 (1999).

    Article  CAS  PubMed  Google Scholar 

  174. Glover, L. & Brown, R. H. Dysferlin in membrane trafficking and patch repair. Traffic 8, 785–794 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. McDade, J. R. & Michele, D. E. Membrane damage-induced vesicle–vesicle fusion of dysferlin-containing vesicles in muscle cells requires microtubules and kinesin. Hum. Mol. Genet. 23, 1677–1686 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Mothe, A. J. et al. RGMa inhibition with human monoclonal antibodies promotes regeneration, plasticity and repair, and attenuates neuropathic pain after spinal cord injury. Sci. Rep. 7, 10529 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Ineichen, B. V. et al. Nogo-A antibodies enhance axonal repair and remyelination in neuro-inflammatory and demyelinating pathology. Acta Neuropathol. 134, 423–440 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Karnezis, T. et al. The neurite outgrowth inhibitor Nogo A is involved in autoimmune-mediated demyelination. Nat. Neurosci. 7, 736–744 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Martinez, P. et al. Bassoon contributes to tau-seed propagation and neurotoxicity. Nat. Neurosci. 25, 1597–1607 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Thibaudeau, T. A., Anderson, R. T. & Smith, D. M. A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat. Commun. 9, 1097 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Montenegro-Venegas, C. et al. Bassoon inhibits proteasome activity via interaction with PSMB4. Cell. Mol. Life Sci. 78, 1545–1563 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Kim, T. K. & Maniatis, T. Regulation of interferon-γ-activated STAT1 by the ubiquitin-proteasome pathway. Science 273, 1717–1719 (1996).

    Article  CAS  PubMed  Google Scholar 

  183. Zuo, Y. et al. Regulation of the linear ubiquitination of STAT1 controls antiviral interferon signaling. Nat. Commun. 11, 1146 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Zhang, Z. et al. The E3 ubiquitin ligase TRIM21 negatively regulates the innate immune response to intracellular double-stranded DNA. Nat. Immunol. 14, 172–178 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. Herrero-Mendez, A. et al. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C–Cdh1. Nat. Cell Biol. 11, 747–752 (2009).

    Article  CAS  PubMed  Google Scholar 

  186. Lopez-Fabuel, I. et al. Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis. Nat. Commun. 13, 536 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Rodriguez-Rodriguez, P., Fernandez, E., Almeida, A. & Bolaños, J. P. Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ. 19, 1582–1589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Burmistrova, O. et al. Targeting PFKFB3 alleviates cerebral ischemia-reperfusion injury in mice. Sci. Rep. 9, 11670 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Kovaleva, V. et al. MANF regulates neuronal survival and UPR through its ER-located receptor IRE1α. Cell Rep. 42, 112066 (2023).

    Article  CAS  PubMed  Google Scholar 

  190. Kim, P., Scott, M. R. & Meador-Woodruff, J. H. Dysregulation of the unfolded protein response (UPR) in the dorsolateral prefrontal cortex in elderly patients with schizophrenia. Mol. Psychiatry 26, 1321–1331 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Ajoolabady, A., Lindholm, D., Ren, J. & Pratico, D. ER stress and UPR in Alzheimer’s disease: mechanisms, pathogenesis, treatments. Cell Death Dis. 13, 706 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Hetz, C., Zhang, K. & Kaufman, R. J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21, 421–438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Stone, S. et al. Neuron-specific PERK inactivation exacerbates neurodegeneration during experimental autoimmune encephalomyelitis. JCI Insight 4, e124232 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Haile, Y. et al. Rab32 connects ER stress to mitochondrial defects in multiple sclerosis. J. Neuroinflamm. 14, 19 (2017).

    Article  Google Scholar 

  195. Mháille, A. N. et al. Increased expression of endoplasmic reticulum stress-related signaling pathway molecules in multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 67, 200–211 (2008).

    Article  PubMed  Google Scholar 

  196. McMahon, J., McQuaid, S., Reynolds, R. & FitzGerald, U. Increased expression of ER stress- and hypoxia-associated molecules in grey matter lesions in multiple sclerosis. Mult. Scler. J. 18, 1437–1447 (2012).

    Article  CAS  Google Scholar 

  197. Lange, P. S. et al. ATF4 is an oxidative stress-inducible, prodeath transcription factor in neurons in vitro and in vivo. J. Exp. Med. 205, 1227–1242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Fan, J. et al. Edaravone protects against glutamate-induced PERK/EIF2α/ATF4 integrated stress response and activation of caspase-12. Brain Res. 1519, 1–8 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Wolzak, K. et al. Neuron-specific translational control shift ensures proteostatic resilience during ER stress. EMBO J. 41, e110501 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Luhr, M. et al. The kinase PERK and the transcription factor ATF4 play distinct and essential roles in autophagy resulting from tunicamycin-induced ER stress. J. Biol. Chem. 294, 8197–8217 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Brown, B., Mitra, S., Roach, F. D., Vasudevan, D. & Ryoo, H. D. The transcription factor Xrp1 is required for PERK-mediated antioxidant gene induction in Drosophila. eLife 10, e74047 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Demay, Y., Perochon, J., Szuplewski, S., Mignotte, B. & Gaumer, S. The PERK pathway independently triggers apoptosis and a Rac1/Slpr/JNK/Dilp8 signaling favoring tissue homeostasis in a chronic ER stress Drosophila model. Cell Death Dis. 5, e1452 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Sheshadri, N. et al. PERK signaling through C/EBPδ contributes to ER stress-induced expression of immunomodulatory and tumor promoting chemokines by cancer cells. Cell Death Dis. 12, 1038 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Bertheloot, D., Latz, E. & Franklin, B. S. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell. Mol. Immunol. 18, 1106–1121 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Bedoui, S., Herold, M. J. & Strasser, A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol. 21, 678–695 (2020).

    Article  CAS  PubMed  Google Scholar 

  206. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Duarte-Silva, E. et al. Sildenafil ameliorates EAE by decreasing apoptosis in the spinal cord of C57BL/6 mice. J. Neuroimmunol. 321, 125–137 (2018).

    Article  CAS  PubMed  Google Scholar 

  208. Gold, R., Hartung, H.-P. & Lassmann, H. T-cell apoptosis in autoimmune diseases: termination of inflammation in the nervous system and other sites with specialized immune-defense mechanisms. Trends Neurosci. 20, 399–404 (1997).

    Article  CAS  PubMed  Google Scholar 

  209. Feizi, N. et al. CD8+ T cells specific for cryptic apoptosis-associated epitopes exacerbate experimental autoimmune encephalomyelitis. Cell Death Dis. 12, 1026 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Valentin-Torres, A., Savarin, C., Barnett, J. & Bergmann, C. C. Blockade of sustained tumor necrosis factor in a transgenic model of progressive autoimmune encephalomyelitis limits oligodendrocyte apoptosis and promotes oligodendrocyte maturation. J. Neuroinflamm. 15, 121 (2018).

    Article  Google Scholar 

  211. Meyer, R. et al. Acute neuronal apoptosis in a rat model of multiple sclerosis. J. Neurosci. 21, 6214–6220 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Gardner, C. et al. Cortical grey matter demyelination can be induced by elevated pro-inflammatory cytokines in the subarachnoid space of MOG-immunized rats. Brain 136, 3596–3608 (2013).

    Article  PubMed  Google Scholar 

  213. Magliozzi, R. et al. Meningeal inflammation changes the balance of TNF signalling in cortical grey matter in multiple sclerosis. J. Neuroinflamm. 16, 259 (2019).

    Article  CAS  Google Scholar 

  214. van Olst, L. et al. Meningeal inflammation in multiple sclerosis induces phenotypic changes in cortical microglia that differentially associate with neurodegeneration. Acta Neuropathol. 141, 881–899 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Bergsland, N. et al. Leptomeningeal contrast enhancement is related to focal cortical thinning in relapsing-remitting multiple sclerosis: a cross-sectional MRI study. Am. J. Neuroradiol. 40, 620–625 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Zivadinov, R. et al. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: a retrospective, pilot, observational longitudinal study. Mult. Scler. J. 23, 1336–1345 (2017).

    Article  Google Scholar 

  217. Picon, C. et al. Neuron-specific activation of necroptosis signaling in multiple sclerosis cortical grey matter. Acta Neuropathol. 141, 585–604 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ofengeim, D. et al. Activation of necroptosis in multiple sclerosis. Cell Rep. 10, 1836–1849 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zhang, S. et al. RIP1 kinase inhibitor halts the progression of an immune-induced demyelination disease at the stage of monocyte elevation. Proc. Natl Acad. Sci. USA 116, 5675–5680 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Liu, M., Li, H., Yang, R., Ji, D. & Xia, X. GSK872 and necrostatin-1 protect retinal ganglion cells against necroptosis through inhibition of RIP1/RIP3/MLKL pathway in glutamate-induced retinal excitotoxic model of glaucoma. J. Neuroinflamm. 19, 262 (2022).

    Article  CAS  Google Scholar 

  221. Luoqian, J. et al. Ferroptosis promotes T-cell activation-induced neurodegeneration in multiple sclerosis. Cell. Mol. Immunol. 19, 913–924 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Jhelum, P. et al. Ferroptosis induces detrimental effects in chronic EAE and its implications for progressive MS. Acta Neuropathol. Commun. 11, 121 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Van San, E. et al. Ferroptosis contributes to multiple sclerosis and its pharmacological targeting suppresses experimental disease progression. Cell Death Differ. 30, 2092–2103 (2023). This paper shows that genetic deletion of the ferroptosis driver ACSL4 in neurons reduces neurodegeneration in EAE.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Li, X. et al. Ferroptosis as a mechanism of oligodendrocyte loss and demyelination in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 373, 577995 (2022).

    Article  CAS  PubMed  Google Scholar 

  225. Jhelum, P. et al. Ferroptosis mediates cuprizone-induced loss of oligodendrocytes and demyelination. J. Neurosci. 40, 9327–9341 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Hu, C. et al. Reduced expression of the ferroptosis inhibitor glutathione peroxidase‐4 in multiple sclerosis and experimental autoimmune encephalomyelitis. J. Neurochem. 148, 426–439 (2019).

    Article  CAS  PubMed  Google Scholar 

  227. Hambright, W. S., Fonseca, R. S., Chen, L., Na, R. & Ran, Q. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol. 12, 8–17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

    Article  CAS  PubMed  Google Scholar 

  229. Chataway, J. et al. Clinical trials for progressive multiple sclerosis: progress, new lessons learned, and remaining challenges. Lancet Neurol. 23, 277–301 (2024). This study summarises all ongoing and past clinical studies that aim to prevent disease progression in people with MS.

    Article  PubMed  Google Scholar 

  230. Sühs, K.-W. et al. N-Methyl-D-aspartate receptor blockade is neuroprotective in experimental autoimmune optic neuritis. J. Neuropathol. Exp. Neurol. 73, 507–518 (2014).

    Article  PubMed  Google Scholar 

  231. Grasselli, G. et al. Abnormal NMDA receptor function exacerbates experimental autoimmune encephalomyelitis. Br. J. Pharmacol. 168, 502–517 (2013).

    Article  CAS  PubMed  Google Scholar 

  232. Krasnow, A. M. & Attwell, D. NMDA receptors: power switches for oligodendrocytes. Neuron 91, 3–5 (2016).

    Article  CAS  PubMed  Google Scholar 

  233. Barron, T. & Kim, J. H. Neuronal input triggers Ca2+ influx through AMPA receptors and voltage‐gated Ca2+ channels in oligodendrocytes. Glia 67, 1922–1932 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Piller, M., Werkman, I. L., Brown, E. A., Latimer, A. J. & Kucenas, S. Glutamate signaling via the AMPAR subunit GluR4 regulates oligodendrocyte progenitor cell migration in the developing spinal cord. J. Neurosci. 41, 5353–5371 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Evonuk, K. S. et al. Reduction of AMPA receptor activity on mature oligodendrocytes attenuates loss of myelinated axons in autoimmune neuroinflammation. Sci. Adv. 6, eaax5936 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Sulkowski, G., Dąbrowska-Bouta, B. & Strużyńska, L. Modulation of neurological deficits and expression of glutamate receptors during experimental autoimmune encephalomyelitis after treatment with selected antagonists of glutamate receptors. Biomed. Res. Int. 2013, 186068 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Berry-Kravis, E. et al. Mavoglurant in fragile X syndrome: results of two randomized, double-blind, placebo-controlled trials. Sci. Transl. Med. 8, 321ra5 (2016).

    Article  PubMed  Google Scholar 

  238. Chataway, J. et al. Efficacy of three neuroprotective drugs in secondary progressive multiple sclerosis (MS-SMART): a phase 2b, multiarm, double-blind, randomised placebo-controlled trial. Lancet Neurol. 19, 214–225 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. McKee, J. B. et al. Amiloride does not protect retinal nerve fibre layer thickness in optic neuritis in a phase 2 randomised controlled trial. Mult. Scler. J. 25, 246–255 (2019).

    Article  CAS  Google Scholar 

  240. Lorefice, L., Mellino, P., Fenu, G. & Cocco, E. How to measure the treatment response in progressive multiple sclerosis: current perspectives and limitations in clinical settings’. Mult. Scler. Relat. Disord. 76, 104826 (2023).

    Article  CAS  PubMed  Google Scholar 

  241. Yang, Y. et al. Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals. Nat. Med. 28, 2207–2215 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Schalkamp, A.-K., Peall, K. J., Harrison, N. A. & Sandor, C. Wearable movement-tracking data identify Parkinson’s disease years before clinical diagnosis. Nat. Med. 29, 2048–2056 (2023).

    Article  CAS  PubMed  Google Scholar 

  243. Marrie, R. A. et al. Improving the efficiency of clinical trials in multiple sclerosis. Mult. Scler. J. 29, 1136–1148 (2023).

    Article  Google Scholar 

  244. Mintun, M. A. et al. Donanemab in early Alzheimer’s disease. N. Engl. J. Med. 384, 1691–1704 (2021).

    Article  CAS  PubMed  Google Scholar 

  245. van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9-21 (2023).

    Article  PubMed  Google Scholar 

  246. Li, V. et al. Designing multi-arm multistage adaptive trials for neuroprotection in progressive multiple sclerosis. Neurology 98, 754–764 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Boselli, M. et al. An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons. J. Biol. Chem. 292, 19209–19225 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Qu, J. et al. Specific knockdown of α-synuclein by peptide-directed proteasome degradation rescued its associated neurotoxicity. Cell Chem. Biol. 27, 751–762.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  250. Hirai, K. et al. Conversion of a PROTAC mutant Huntingtin degrader into small-molecule hydrophobic tags focusing on drug-like properties. ACS Med. Chem. Lett. 13, 396–402 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Strauss, K. A. et al. Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: the phase III SPR1NT trial. Nat. Med. 28, 1381–1389 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Mueller, C. et al. SOD1 suppression with adeno-associated virus and microRNA in familial ALS. N. Engl. J. Med. 383, 151–158 (2020).

    Article  CAS  PubMed  Google Scholar 

  254. Mifflin, L., Ofengeim, D. & Yuan, J. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat. Rev. Drug Discov. 19, 553–571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Yang, J. et al. RIPK3/MLKL-mediated neuronal necroptosis modulates the M1/M2 polarization of microglia/macrophages in the ischemic cortex. Cereb. Cortex 28, 2622–2635 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Mitroshina, E. V. et al. Inhibition of neuronal necroptosis mediated by RIPK1 provides neuroprotective effects on hypoxia and ischemia in vitro and in vivo. Int. J. Mol. Sci. 23, 735 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Zhan, L., Lu, X., Xu, W., Sun, W. & Xu, E. Inhibition of MLKL-dependent necroptosis via downregulating interleukin-1R1 contributes to neuroprotection of hypoxic preconditioning in transient global cerebral ischemic rats. J. Neuroinflamm. 18, 97 (2021).

    Article  CAS  Google Scholar 

  258. Mifflin, L. et al. A RIPK1-regulated inflammatory microglial state in amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 118, e2025102118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Ma, X.-R. et al. Inhibition of RIPK1 by ZJU-37 promotes oligodendrocyte progenitor proliferation and remyelination via NF-κB pathway. Cell Death Discov. 8, 147 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Hincelin-Mery, A. et al. First-in-human study of safety, tolerability, pharmacokinetics, and pharmacodynamics of SAR443820, a central nervous system penetrant RIPK1 inhibitor in healthy participants (S46.005). Neurology 100, 1927 (2023).

    Article  Google Scholar 

  261. Montalban, X. et al. Effect of RIPK1 inhibitor, SAR443820, on serum neurofilament light levels in patients with multiple sclerosis: a phase 2 trial design (P6-3.011). Neurology 100, 2178 (2023).

    Article  Google Scholar 

  262. Lei, G., Zhuang, L. & Gan, B. Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer 22, 381–396 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Conrad, M., Lorenz, S. M. & Proneth, B. Targeting ferroptosis: new hope for as-yet-incurable diseases. Trends Mol. Med. 27, 113–122 (2021).

    Article  CAS  PubMed  Google Scholar 

  264. Dietrich, M. et al. Early alpha-lipoic acid therapy protects from degeneration of the inner retinal layers and vision loss in an experimental autoimmune encephalomyelitis-optic neuritis model. J. Neuroinflamm. 15, 71 (2018).

    Article  Google Scholar 

  265. Zhang, J. et al. Alpha-lipoic acid improved motor function in MPTP-induced Parkinsonian mice by reducing neuroinflammation in the nigral and spinal cord. Neurosci. Lett. 781, 136669 (2022).

    Article  CAS  PubMed  Google Scholar 

  266. Tuo, Q. et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol. Psychiatry 22, 1520–1530 (2017).

    Article  CAS  PubMed  Google Scholar 

  267. Carboni, E. et al. Deferiprone rescues behavioral deficits induced by mild iron exposure in a mouse model of alpha-synuclein aggregation. Neuromol. Med. 19, 309–321 (2017).

    Article  CAS  Google Scholar 

  268. Devos, D. et al. Trial of deferiprone in Parkinson’s disease. N. Engl. J. Med. 387, 2045–2055 (2022).

    Article  CAS  PubMed  Google Scholar 

  269. Matak, P. et al. Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice. Proc. Natl Acad. Sci. USA 113, 3428–3435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Hofmann, A. et al. Myeloid cell iron uptake pathways and paramagnetic rim formation in multiple sclerosis. Acta Neuropathol. 146, 707–724 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Wang, T. et al. Ferroptosis mediates selective motor neuron death in amyotrophic lateral sclerosis. Cell Death Differ. 29, 1187–1198 (2022).

    Article  CAS  PubMed  Google Scholar 

  272. Hu, Q. et al. GPX4 and vitamin E cooperatively protect hematopoietic stem and progenitor cells from lipid peroxidation and ferroptosis. Cell Death Dis. 12, 706 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Hinman, A. et al. Vitamin E hydroquinone is an endogenous regulator of ferroptosis via redox control of 15-lipoxygenase. PLoS ONE 13, e0201369 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Ulatowski, L. et al. The tocopherol transfer protein mediates vitamin E trafficking between cerebellar astrocytes and neurons. J. Biol. Chem. 298, 101712 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Villalón-García, I. et al. Vitamin E prevents lipid peroxidation and iron accumulation in PLA2G6-associated neurodegeneration. Neurobiol. Dis. 165, 105649 (2022).

    Article  PubMed  Google Scholar 

  276. Gohil, K. et al. Mice lacking α-tocopherol transfer protein gene have severe α-tocopherol deficiency in multiple regions of the central nervous system. Brain Res. 1201, 167–176 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Petersen, R. C. et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N. Engl. J. Med. 352, 2379–2388 (2005).

    Article  CAS  PubMed  Google Scholar 

  278. Kosa, P. et al. Idebenone does not inhibit disability progression in primary progressive MS. Mult. Scler. Relat. Disord. 45, 102434 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Gaba, B. et al. Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s disease model. Biomed. Res. Int. 2019, 2382563 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Aeschimann, W. et al. Self-assembled α-tocopherol transfer protein nanoparticles promote vitamin E delivery across an endothelial barrier. Sci. Rep. 7, 4970 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Spain, R. et al. Lipoic acid in secondary progressive MS. Neurol. Neuroimmunol. Neuroinflamm. 4, e374 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Monti, D. A. et al. N-Acetyl cysteine administration is associated with increased cerebral glucose metabolism in patients with multiple sclerosis: an exploratory study. Front. Neurol. 11, 88 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Schoeps, V. A. et al. N-Acetyl Cysteine as a Neuroprotective Agent in Progressive Multiple Sclerosis (NACPMS) trial: study protocol for a randomized, double-blind, placebo-controlled add-on phase 2 trial. Contemp. Clin. Trials 122, 106941 (2022).

    Article  PubMed  Google Scholar 

  284. Krysko, K. et al. N-Acetyl cysteine for fatigue in progressive multiple sclerosis: a pilot randomized double-blind placebo-controlled trial (P5.2-093). Neurology 92, P5.2-093 (2019).

    Article  Google Scholar 

  285. Neumann, B. et al. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell 25, 473–485.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Wang, Z., Wu, Z., Xie, Z., Zhou, W. & Li, M. Metformin attenuates ferroptosis and promotes functional recovery of spinal cord injury. World Neurosurg. 167, e929–e939 (2022).

    Article  PubMed  Google Scholar 

  287. Xie, D. et al. Clemastine improves hypomyelination in rats with hypoxic–ischemic brain injury by reducing microglia-derived IL-1β via P38 signaling pathway. J. Neuroinflamm. 17, 57 (2020).

    Article  CAS  Google Scholar 

  288. Apolloni, S., Fabbrizio, P., Parisi, C., Amadio, S. & Volonté, C. Clemastine confers neuroprotection and induces an anti-inflammatory phenotype in SOD1G93A mouse model of amyotrophic lateral sclerosis. Mol. Neurobiol. 53, 518–531 (2016).

    Article  CAS  PubMed  Google Scholar 

  289. Green, A. J. et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet 390, 2481–2489 (2017).

    Article  CAS  PubMed  Google Scholar 

  290. Theotokis, P. et al. Time course and spatial profile of Nogo-A expression in experimental autoimmune encephalomyelitis in C57BL/6 mice. J. Neuropathol. Exp. Neurol. 71, 907–920 (2012).

    Article  CAS  PubMed  Google Scholar 

  291. Pernet, V. et al. Nogo-A antibody delivery through the olfactory mucosa mitigates experimental autoimmune encephalomyelitis in the mouse CNS. Cell Death Discov. 9, 290 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Ranger, A. et al. Anti-LINGO-1 has no detectable immunomodulatory effects in preclinical and phase 1 studies. Neurol. Neuroimmunol. Neuroinflamm. 5, e417 (2018).

    Article  PubMed  Google Scholar 

  293. Mi, S. et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat. Med. 13, 1228–1233 (2007).

    Article  CAS  PubMed  Google Scholar 

  294. Mi, S. et al. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann. Neurol. 65, 304–315 (2009).

    Article  CAS  PubMed  Google Scholar 

  295. Zhu, B. et al. 200 AFFINITY: opicinumab in a targeted population of MS patients. J. Neurol. Neurosurg. Psychiatry 90, e50.3-e50 (2019).

    Article  Google Scholar 

  296. Evans, K. C. et al. Exploratory MRI biomarkers of opicinumab (anti-LINGO-1) show stabilization of pre-existing T2 lesions in relapsing multiple sclerosis: results from the phase 2b SYNERGY trial (P2.100). Neurology 88, P2.100 (2017).

    Article  Google Scholar 

  297. Rezai, A. R. et al. Ultrasound blood-brain barrier opening and aducanumab in Alzheimer’s disease. N. Engl. J. Med. 390, 55–62 (2024).

    Article  CAS  PubMed  Google Scholar 

  298. Terstappen, G. C., Meyer, A. H., Bell, R. D. & Zhang, W. Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug Discov. 20, 362–383 (2021).

    Article  CAS  PubMed  Google Scholar 

  299. Maynard, G. et al. Soluble Nogo-receptor-Fc decoy (AXER-204) in patients with chronic cervical spinal cord injury in the USA: a first-in-human and randomised clinical trial. Lancet Neurol. 22, 672–684 (2023).

    Article  CAS  PubMed  Google Scholar 

  300. Jacobson, P. B. et al. Elezanumab, a human anti-RGMa monoclonal antibody, promotes neuroprotection, neuroplasticity, and neurorecovery following a thoracic hemicompression spinal cord injury in non-human primates. Neurobiol. Dis. 155, 105385 (2021).

    Article  CAS  PubMed  Google Scholar 

  301. Mothe, A. J. et al. Delayed administration of the human anti-RGMa monoclonal antibody elezanumab promotes functional recovery including spontaneous voiding after spinal cord injury in rats. Neurobiol. Dis. 143, 104995 (2020).

    Article  CAS  PubMed  Google Scholar 

  302. Jacobson, P. B. et al. Neutralizing RGMa with elezanumab promotes cerebroprotection and recovery in rabbit middle cerebral artery occlusion. Transl. Stroke Res. https://doi.org/10.1007/s12975-023-01164-2 (2023).

    Article  PubMed  Google Scholar 

  303. Kalluri, H. V. et al. Phase 1 evaluation of elezanumab (anti-repulsive guidance molecule A monoclonal antibody) in healthy and multiple sclerosis participants. Ann. Neurol. 93, 285–296 (2023).

    Article  CAS  PubMed  Google Scholar 

  304. Gupta, S. et al. CAR-T cell-mediated B-cell depletion in central nervous system autoimmunity. Neurol. Neuroimmunol. Neuroinflamm. 10, e200080 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Fischbach, F. et al. CD19-targeted chimeric antigen receptor T cell therapy in two patients with multiple sclerosis. Med https://doi.org/10.1016/j.medj.2024.03.002 (2024).

    Article  PubMed  Google Scholar 

  306. Bagnato, F. et al. International consensus on smoldering disease in multiple sclerosis using the Delphi method (P11-3.013). Neurology 100, 3986 (2023).

    Article  Google Scholar 

  307. Absinta, M. et al. Association of chronic active multiple sclerosis lesions with disability in vivo. JAMA Neurol. 76, 1474 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  308. Sucksdorff, M. et al. Brain TSPO-PET predicts later disease progression independent of relapses in multiple sclerosis. Brain 143, 3318–3330 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  309. Kotas, M. E. & Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 160, 816–827 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Meizlish, M. L., Franklin, R. A., Zhou, X. & Medzhitov, R. Tissue homeostasis and inflammation. Annu. Rev. Immunol. 39, 557–581 (2021).

    Article  CAS  PubMed  Google Scholar 

  311. Becher, B., Spath, S. & Goverman, J. Cytokine networks in neuroinflammation. Nat. Rev. Immunol. 17, 49–59 (2017).

    Article  CAS  PubMed  Google Scholar 

  312. Lutz, N. W. et al. Inflammatory multiple-sclerosis plaques generate characteristic metabolic profiles in cerebrospinal fluid. PLoS ONE 2, e595 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  313. Albanese, M. et al. Cerebrospinal fluid lactate is associated with multiple sclerosis disease progression. J. Neuroinflamm. 13, 36 (2016).

    Article  Google Scholar 

  314. Johnson, T. W. et al. Gray matter hypoxia in the brain of the experimental autoimmune encephalomyelitis model of multiple sclerosis. PLoS ONE 11, e0167196 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  315. Davies, A. L. et al. Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Ann. Neurol. 74, 815–825 (2013).

    Article  CAS  PubMed  Google Scholar 

  316. Guttenplan, K. A. et al. Neurotoxic reactive astrocytes induce cell death via saturated lipids. Nature 599, 102–107 (2021).

    Article  CAS  PubMed  Google Scholar 

  317. Ellwardt, E. et al. Maladaptive cortical hyperactivity upon recovery from experimental autoimmune encephalomyelitis. Nat. Neurosci. 21, 1392–1403 (2018). This paper shows that chronic CNS inflammation leads to continuous hyperexcitability in EAE that causes neuronal dysfunction and loss.

    Article  CAS  PubMed  Google Scholar 

  318. Kerkering, J. et al. iPSC-derived reactive astrocytes from patients with multiple sclerosis protect cocultured neurons in inflammatory conditions. J. Clin. Invest. 133, e164637 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  319. Slavin, A. et al. Induction of a multiple sclerosis-like disease in mice with an immunodominant epitope of myelin oligodendrocyte glycoprotein. Autoimmunity 28, 109–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  320. Amor, S. et al. Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J. Immunol. 153, 4349–4356 (1994).

    Article  CAS  PubMed  Google Scholar 

  321. Basso, A. S. et al. Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. J. Clin. Invest. 118, 1532–1543 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Irvine, K. A. & Blakemore, W. F. Remyelination protects axons from demyelination-associated axon degeneration. Brain 131, 1464–1477 (2008).

    Article  CAS  PubMed  Google Scholar 

  323. Pandey, S. et al. Disease-associated oligodendrocyte responses across neurodegenerative diseases. Cell Rep. 40, 111189 (2022).

    Article  CAS  PubMed  Google Scholar 

  324. Wies Mancini, V. S. B. et al. Colony‐stimulating factor‐1 receptor inhibition attenuates microgliosis and myelin loss but exacerbates neurodegeneration in the chronic cuprizone model. J. Neurochem. 160, 643–661 (2022).

    Article  CAS  PubMed  Google Scholar 

  325. Kramann, N., Menken, L., Hayardeny, L., Hanisch, U.-K. & Brück, W. Laquinimod prevents cuprizone-induced demyelination independent of Toll-like receptor signaling. Neurol. Neuroimmunol. Neuroinflamm. 3, e233 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  326. Babbe, H. et al. Clonal expansions of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med. 192, 393–404 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Skulina, C. et al. Multiple sclerosis: brain-infiltrating CD8+ T cells persist as clonal expansions in the cerebrospinal fluid and blood. Proc. Natl Acad. Sci. USA 101, 2428–2433 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Friese, M. A. et al. Opposing effects of HLA class I molecules in tuning autoreactive CD8+ T cells in multiple sclerosis. Nat. Med. 14, 1227–1235 (2008).

    Article  CAS  PubMed  Google Scholar 

  329. Merkler, D. et al. ‘Viral déjà vu’ elicits organ-specific immune disease independent of reactivity to self. J. Clin. Invest. 116, 1254–1263 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the Friese laboratory for the discussions. M.S.W. is funded by the Else-Kröner-Fresenius Memorial Stipend (2023_EKMS.03) and Joachim-Herz-Foundation. J.B.E is funded by the Hertie Network of Excellence in Clinical Neuroscience Fellowship. The research of M.A.F. into inflammation-induced neurodegeneration during MS at the Institute of Neuroimmunology and Multiple Sclerosis is supported by the Bundesministerium für Bildung und Forschung (16GW0308K), Deutsche Forschungsgemeinschaft (FR1720/25-1, FR1720/24-1, FR1720/11-2, FR1720/9-2, SFB1328 A16), Gemeinnützige Hertie-Stiftung (P1200091, P1210014, P1220064, P1230093), Deutsche Multiple Sklerose Gesellschaft (V6.2), Werner Otto-Stiftung (07/100), Walter und Ilse Rose-Stiftung (T0298/38958/2021) and Research Funds of the University Medical Center Hamburg-Eppendorf.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Manuel A. Friese.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Wensheng Lin, Francisco Quintana and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Assay for transposase-accessible chromatin using sequencing

(ATAC-seq). A method that allows the analysis of chromatin accessibility by sequencing of open chromatin that was tagged and fragmented by the hyperactive transposase Tn5.

Axon transections

Loss of axonal continuity (axotomy) owing to inflammation, demyelination or trauma, which leads to retrograde and Wallerian (anterograde) degeneration.

Chromatin immunoprecipitation and sequencing

(ChIP–seq). A method that identifies DNA binding sites of proteins by performing next-generation sequencing with immunoprecipitated DNA.

Disease-modifying therapies

Therapies that delay or slow down the progression of a disease; in the context of MS, currently available disease-modifying therapies consist of immunomodulatory therapies.

Excitation–inhibition balance

The excitation–inhibition balance describes the entirety of neuronal excitatory and inhibitory inputs and outputs, which is maintained at a constant ratio in steady state.

Experimental autoimmune encephalomyelitis

(EAE). An animal model of MS that is initiated by immunization of animals with myelin peptides or proteins and a strong adjuvant exerting autoreactive lymphocytes (active EAE) or by transferring these autoreactive lymphocytes into non-immunized animals (passive EAE).

External cues

Extracellular stimuli that neurons are exposed to during CNS inflammation that elicit a neuronal response.

Internal cues

Intracellular stimuli that activate neuron-intrinsic molecular pathways and trigger a neuronal response.

Iron rims

Lesions that are surrounded by an iron deposition, which can be imaged by MRI and are associated with disease progression and activated microglia and monocytes in histopathology.

Myeloid cells

Haematopoietic stem cell-derived cell types that develop from myeloid progenitor cells in contrast to the lymphoid cell lines. They comprise monocytes, tissue macrophages, microglia, dendritic cells and granulocytes.

Normal-appearing grey matter

Grey matter of people with MS that appears normal, that is, without inflammatory lesions in an MRI scan and in neuropathological specimens.

Normal-appearing white matter

White matter of people with MS that appears normal, that is, without inflammatory lesions in an MRI scan and in neuropathological specimens.

Optical coherence tomography

(OCT). Non-invasive imaging modality using light waves to take cross-sectional images of the retina.

Progression independent of relapse activity

(PIRA). Continuous disability accumulation that occurs independently of relapse activity.

Randomized clinical trial

A clinical trial wherein individuals are randomly assigned to different experimental or control groups. Randomized clinical trials are the gold standard for phase III clinical trials.

Relapse-associated worsening

(RAW). Initial increase in disability that is preceded by any relapse in the past 90 days.

Retrograde degeneration

An active form of axonal degeneration proximal to the axonal injury that includes degeneration of the neuronal somata.

Set points

Optimal target values for a regulated variable that is actively maintained during tissue homoeostasis.

Smoldering disease activity

This includes low-grade inflammation, mostly composed of activated infiltrating and CNS-resident myeloid cells, and neuronal deregulations that start early in the MS disease course and determine neurodegeneration and disability progression.

Tissue homoeostasis

Active maintenance of quantitative variables within a desirable range. Target values for these variables are defined as set points.

Unfolded protein response

(UPR). A conserved adaptive cellular stress response to reduce unfolded and misfolded protein load to maintain cell homoeostasis and viability.

Wallerian (anterograde) degeneration

An active form of axonal degeneration distal of the axonal injury. This is associated with swelling of the axon and formation of axonal spheroids.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, M.S., Engler, J.B. & Friese, M.A. The neuropathobiology of multiple sclerosis. Nat. Rev. Neurosci. 25, 493–513 (2024). https://doi.org/10.1038/s41583-024-00823-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-024-00823-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing