Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Common principles for odour coding across vertebrates and invertebrates

Abstract

The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomical characterization of fly and mouse olfactory systems.
Fig. 2: Local interneurons and principal cells in the antennal lobe and olfactory bulb.
Fig. 3: Local connectivity of early olfactory regions in the mouse and fly.
Fig. 4: Effect of neuromodulation on olfactory circuits.

Similar content being viewed by others

References

  1. Strausfeld, N. J. & Hildebrand, J. G. Olfactory systems: common design, uncommon origins? Curr. Opin. Neurobiol. 9, 634–639 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Vassar, R. et al. Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981–991 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Benton, R. Drosophila olfaction: past, present and future. Proc. R. Soc. B Biol. Sci. 289, 20222054 (2022).

    Article  CAS  Google Scholar 

  4. Winding, M. et al. The connectome of an insect brain. Science 379, eadd9330 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schlegel, P. et al. Information flow, cell types and stereotypy in a full olfactory connectome. eLife 10, e66018 (2021). Complete description of the olfactory processing pathway in flies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haberly, L. B. Parallel-distributed processing in olfactory cortex: new insights from morphological and physiological analysis of neuronal circuitry. Chem. Senses 26, 551–576 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Nagappan, S. & Franks, K. M. Parallel processing by distinct classes of principal neurons in the olfactory cortex. eLife 10, e73668 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ma, M., Fleischer, J., Breer, H. & Eisthen, H. in Handbook of Olfaction and Gustation (ed. Doty, R. L.) 1133–1150 (Wiley, 2015).

  9. Zimmerman, A. D. & Munger, S. D. Olfactory subsystems associated with the necklace glomeruli in rodents. Cell Tissue Res. 383, 549–557 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mohrhardt, J., Nagel, M., Fleck, D., Ben-Shaul, Y. & Spehr, M. Signal detection and coding in the accessory olfactory system. Chem. Senses 43, 667–695 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gomez-Diaz, C., Martin, F., Garcia-Fernandez, J. M. & Alcorta, E. The two main olfactory receptor families in Drosophila, ORs and IRs: a comparative approach. Front. Cell. Neurosci. 12, 253 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Spehr, M. & Munger, S. D. Olfactory receptors: GPCRs and beyond. J. Neurochem. 109, 1570–1583 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fishilevich, E. et al. Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr. Biol. 15, 2086–2096 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Kreher, S. A., Kwon, J. Y. & Carlson, J. R. The molecular basis of odor coding in the Drosophila larva. Neuron 46, 445–456 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Vosshall, L. B., Wong, A. M. & Axel, R. An olfactory sensory map in the fly brain. Cell 102, 147–159 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Couto, A., Alenius, M. & Dickson, B. J. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol. 15, 1535–1547 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, X. & Firestein, S. The olfactory receptor gene superfamily of the mouse. Nat. Neurosci. 5, 124–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Rytz, R., Croset, V. & Benton, R. Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochem. Mol. Biol. 43, 888–897 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Benton, R., Vannice, K. S., Gomez-Diaz, C. & Vosshall, L. B. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136, 149–162 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chess, A., Simon, I., Cedar, H. & Axel, R. Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823–834 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Hallem, E. A. & Carlson, J. R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Ha, T. S. & Smith, D. P. A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. J. Neurosci. 26, 8727–8733 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pérez-Gómez, A. et al. Innate predator odor aversion driven by parallel olfactory subsystems that converge in the ventromedial hypothalamus. Curr. Biol. 25, 1340–1346 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wong, W. M. et al. Physiology-forward identification of bile acid-sensitive vomeronasal receptors. Sci. Adv. 6, eaaz6868 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nava Gonzales, C. et al. Systematic morphological and morphometric analysis of identified olfactory receptor neurons in Drosophila melanogaster. eLife 10, e69896 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Komarov, N. & Sprecher, S. G. The chemosensory system of the Drosophila larva: an overview of current understanding. Fly 16, 1–12 (2022).

    Article  PubMed  Google Scholar 

  29. Rihani, K., Ferveur, J.-F. & Briand, L. The 40-year mystery of insect odorant-binding proteins. Biomolecules 11, 509 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morrison, E. E. & Costanzo, R. M. Morphology of olfactory epithelium in humans and other vertebrates. Microsc. Res. Tech. 23, 49–61 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Pelosi, P. Perireceptor events in olfaction. J. Neurobiol. 30, 3–19 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. McEwen, D. P., Jenkins, P. M. & Martens, J. R. Olfactory cilia: our direct neuronal connection to the external world. Curr. Top. Dev. Biol. 85, 333–370 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Gottfried, J. A. Central mechanisms of odour object perception. Nat. Rev. Neurosci. 11, 628–641 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Pinching, A. J. & Powell, T. P. S. The neuropil of the glomeruli of the olfactory bulb. J. Cell Sci. 9, 347–377 (1971).

    Article  CAS  PubMed  Google Scholar 

  36. Ressler, K. J., Sullivan, S. L. & Buck, L. B. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245–1255 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Treloar, H. B., Feinstein, P., Mombaerts, P. & Greer, C. A. Specificity of glomerular targeting by olfactory sensory axons. J. Neurosci. 22, 2469–2477 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Burton, S. D. et al. Mapping odorant sensitivities reveals a sparse but structured representation of olfactory chemical space by sensory input to the mouse olfactory bulb. eLife 11, e80470 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Si, G. et al. Structured odorant response patterns across a complete olfactory receptor neuron population. Neuron 101, 950–962.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wachowiak, M. & Cohen, L. B. Representation of odorants by receptor neuron input to the mouse olfactory bulb. Neuron 32, 723–735 (2001). Highlights how olfactory receptor neurons encode odours of different concentrations and identities.

    Article  CAS  PubMed  Google Scholar 

  41. Pashkovski, S. L. et al. Structure and flexibility in cortical representations of odour space. Nature 583, 253–258 (2020). Provided evidence that olfactory bulb and cortical neuron populations encode odour chemistry differently. Neurons in the bulb more closely encode odour chemistry, whereas piriform neurons represent odour relationships.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Araneda, R. C., Kini, A. D. & Firestein, S. The molecular receptive range of an odorant receptor. Nat. Neurosci. 3, 1248–1255 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Johnson, B. A. & Leon, M. Modular representations of odorants in the glomerular layer of the rat olfactory bulb and the effects of stimulus concentration. J. Comp. Neurol. 422, 496–509 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Zhao, Z. & McBride, C. S. Evolution of olfactory circuits in insects. J. Comp. Physiol. A 206, 353–367 (2020).

    Article  Google Scholar 

  45. Bear, D. M., Lassance, J.-M., Hoekstra, H. E. & Datta, S. R. Evolution of the genetic and neural architecture for vertebrate odor perception. Curr. Biol. 26, R1039–R1049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Herre, M. et al. Non-canonical odor coding in the mosquito. Cell 185, 3104–3123.e28 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Task, D. et al. Chemoreceptor co-expression in Drosophila melanogaster olfactory neurons. eLife 11, e72599 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Szyszka, P., Gerkin, R. C., Galizia, C. G. & Smith, B. H. High-speed odor transduction and pulse tracking by insect olfactory receptor neurons. Proc. Natl Acad. Sci. USA 111, 16925–16930 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Getahun, M. N., Wicher, D., Hansson, B. S. & Olsson, S. B. Temporal response dynamics of Drosophila olfactory sensory neurons depends on receptor type and response polarity. Front. Cell. Neurosci. 6, 54 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Raman, B., Joseph, J., Tang, J. & Stopfer, M. Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors. J. Neurosci. 30, 1994–2006 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Greer, P. L. et al. A family of non-GPCR chemosensors defines an alternative logic for mammalian olfaction. Cell 165, 1734–1748 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Juilfs, D. M. et al. A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-d define a unique olfactory signal transduction pathway. Proc. Natl Acad. Sci. USA 94, 3388–3395 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martini, S., Silvotti, L., Shirazi, A., Ryba, N. J. P. & Tirindelli, R. Co-expression of putative pheromone receptors in the sensory neurons of the vomeronasal organ. J. Neurosci. 21, 843–848 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu, L. et al. Widespread receptor-driven modulation in peripheral olfactory coding. Science 368, eaaz5390 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Inagaki, S., Iwata, R., Iwamoto, M. & Imai, T. Widespread inhibition, antagonism, and synergy in mouse olfactory sensory neurons in vivo. Cell Rep. 31, 107814 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Singh, V., Murphy, N. R., Balasubramanian, V. & Mainland, J. D. Competitive binding predicts nonlinear responses of olfactory receptors to complex mixtures. Proc. Natl Acad. Sci. USA 116, 9598–9603 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu, S.-T. et al. Valence opponency in peripheral olfactory processing. Proc. Natl Acad. Sci. USA 119, e2120134119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zak, J. D., Reddy, G., Vergassola, M. & Murthy, V. N. Antagonistic odor interactions in olfactory sensory neurons are widespread in freely breathing mice. Nat. Commun. 11, 3350 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin, D. Y., Zhang, S.-Z., Block, E. & Katz, L. C. Encoding social signals in the mouse main olfactory bulb. Nature 434, 470–477 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Bozza, T., McGann, J. P., Mombaerts, P. & Wachowiak, M. In vivo imaging of neuronal activity by targeted expression of a genetically encoded probe in the mouse. Neuron 42, 9–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Tadres, D., Wong, P. H., To, T., Moehlis, J. & Louis, M. Depolarization block in olfactory sensory neurons expands the dimensionality of odor encoding. Sci. Adv. 8, eade7209 (2022). Further proof that olfactory receptor neuron activation is not linear and suggests complex processing at the olfactory receptor neuron level.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tsukahara, T. et al. A transcriptional rheostat couples past activity to future sensory responses. Cell 184, 6326–6343.e32 (2021). Demonstrated that chronic odour exposure and odour context alter peripheral neural responses through a transcriptional mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wilson, R. I., Turner, G. C. & Laurent, G. Transformation of olfactory representations in the Drosophila antennal lobe. Science 303, 366–370 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Berck, M. E. et al. The wiring diagram of a glomerular olfactory system. eLife 5, e14859 (2016). This paper established the first complete connectome for the larval Drosophila olfactory system.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lai, S.-L., Awasaki, T., Ito, K. & Lee, T. Clonal analysis of Drosophila antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage. Development 135, 2883–2893 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Schultzhaus, J. N., Saleem, S., Iftikhar, H. & Carney, G. E. The role of the Drosophila lateral horn in olfactory information processing and behavioral response. J. Insect Physiol. 98, 29–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Bates, A. S. et al. Complete connectomic reconstruction of olfactory projection neurons in the fly brain. Curr. Biol. 30, 3183–3199.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Imamura, F., Ito, A. & LaFever, B. J. Subpopulations of projection neurons in the olfactory bulb. Front. Neural Circuits 14, 561822 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Uytingco, C. R., Puche, A. C. & Munger, S. D. Interglomerular connectivity within the canonical and GC-D/necklace olfactory subsystems. PLoS ONE 11, e0165343 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Strutz, A. et al. Decoding odor quality and intensity in the Drosophila brain. eLife 3, e04147 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Schlegel, P. et al. Whole-brain annotation and multi-connectome cell typing quantifies circuit stereotypy in Drosophila. Preprint at bioRxiv https://doi.org/10.1101/2023.06.27.546055 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dorkenwald, S. et al. Neuronal wiring diagram of an adult brain. Preprint at bioRxiv https://doi.org/10.1101/2023.06.27.546656 (2023).

  73. Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central brain. eLife 9, e57443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Olsen, S. R., Bhandawat, V. & Wilson, R. I. Divisive normalization in olfactory population codes. Neuron 66, 287–299 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Olsen, S. R. & Wilson, R. I. Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452, 956–960 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Asahina, K., Louis, M., Piccinotti, S. & Vosshall, L. B. A circuit supporting concentration-invariant odor perception in Drosophila. J. Biol. 8, 9 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Larkin, A. et al. Central synaptic mechanisms underlie short-term olfactory habituation in Drosophila larvae. Learn. Mem. 17, 645–653 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Martelli, C. & Fiala, A. Slow presynaptic mechanisms that mediate adaptation in the olfactory pathway of Drosophila. eLife 8, e43735 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mohamed, A. A. M. et al. Odor mixtures of opposing valence unveil inter-glomerular crosstalk in the Drosophila antennal lobe. Nat. Commun. 10, 1201 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Vogt, K. et al. Internal state configures olfactory behavior and early sensory processing in Drosophila larvae. Sci. Adv. 7, eabd6900 (2021). Demonstrated complex local neuron processing and state-dependent modulation at the level of the antennal lobe and provided functional relevance for recurrent connections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Barth-Maron, A., D’Alessandro, I. & Wilson, R. I. Interactions between specialized gain control mechanisms in olfactory processing. Curr. Biol. 33, 5109–5120.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Assisi, C., Stopfer, M. & Bazhenov, M. Excitatory local interneurons enhance tuning of sensory information. PLoS Comput. Biol. 8, e1002563 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Olsen, S. R., Bhandawat, V. & Wilson, R. I. Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe. Neuron 54, 89–103 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Das, S. et al. Electrical synapses mediate synergism between pheromone and food odors in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 114, E9962–E9971 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dacks, A. M., Green, D. S., Root, C. M., Nighorn, A. J. & Wang, J. W. Serotonin modulates olfactory processing in the antennal lobe of Drosophila. J. Neurogenet. 23, 366–377 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang, X. & Gaudry, Q. Functional integration of a serotonergic neuron in the Drosophila antennal lobe. eLife 5, e16836 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Suzuki, Y., Schenk, J. E., Tan, H. & Gaudry, Q. A population of interneurons signals changes in the basal concentration of serotonin and mediates gain control in the Drosophila antennal lobe. Curr. Biol. 30, 1110–1118.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bozza, T., Feinstein, P., Zheng, C. & Mombaerts, P. Odorant receptor expression defines functional units in the mouse olfactory system. J. Neurosci. 22, 3033–3043 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Potter, S. M. et al. Structure and emergence of specific olfactory glomeruli in the mouse. J. Neurosci. 21, 9713–9723 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Burton, S. D. Inhibitory circuits of the mammalian main olfactory bulb. J. Neurophysiol. 118, 2034–2051 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Carey, R. M., Sherwood, W. E., Shipley, M. T., Borisyuk, A. & Wachowiak, M. Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb. J. Neurophysiol. 113, 3112–3129 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Panzanelli, P., Fritschy, J. M., Yanagawa, Y., Obata, K. & Sassoè-Pognetto, M. GABAergic phenotype of periglomerular cells in the rodent olfactory bulb. J. Comp. Neurol. 502, 990–1002 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Wachowiak, M. et al. Inhibition of olfactory receptor neuron input to olfactory bulb glomeruli mediated by suppression of presynaptic calcium influx. J. Neurophysiol. 94, 2700–2712 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Murphy, G. J., Darcy, D. P. & Isaacson, J. S. Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit. Nat. Neurosci. 8, 354–364 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Najac, M. et al. Intraglomerular lateral inhibition promotes spike timing variability in principal neurons of the olfactory bulb. J. Neurosci. 35, 4319–4331 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. McGann, J. P. et al. Odorant representations are modulated by intra- but not interglomerular presynaptic inhibition of olfactory sensory neurons. Neuron 48, 1039–1053 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Geramita, M. & Urban, N. N. Differences in glomerular-layer-mediated feedforward inhibition onto mitral and tufted cells lead to distinct modes of intensity coding. J. Neurosci. 37, 1428–1438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fukunaga, I., Berning, M., Kollo, M., Schmaltz, A. & Schaefer, A. T. Two distinct channels of olfactory bulb output. Neuron 75, 320–329 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Rall, W., Shepherd, G. M., Reese, T. S. & Brightman, M. W. Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Exp. Neurol. 14, 44–56 (1966).

    Article  CAS  PubMed  Google Scholar 

  100. Woolf, T. B., Shepherd, G. M. & Greer, C. A. Serial reconstructions of granule cell spines in the mammalian olfactory bulb. Synapse 7, 181–192 (1991).

    Article  CAS  PubMed  Google Scholar 

  101. Egger, V. & Kuner, T. Olfactory bulb granule cells: specialized to link coactive glomerular columns for percept generation and discrimination of odors. Cell Tissue Res. 383, 495–506 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yokoi, M., Mori, K. & Nakanishi, S. Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc. Natl Acad. Sci. USA 92, 3371–3375 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Arevian, A. C., Kapoor, V. & Urban, N. N. Activity-dependent gating of lateral inhibition in the mouse olfactory bulb. Nat. Neurosci. 11, 80–87 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Eyre, M. D., Antal, M. & Nusser, Z. Distinct deep short-axon cell subtypes of the main olfactory bulb provide novel intrabulbar and extrabulbar GABAergic connections. J. Neurosci. 28, 8217–8229 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gschwend, O. et al. Neuronal pattern separation in the olfactory bulb improves odor discrimination learning. Nat. Neurosci. 18, 1474–1482 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Abraham, N. M. et al. Synaptic inhibition in the olfactory bulb accelerates odor discrimination in mice. Neuron 65, 399–411 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lledo, P.-M. & Valley, M. Adult olfactory bulb neurogenesis. Cold Spring Harb. Perspect. Biol. 8, a018945 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wu, A. et al. Context-dependent plasticity of adult-born neurons regulated by cortical feedback. Sci. Adv. 6, eabc8319 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wilson, C. D., Serrano, G. O., Koulakov, A. A. & Rinberg, D. A primacy code for odor identity. Nat. Commun. 8, 1477 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wiechert, M. T., Judkewitz, B., Riecke, H. & Friedrich, R. W. Mechanisms of pattern decorrelation by recurrent neuronal circuits. Nat. Neurosci. 13, 1003–1010 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Chong, E. et al. Manipulating synthetic optogenetic odors reveals the coding logic of olfactory perception. Science 368, eaba2357 (2020). Provided evidence for the primacy coding strategy, in which early activated glomeruli contribute to the coding of odour identity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Blumhagen, F. et al. Neuronal filtering of multiplexed odour representations. Nature 479, 493–498 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Friedrich, R. W., Habermann, C. J. & Laurent, G. Multiplexing using synchrony in the zebrafish olfactory bulb. Nat. Neurosci. 7, 862–871 (2004). Key paper demonstrating that vertebrate olfactory bulb neurons can represent multiple types of olfactory information simultaneously.

    Article  CAS  PubMed  Google Scholar 

  114. Haberly, L. B. & Price, J. L. The axonal projection patterns of the mitral and tufted cells of the olfactory bulb in the rat. Brain Res. 129, 152–157 (1977).

    Article  CAS  PubMed  Google Scholar 

  115. Igarashi, K. M. et al. Parallel mitral and tufted cell pathways route distinct odor information to different targets in the olfactory cortex. J. Neurosci. 32, 7970–7985 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nagayama, S., Takahashi, Y. K., Yoshihara, Y. & Mori, K. Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb. J. Neurophysiol. 91, 2532–2540 (2004).

    Article  PubMed  Google Scholar 

  117. Chen, Y. et al. High-throughput sequencing of single neuron projections reveals spatial organization in the olfactory cortex. Cell 185, 4117–4134.e28 (2022). This paper challenged the idea that projection neurons from the olfactory bulb are random; rather, it provided anatomical evidence for functional organization among the olfactory bulb, cortex and higher-order regions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Van Groen, T. & Wyss, J. M. Extrinsic projections from area CA1 of the rat hippocampus: olfactory, cortical, subcortical, and bilateral hippocampal formation projections. J. Comp. Neurol. 302, 515–528 (1990).

    Article  PubMed  Google Scholar 

  119. Shipley, M. T. & Adamek, G. D. The connections of the mouse olfactory bulb: a study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. Brain Res. Bull. 12, 669–688 (1984).

    Article  CAS  PubMed  Google Scholar 

  120. de Olmos, J., Hardy, H. & Heimer, L. The afferent connections of the main and the accessory olfactory bulb formations in the rat: an experimental HRP-study. J. Comp. Neurol. 181, 213–244 (1978).

    Article  PubMed  Google Scholar 

  121. Pinching, A. J. & Powell, T. P. S. The termination of centrifugal fibres in the glomerular layer of the olfactory bulb. J. Cell Sci. 10, 621–635 (1972).

    Article  CAS  PubMed  Google Scholar 

  122. Davis, B. J. & Macrides, F. The organization of centrifugal projections from the anterior olfactory nucleus, ventral hippocampal rudiment, and piriform cortex to the main olfactory bulb in the hamster: an autoradiographic study. J. Comp. Neurol. 203, 475–493 (1981).

    Article  CAS  PubMed  Google Scholar 

  123. Price, J. L. & Powell, T. P. An experimental study of the origin and the course of the centrifugal fibres to the olfactory bulb in the rat. J. Anat. 107, 215–237 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Padmanabhan, K. et al. Diverse representations of olfactory information in centrifugal feedback projections. J. Neurosci. 36, 7535–7545 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kay, L. M. & Laurent, G. Odor- and context-dependent modulation of mitral cell activity in behaving rats. Nat. Neurosci. 2, 1003–1009 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Kikuta, S. et al. Neurons in the anterior olfactory nucleus pars externa detect right or left localization of odor sources. Proc. Natl Acad. Sci. USA 107, 12363–12368 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Esquivelzeta Rabell, J., Mutlu, K., Noutel, J., Martin del Olmo, P. & Haesler, S. Spontaneous rapid odor source localization behavior requires interhemispheric communication. Curr. Biol. 27, 1542–1548.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Grobman, M. et al. A mirror-symmetric excitatory link coordinates odor maps across olfactory bulbs and enables odor perceptual unity. Neuron 99, 800–813.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Markopoulos, F., Rokni, D., Gire, D. H. & Murthy, V. N. Functional properties of cortical feedback projections to the olfactory bulb. Neuron 76, 1175–1188 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Quintela, R. M. et al. Dynamic impairment of olfactory behavior and signaling mediated by an olfactory corticofugal system. J. Neurosci. 40, 7269–7285 (2020).

    Article  CAS  Google Scholar 

  131. Rothermel, M. & Wachowiak, M. Functional imaging of cortical feedback projections to the olfactory bulb. Front. Neural Circuits 8, 73 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Boyd, A. M., Kato, H. K., Komiyama, T. & Isaacson, J. S. Broadcasting of cortical activity to the olfactory bulb. Cell Rep. 10, 1032–1039 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Boyd, A. M., Sturgill, J. F., Poo, C. & Isaacson, J. S. Cortical feedback control of olfactory bulb circuits. Neuron 76, 1161–1174 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yamada, Y. et al. Context- and output layer-dependent long-term ensemble plasticity in a sensory circuit. Neuron 93, 1198–1212.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chu, M. W., Li, W. L. & Komiyama, T. Balancing the robustness and efficiency of odor representations during learning. Neuron 92, 174–186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Koldaeva, A., Schaefer, A. T. & Fukunaga, I. Rapid task-dependent tuning of the mouse olfactory bulb. eLife 8, e43558 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Lindeman, S., Fu, X., Reinert, J. K. & Fukunaga, I. Value-related learning in the olfactory bulb occurs through pathway-dependent perisomatic inhibition of mitral cells. PLoS Biol. 22, e3002536 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gao, Y. & Strowbridge, B. W. Long-term plasticity of excitatory inputs to granule cells in the rat olfactory bulb. Nat. Neurosci. 12, 731–733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chae, H., Banerjee, A., Dussauze, M. & Albeanu, D. F. Long-range functional loops in the mouse olfactory system and their roles in computing odor identity. Neuron 110, 3970–3985.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Otazu, G. H., Chae, H., Davis, M. B. & Albeanu, D. F. Cortical feedback decorrelates olfactory bulb output in awake mice. Neuron 86, 1461–1477 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Groschner, L. N. & Miesenböck, G. Mechanisms of sensory discrimination: insights from Drosophila olfaction. Annu. Rev. Biophys. 48, 209–229 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Cognigni, P., Felsenberg, J. & Waddell, S. Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila. Curr. Opin. Neurobiol. 49, 51–58 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Caron, S. J. C., Ruta, V., Abbott, L. F. & Axel, R. Random convergence of olfactory inputs in the Drosophila mushroom body. Nature 497, 113–117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Leiss, F., Groh, C., Butcher, N. J., Meinertzhagen, I. A. & Tavosanis, G. Synaptic organization in the adult Drosophila mushroom body calyx. J. Comp. Neurol. 517, 808–824 (2009).

    Article  PubMed  Google Scholar 

  145. Zheng, Z. et al. Structured sampling of olfactory input by the fly mushroom body. Curr. Biol. 32, 3334–3349.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Murthy, M., Fiete, I. & Laurent, G. Testing odor response stereotypy in the Drosophila mushroom body. Neuron 59, 1009–1023 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Turner, G. C., Bazhenov, M. & Laurent, G. Olfactory representations by Drosophila mushroom body neurons. J. Neurophysiol. 99, 734–746 (2008).

    Article  PubMed  Google Scholar 

  148. Babadi, B. & Sompolinsky, H. Sparseness and expansion in sensory representations. Neuron 83, 1213–1226 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Campbell, R. A. A. et al. Imaging a population code for odor identity in the Drosophila mushroom body. J. Neurosci. 33, 10568–10581 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Luo, S. X., Axel, R. & Abbott, L. F. Generating sparse and selective third-order responses in the olfactory system of the fly. Proc. Natl Acad. Sci. USA 107, 10713–10718 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lin, A. C., Bygrave, A. M., de Calignon, A., Lee, T. & Miesenböck, G. Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination. Nat. Neurosci. 17, 559–568 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Amin, H., Apostolopoulou, A. A., Suárez-Grimalt, R., Vrontou, E. & Lin, A. C. Localized inhibition in the Drosophila mushroom body. eLife 9, e56954 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Prisco, L., Deimel, S. H., Yeliseyeva, H., Fiala, A. & Tavosanis, G. The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx. eLife 10, e74172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Manoim, J. E., Davidson, A. M., Weiss, S., Hige, T. & Parnas, M. Lateral axonal modulation is required for stimulus-specific olfactory conditioning in Drosophila. Curr. Biol. 32, 4438–4450.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bielopolski, N. et al. Inhibitory muscarinic acetylcholine receptors enhance aversive olfactory learning in adult Drosophila. eLife 8, e48264 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Liu, Q. et al. Gap junction networks in mushroom bodies participate in visual learning and memory in Drosophila. eLife 5, e13238 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Eichler, K. et al. The complete connectome of a learning and memory centre in an insect brain. Nature 548, 175–182 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Masuda-Nakagawa, L. M., Tanaka, N. K. & O’Kane, C. J. Stereotypic and random patterns of connectivity in the larval mushroom body calyx of Drosophila. Proc. Natl Acad. Sci. USA 102, 19027–19032 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Endo, K., Tsuchimoto, Y. & Kazama, H. Synthesis of conserved odor object representations in a random, divergent-convergent network. Neuron 108, 367–381.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Yang, J.-Y. et al. Restructuring of olfactory representations in the fly brain around odor relationships in natural sources. Preprint at bioRxiv https://doi.org/10.1101/2023.02.15.528627 (2023).

  161. Kato, A., Ohta, K., Okanoya, K. & Kazama, H. Dopaminergic neurons dynamically update sensory values during olfactory maneuver. Cell Rep. 42, 113122 (2023).

    Article  CAS  PubMed  Google Scholar 

  162. Aso, Y. et al. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. eLife 3, e04580 (2014). This pioneering study performed the first detailed characterization of how mushroom body output neurons shape odour-guided behaviour.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Liu, C. et al. A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature 488, 512–516 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Cohn, R., Morantte, I. & Ruta, V. Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell 163, 1742–1755 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Handler, A. et al. Distinct dopamine receptor pathways underlie the temporal sensitivity of associative learning. Cell 178, 60–75.e19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lyutova, R. et al. Reward signaling in a recurrent circuit of dopaminergic neurons and peptidergic Kenyon cells. Nat. Commun. 10, 3097 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Siju, K. P. et al. Valence and state-dependent population coding in dopaminergic neurons in the fly mushroom body. Curr. Biol. 30, 2104–2115.e4 (2020). Highlights state-dependent activity of dopamine neurons required for olfactory learning and odour response variability.

    Article  CAS  PubMed  Google Scholar 

  168. Zolin, A. et al. Context-dependent representations of movement in Drosophila dopaminergic reinforcement pathways. Nat. Neurosci. 24, 1555–1566 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Eschbach, C. et al. Circuits for integrating learned and innate valences in the insect brain. eLife 10, e62567 (2021). Describes and highlights recurrent and convergent connectivity in higher brain regions (mushroom body-lateral horn).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Adel, M. & Griffith, L. C. The role of dopamine in associative learning in Drosophila: an updated unified model. Neurosci. Bull. 37, 831–852 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hige, T., Aso, Y., Modi, M. N., Rubin, G. M. & Turner, G. C. Heterosynaptic plasticity underlies aversive olfactory learning in Drosophila. Neuron 88, 985–998 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Owald, D. et al. Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila. Neuron 86, 417–427 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Noyes, N. C. & Davis, R. L. Innate and learned odor-guided behaviors utilize distinct molecular signaling pathways in a shared dopaminergic circuit. Cell Rep. 42, 112026 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Eschbach, C. et al. Recurrent architecture for adaptive regulation of learning in the insect brain. Nat. Neurosci. 23, 544–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Villar, M. E. et al. Differential coding of absolute and relative aversive value in the Drosophila brain. Curr. Biol. 32, 4576–4592.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Felsenberg, J. et al. Integration of parallel opposing memories underlies memory extinction. Cell 175, 709–722.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Martinez-Cervantes, J., Shah, P., Phan, A. & Cervantes-Sandoval, I. Higher-order unimodal olfactory sensory preconditioning in Drosophila. eLife 11, e79107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Yamada, D. et al. Hierarchical architecture of dopaminergic circuits enables second-order conditioning in Drosophila. eLife 12, e79042 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Dolan, M.-J. et al. Neurogenetic dissection of the Drosophila lateral horn reveals major outputs, diverse behavioural functions, and interactions with the mushroom body. eLife 8, e43079 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Frechter, S. et al. Functional and anatomical specificity in a higher olfactory centre. eLife 8, e44590 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Sosulski, D. L., Bloom, M. L., Cutforth, T., Axel, R. & Datta, S. R. Distinct representations of olfactory information in different cortical centres. Nature 472, 213–216 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Das Chakraborty, S., Chang, H., Hansson, B. S. & Sachse, S. Higher-order olfactory neurons in the lateral horn support odor valence and odor identity coding in Drosophila. eLife 11, e74637 (2022). This paper provided a detailed description of the lateral horn, which included complex integration and processing of olfactory information from uniglomerular projection neurons or multiglomerular projection neurons and local inhibitory neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jefferis, G. S. X. E. et al. Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128, 1187–1203 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lewis, L. P. C. et al. A higher brain circuit for immediate integration of conflicting sensory information in Drosophila. Curr. Biol. 25, 2203–2214 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Ghosh, S. et al. Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons. Nature 472, 217–220 (2011).

    Article  CAS  PubMed  Google Scholar 

  186. Miyamichi, K. et al. Cortical representations of olfactory input by transsynaptic tracing. Nature 472, 191–196 (2011).

    Article  CAS  PubMed  Google Scholar 

  187. Scalia, F. & Winans, S. S. The differential projections of the olfactory bulb and accessory olfactory bulb in mammals. J. Comp. Neurol. 161, 31–55 (1975).

    Article  CAS  PubMed  Google Scholar 

  188. Cajal, S. R. y. Estudios Sobre la Corteza Cerebral Humana: IV. Estructura de la Corteza Cerebral Olfativa del Hombre y Mamíferos (1901).

  189. Martin-Lopez, E., Ishiguro, K. & Greer, C. A. The laminar organization of piriform cortex follows a selective developmental and migratory program established by cell lineage. Cereb. Cortex 29, 1–16 (2019).

    Article  PubMed  Google Scholar 

  190. O’Leary, J. L. Structure of the primary olfactory cortex of the mouse. J. Comp. Neurol. 67, 1–31 (1937).

    Article  Google Scholar 

  191. Devor, M. Fiber trajectories of olfactory bulb efferents in the hamster. J. Comp. Neurol. 166, 31–47 (1976).

    Article  CAS  PubMed  Google Scholar 

  192. Ojima, H., Mori, K. & Kishi, K. The trajectory of mitral cell axons in the rabbit olfactory cortex revealed by intracellular HRP injection. J. Comp. Neurol. 230, 77–87 (1984).

    Article  CAS  PubMed  Google Scholar 

  193. Stevens, C. F. Structure of cat frontal olfactory cortex. J. Neurophysiol. 32, 184–192 (1969).

    Article  CAS  PubMed  Google Scholar 

  194. Haberly, L. B., Hansen, D. J., Feig, S. L. & Presto, S. Distribution and ultrastructure of neurons in opossum piriform cortex displaying immunoreactivity to GABA and GAD and high-affinity tritiated GABA uptake. J. Comp. Neurol. 266, 269–290 (1987).

    Article  CAS  PubMed  Google Scholar 

  195. Suzuki, N. & Bekkers, J. M. Neural coding by two classes of principal cells in the mouse piriform cortex. J. Neurosci. 26, 11938–11947 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Franks, K. M. et al. Recurrent circuitry dynamically shapes the activation of piriform cortex. Neuron 72, 49–56 (2011). Provided evidence that the recurrent circuitry in cortex acts as an associative network, in which cortical neurons do not strictly reflect odour binding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Rennaker, R. L., Chen, C.-F. F., Ruyle, A. M., Sloan, A. M. & Wilson, D. A. Spatial and temporal distribution of odorant-evoked activity in the piriform cortex. J. Neurosci. 27, 1534–1542 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Diodato, A. et al. Molecular signatures of neural connectivity in the olfactory cortex. Nat. Commun. 7, 12238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Mazo, C., Grimaud, J., Shima, Y., Murthy, V. N. & Lau, C. G. Distinct projection patterns of different classes of layer 2 principal neurons in the olfactory cortex. Sci. Rep. 7, 8282 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Franks, K. M. & Isaacson, J. S. Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding. Neuron 49, 357–363 (2006).

    Article  CAS  PubMed  Google Scholar 

  201. Apicella, A., Yuan, Q., Scanziani, M. & Isaacson, J. S. Pyramidal cells in piriform cortex receive convergent input from distinct olfactory bulb glomeruli. J. Neurosci. 30, 14255–14260 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Choi, G. B. et al. Driving opposing behaviors with ensembles of piriform neurons. Cell 146, 1004–1015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Illig, K. R. & Haberly, L. B. Odor-evoked activity is spatially distributed in piriform cortex. J. Comp. Neurol. 457, 361–373 (2003).

    Article  PubMed  Google Scholar 

  204. Poo, C. & Isaacson, J. S. Odor representations in olfactory cortex: ‘sparse’ coding, global inhibition, and oscillations. Neuron 62, 850–861 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Stettler, D. D. & Axel, R. Representations of odor in the piriform cortex. Neuron 63, 854–864 (2009).

    Article  CAS  PubMed  Google Scholar 

  206. Bolding, K. A. & Franks, K. M. Complementary codes for odor identity and intensity in olfactory cortex. eLife 6, e22630 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Miura, K., Mainen, Z. F. & Uchida, N. Odor representations in olfactory cortex: distributed rate coding and decorrelated population activity. Neuron 74, 1087–1098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Roland, B., Deneux, T., Franks, K. M., Bathellier, B. & Fleischmann, A. Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex. eLife 6, e26337 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Stern, M., Bolding, K. A., Abbott, L. & Franks, K. M. A transformation from temporal to ensemble coding in a model of piriform cortex. eLife 7, e34831 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Stopfer, M., Bhagavan, S., Smith, B. H. & Laurent, G. Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390, 70–74 (1997).

    Article  CAS  PubMed  Google Scholar 

  211. Stopfer, M., Jayaraman, V. & Laurent, G. Intensity versus identity coding in an olfactory system. Neuron 39, 991–1004 (2003).

    Article  CAS  PubMed  Google Scholar 

  212. Bolding, K. A. & Franks, K. M. Recurrent cortical circuits implement concentration-invariant odor coding. Science 361, eaat6904 (2018). Provided key evidence that odour identity is encoded through the recurrent feedback circuitry in cortex.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Bathellier, B., Buhl, D. L., Accolla, R. & Carleton, A. Dynamic ensemble odor coding in the mammalian olfactory bulb: sensory information at different timescales. Neuron 57, 586–598 (2008).

    Article  CAS  PubMed  Google Scholar 

  214. Barnes, D. C., Hofacer, R. D., Zaman, A. R., Rennaker, R. L. & Wilson, D. A. Olfactory perceptual stability and discrimination. Nat. Neurosci. 11, 1378–1380 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Johnson, D. M. G., Illig, K. R., Behan, M. & Haberly, L. B. New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that ‘primary’ olfactory cortex functions like ‘association’ cortex in other sensory systems. J. Neurosci. 20, 6974–6982 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Poo, C. & Isaacson, J. S. A major role for intracortical circuits in the strength and tuning of odor-evoked excitation in olfactory cortex. Neuron 72, 41–48 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. ul Quraish, A. et al. Quantitative analysis of axon collaterals of single superficial pyramidal cells in layer IIb of the piriform cortex of the guinea pig. Brain Res. 1026, 84–94 (2004).

    Article  CAS  PubMed  Google Scholar 

  218. Bolding, K. A., Nagappan, S., Han, B.-X., Wang, F. & Franks, K. M. Recurrent circuitry is required to stabilize piriform cortex odor representations across brain states. eLife 9, e53125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. E. Barkai & Saar, D. Cellular correlates of olfactory learning in the rat piriform cortex. Rev. Neurosci. 12, 111–120 (2001).

    Article  Google Scholar 

  220. Haberly, L. B. & Bower, J. M. Olfactory cortex: model circuit for study of associative memory? Trends Neurosci. 12, 258–264 (1989).

    Article  CAS  PubMed  Google Scholar 

  221. Hasselmo, M. E., Wilson, M. A., Anderson, B. R. & Bower, J. M. Associative memory function in piriform (olfactory) cortex: computational modeling and neuropharmacology. Cold Spring Harb. Symp. Quant. Biol. 55, 599–610 (1990).

    Article  CAS  PubMed  Google Scholar 

  222. Haberly, L. B. & Price, J. L. Association and commissural fiber systems of the olfactory cortex of the rat. I. Systems originating in the piriform cortex and adjacent areas. J. Comp. Neurol. 178, 711–740 (1978).

    Article  CAS  PubMed  Google Scholar 

  223. Luskin, M. B. & Price, J. L. The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb. J. Comp. Neurol. 216, 264–291 (1983).

    Article  CAS  PubMed  Google Scholar 

  224. Poo, C. & Isaacson, J. S. An early critical period for long-term plasticity and structural modification of sensory synapses in olfactory cortex. J. Neurosci. 27, 7553–7558 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Kumar, A., Barkai, E. & Schiller, J. Plasticity of olfactory bulb inputs mediated by dendritic NMDA-spikes in rodent piriform cortex. eLife 10, e70383 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Kanter, E. D. & Haberly, L. B. NMDA-dependent induction of long-term potentiation in afferent and association fiber systems of piriform cortex in vitro. Brain Res. 525, 175–179 (1990).

    Article  CAS  PubMed  Google Scholar 

  227. Quinlan, E. M., Lebel, D., Brosh, I. & Barkai, E. A molecular mechanism for stabilization of learning-induced synaptic modifications. Neuron 41, 185–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  228. Berners-Lee, A., Shtrahman, E., Grimaud, J. & Murthy, V. N. Experience-dependent evolution of odor mixture representations in piriform cortex. PLoS Biol. 21, e3002086 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Wang, P. Y. et al. Transient and persistent representations of odor value in prefrontal cortex. Neuron 108, 209–224.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Gadziola, M. A., Tylicki, K. A., Christian, D. L. & Wesson, D. W. The olfactory tubercle encodes odor valence in behaving mice. J. Neurosci. 35, 4515–4527 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Gadziola, M. A. et al. A neural system that represents the association of odors with rewarded outcomes and promotes behavioral engagement. Cell Rep. 32, 107919 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Midroit, M. et al. Neural processing of the reward value of pleasant odorants. Curr. Biol. 31, 1592–1605.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Millman, D. J. & Murthy, V. N. Rapid learning of odor–value association in the olfactory striatum. J. Neurosci. 40, 4335–4347 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Lee, D., Liu, L. & Root, C. M. Transformation of valence signaling in a striatopallidal circuit. eLife 12, RP90976 (2023).

    Google Scholar 

  235. Franks, K. M. & Isaacson, J. S. Synapse-specific downregulation of NMDA receptors by early experience: a critical period for plasticity of sensory input to olfactory cortex. Neuron 47, 101–114 (2005).

    Article  CAS  PubMed  Google Scholar 

  236. Schoonover, C. E., Ohashi, S. N., Axel, R. & Fink, A. J. P. Representational drift in primary olfactory cortex. Nature 594, 541–546 (2021). Provided evidence for drifting odour representations in the olfactory cortex.

    Article  CAS  PubMed  Google Scholar 

  237. Poo, C., Agarwal, G., Bonacchi, N. & Mainen, Z. F. Spatial maps in piriform cortex during olfactory navigation. Nature 601, 595–599 (2022). Demonstrated evidence for the encoding of spatial information in part of olfactory cortex.

    Article  CAS  PubMed  Google Scholar 

  238. Doucette, W. et al. Associative cortex features in the first olfactory brain relay station. Neuron 69, 1176–1187 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Gehrlach, D. A. et al. A whole-brain connectivity map of mouse insular cortex. eLife 9, e55585 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Padmanabhan, K. et al. Centrifugal inputs to the main olfactory bulb revealed through whole brain circuit-mapping. Front. Neuroanat. 12, 115 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Chen, Z. & Padmanabhan, K. Top-down feedback enables flexible coding strategies in olfactory cortex. Cell Rep. 38, 110545 (2022).

    Article  CAS  PubMed  Google Scholar 

  242. Chen, C.-F. F., Barnes, D. C. & Wilson, D. A. Generalized vs. stimulus-specific learned fear differentially modifies stimulus encoding in primary sensory cortex of awake rats. J. Neurophysiol. 106, 3136–3144 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Sadrian, B. & Wilson, D. A. Optogenetic stimulation of lateral amygdala input to posterior piriform cortex modulates single-unit and ensemble odor processing. Front. Neural Circuits 9, 81 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Aqrabawi, A. J. & Kim, J. C. Olfactory memory representations are stored in the anterior olfactory nucleus. Nat. Commun. 11, 1246 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Matsutani, S. & Yamamoto, N. Centrifugal innervation of the mammalian olfactory bulb. Anat. Sci. Int. 83, 218–227 (2008).

    Article  PubMed  Google Scholar 

  246. Escanilla, O., Arrellanos, A., Karnow, A., Ennis, M. & Linster, C. Noradrenergic modulation of behavioral odor detection and discrimination thresholds in the olfactory bulb. Eur. J. Neurosci. 32, 458–468 (2010).

    Article  PubMed  Google Scholar 

  247. Best, A. R. & Wilson, D. A. Coordinate synaptic mechanisms contributing to olfactory cortical adaptation. J. Neurosci. 24, 652–660 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Guérin, D., Peace, S. T., Didier, A., Linster, C. & Cleland, T. A. Noradrenergic neuromodulation in the olfactory bulb modulates odor habituation and spontaneous discrimination. Behav. Neurosci. 122, 816–826 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Mandairon, N. et al. Noradrenergic modulation in the olfactory bulb influences spontaneous and reward-motivated discrimination, but not the formation of habituation memory. Eur. J. Neurosci. 27, 1210–1219 (2008).

    Article  PubMed  Google Scholar 

  250. Jiang, M., Griff, E. R., Ennis, M., Zimmer, L. A. & Shipley, M. T. Activation of locus coeruleus enhances the responses of olfactory bulb mitral cells to weak olfactory nerve input. J. Neurosci. 16, 6319–6329 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Rothermel, M., Carey, R. M., Puche, A., Shipley, M. T. & Wachowiak, M. Cholinergic inputs from basal forebrain add an excitatory bias to odor coding in the olfactory bulb. J. Neurosci. 34, 4654–4664 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Zhan, X., Yin, P. & Heinbockel, T. The basal forebrain modulates spontaneous activity of principal cells in the main olfactory bulb of anesthetized mice. Front. Neural Circuits 7, 148 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Bendahmane, M., Ogg, M. C., Ennis, M. & Fletcher, M. L. Increased olfactory bulb acetylcholine bi-directionally modulates glomerular odor sensitivity. Sci. Rep. 6, 25808 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Parikh, V., Kozak, R., Martinez, V. & Sarter, M. Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56, 141–154 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Li, A., Rao, X., Zhou, Y. & Restrepo, D. Complex neural representation of odour information in the olfactory bulb. Acta Physiol. 228, e13333 (2020).

    Article  CAS  Google Scholar 

  256. Liu, Z. et al. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron 81, 1360–1374 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Brill, J., Shao, Z., Puche, A. C., Wachowiak, M. & Shipley, M. T. Serotonin increases synaptic activity in olfactory bulb glomeruli. J. Neurophysiol. 115, 1208–1219 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Petzold, G. C., Hagiwara, A. & Murthy, V. N. Serotonergic modulation of odor input to the mammalian olfactory bulb. Nat. Neurosci. 12, 784–791 (2009).

    Article  CAS  PubMed  Google Scholar 

  259. Huang, Z., Thiebaud, N. & Fadool, D. A. Differential serotonergic modulation across the main and accessory olfactory bulbs. J. Physiol. 595, 3515–3533 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Carlson, K. S., Whitney, M. S., Gadziola, M. A., Deneris, E. S. & Wesson, D. W. Preservation of essential odor-guided behaviors and odor-based reversal learning after targeting adult brain serotonin synthesis. eNeuro 3, ENEURO.0257-16.2016 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Do, J. P. et al. Cell type-specific long-range connections of basal forebrain circuit. eLife 5, e13214 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Záborszky, L., Carlsen, J., Brashear, H. R. & Heimer, L. Cholinergic and GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band. J. Comp. Neurol. 243, 488–509 (1986).

    Article  PubMed  Google Scholar 

  263. Linster, C. & Hasselmo, M. E. Neuromodulation and the functional dynamics of piriform cortex. Chem. Senses 26, 585–594 (2001).

    Article  CAS  PubMed  Google Scholar 

  264. Patil, M. M., Linster, C., Lubenov, E. & Hasselmo, M. E. Cholinergic agonist carbachol enables associative long-term potentiation in piriform cortex slices. J. Neurophysiol. 80, 2467–2474 (1998).

    Article  CAS  PubMed  Google Scholar 

  265. Patil, M. M. & Hasselmo, M. E. Modulation of inhibitory synaptic potentials in the piriform cortex. J. Neurophysiol. 81, 2103–2118 (1999).

    Article  CAS  PubMed  Google Scholar 

  266. Hasselmo, M. E. & Barkai, E. Cholinergic modulation of activity-dependent synaptic plasticity in the piriform cortex and associative memory function in a network biophysical simulation. J. Neurosci. 15, 6592–6604 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Hasselmo, M. E. & Bower, J. M. Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. J. Neurophysiol. 67, 1222–1229 (1992).

    Article  CAS  PubMed  Google Scholar 

  268. Nunez-Parra, A., Cea-Del Rio, C. A., Huntsman, M. M. & Restrepo, D. The basal forebrain modulates neuronal response in an active olfactory discrimination task. Front. Cell Neurosci. 14, 141 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Ogg, M. C., Ross, J. M., Bendahmane, M. & Fletcher, M. L. Olfactory bulb acetylcholine release dishabituates odor responses and reinstates odor investigation. Nat. Commun. 9, 1868 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Hasselmo, M. E. & McGaughy, J. High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Prog. Brain Res. 145, 207–231 (2004).

    Article  CAS  PubMed  Google Scholar 

  271. Chapuis, J. & Wilson, D. A. Cholinergic modulation of olfactory pattern separation. Neurosci. Lett. 545, 50–53 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Wilson, D. A., Fletcher, M. L. & Sullivan, R. M. Acetylcholine and olfactory perceptual learning. Learn. Mem. 11, 28–34 (2004).

    Article  PubMed  Google Scholar 

  273. Shakhawat, A. M. D. et al. Arc-expressing neuronal ensembles supporting pattern separation require adrenergic activity in anterior piriform cortex: an exploration of neural constraints on learning. J. Neurosci. 35, 14070–14075 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Datiche, F., Luppi, P.-H. & Cattarelli, M. Serotonergic and non-serotonergic projections from the raphe nuclei to the piriform cortex in the rat: a cholera toxin B subunit (CTb) and 5-HT immunohistochemical study. Brain Res. 671, 27–37 (1995).

    Article  CAS  PubMed  Google Scholar 

  275. de Olmos, J. & Heimer, L. Double and triple labeling of neurons with fluorescent substances; the study of collateral pathways in the ascending raphe system. Neurosci. Lett. 19, 7–12 (1980).

    Article  PubMed  Google Scholar 

  276. Lottem, E., Lörincz, M. L. & Mainen, Z. F. Optogenetic activation of dorsal raphe serotonin neurons rapidly inhibits spontaneous but not odor-evoked activity in olfactory cortex. J. Neurosci. 36, 7–18 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Hu, A., Zhang, W. & Wang, Z. Functional feedback from mushroom bodies to antennal lobes in the Drosophila olfactory pathway. Proc. Natl Acad. Sci. USA 107, 10262–10267 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Fletcher, M. L. & Chen, W. R. Neural correlates of olfactory learning: critical role of centrifugal neuromodulation. Learn. Mem. 17, 561–570 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Jovanovic, P. & Riera, C. E. Olfactory system and energy metabolism: a two-way street. Trends Endocrinol. Metab. 33, 281–291 (2022).

    Article  CAS  PubMed  Google Scholar 

  280. Li, Q. & Liberles, S. D. Aversion and attraction through olfaction. Curr. Biol. 25, R120–R129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Palouzier-Paulignan, B. et al. Olfaction under metabolic influences. Chem. Senses 37, 769–797 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Giachetti, I., Mac Leod, P. & Le Magnen, J. [Influence of hunger and satiety states on responses of the olfactory bulb in rats]. J. Physiol. 62, 280–281 (1970).

    Google Scholar 

  283. Pager, J. A selective modulation of the olfactory bulb electrical activity in relation to the learning of palatability in hungry and satiated rats. Physiol. Behav. 12, 189–195 (1974).

    Article  CAS  PubMed  Google Scholar 

  284. Pager, J., Giachetti, I., Holley, A. & Le Magnen, J. A selective control of olfactory bulb electrical activity in relation to food deprivation and satiety in rats. Physiol. Behav. 9, 573–579 (1972).

    Article  CAS  PubMed  Google Scholar 

  285. Ueno, M., Dobrogowska, D. H. & Vorbrodt, A. W. Immunocytochemical evaluation of the blood–brain barrier to endogenous albumin in the olfactory bulb and pons of senescence-accelerated mice (SAM). Histochem. Cell Biol. 105, 203–212 (1996).

    Article  CAS  PubMed  Google Scholar 

  286. Lacroix, M.-C. et al. Expression of insulin system in the olfactory epithelium: first approaches to its role and regulation. J. Neuroendocrinol. 20, 1176–1190 (2008).

    Article  CAS  PubMed  Google Scholar 

  287. Savigner, A. et al. Modulation of spontaneous and odorant-evoked activity of rat olfactory sensory neurons by two anorectic peptides, insulin and leptin. J. Neurophysiol. 101, 2898–2906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Baskin, D. G., Porte, D., Guest, K. & Dorsa, D. M. Regional concentrations of insulin in the rat brain. Endocrinology 112, 898–903 (1983).

    Article  CAS  PubMed  Google Scholar 

  289. Hill, J. M., Lesniak, M. A., Pert, C. B. & Roth, J. Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience 17, 1127–1138 (1986).

    Article  CAS  PubMed  Google Scholar 

  290. Fadool, D. A., Tucker, K., Phillips, J. J. & Simmen, J. A. Brain insulin receptor causes activity-dependent current suppression in the olfactory bulb through multiple phosphorylation of Kv1.3. J. Neurophysiol. 83, 2332–2348 (2000).

    Article  CAS  PubMed  Google Scholar 

  291. Fadool, D. A., Tucker, K. & Pedarzani, P. Mitral cells of the olfactory bulb perform metabolic sensing and are disrupted by obesity at the level of the Kv1.3 ion channel. PLoS ONE 6, e24921 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Kuczewski, N. et al. Insulin modulates network activity in olfactory bulb slices: impact on odour processing. J. Physiol. 592, 2751–2769 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Ko, K. I. et al. Starvation promotes concerted modulation of appetitive olfactory behavior via parallel neuromodulatory circuits. eLife 4, e08298 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Root, C. M., Ko, K. I., Jafari, A. & Wang, J. W. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145, 133–144 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Brunert, D. & Rothermel, M. Extrinsic neuromodulation in the rodent olfactory bulb. Cell Tissue Res. 383, 507–524 (2021).

    Article  CAS  PubMed  Google Scholar 

  296. McIntyre, J. C., Thiebaud, N., McGann, J. P., Komiyama, T. & Rothermel, M. Neuromodulation in chemosensory pathways. Chem. Senses 42, 375–379 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Scaplen, K. M. & Kaun, K. R. Dopamine determines how reward overrides risk. Nature 623, 258–259 (2023).

    Article  CAS  PubMed  Google Scholar 

  298. Yu, D., Ponomarev, A. & Davis, R. L. Altered representation of the spatial code for odors after olfactory classical conditioning: memory trace formation by synaptic recruitment. Neuron 42, 437–449 (2004).

    Article  CAS  PubMed  Google Scholar 

  299. Marin, E. C. et al. Connectomics analysis reveals first-, second-, and third-order thermosensory and hygrosensory neurons in the adult Drosophila brain. Curr. Biol. 30, 3167–3182.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Kirkhart, C. & Scott, K. Gustatory learning and processing in the Drosophila mushroom bodies. J. Neurosci. 35, 5950–5958 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  301. Vogt, K. et al. Direct neural pathways convey distinct visual information to Drosophila mushroom bodies. eLife 5, e14009 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  302. Okray, Z. et al. Multisensory learning binds neurons into a cross-modal memory engram. Nature 617, 777–784 (2023). Shows adaptability of neural representations in the higher brain. Associative multisensory learning can expand olfactory coding in the mushroom body Kenyon cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Li, F. et al. The connectome of the adult Drosophila mushroom body provides insights into function. eLife 9, e62576 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Yu, D., Keene, A. C., Srivatsan, A., Waddell, S. & Davis, R. L. Drosophila DPM neurons form a delayed and branch-specific memory trace after olfactory classical conditioning. Cell 123, 945–957 (2005).

    Article  CAS  PubMed  Google Scholar 

  305. Zeng, J. et al. Local 5-HT signaling bi-directionally regulates the coincidence time window for associative learning. Neuron 111, 1118–1135.e5 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Das Chakraborty, S. & Sachse, S. Olfactory processing in the lateral horn of Drosophila. Cell Tissue Res. 383, 113–123 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Marquis, M. & Wilson, R. I. Locomotor and olfactory responses in dopamine neurons of the Drosophila superior-lateral brain. Curr. Biol. 32, 5406–5414.e5 (2022). Highlights the widespread distribution of olfactory information in the whole brain — outside the usual olfactory pathway — and shows that dopaminergic neurons in the Drosophila olfactory system also encode a representation of efferent locomotor activity.

    Article  CAS  PubMed  Google Scholar 

  308. Jacob, P. F. et al. Prior experience conditionally inhibits the expression of new learning in Drosophila. Curr. Biol. 31, 3490–3503.e3 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Szyszka, P., Emonet, T. & Edwards, T. L. Extracting spatial information from temporal odor patterns: insights from insects. Curr. Opin. Insect Sci. 59, 101082 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  310. Findley, T. M. et al. Sniff-synchronized, gradient-guided olfactory search by freely moving mice. eLife 10, e58523 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Díaz-Quesada, M. et al. Inhalation frequency controls reformatting of mitral/tufted cell odor representations in the olfactory bulb. J. Neurosci. 38, 2189–2206 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  312. Dehaqani, A. A. et al. A mechanosensory feedback that uncouples external and self-generated sensory responses in the olfactory cortex. Cell Rep. 43, 114013 (2024).

    Article  Google Scholar 

  313. Jordan, R., Kollo, M. & Schaefer, A. T. Sniffing fast: paradoxical effects on odor concentration discrimination at the levels of olfactory bulb output and behavior. eNeuro 5, ENEURO.0148-18.2018 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  314. Kepecs, A., Uchida, N. & Mainen, Z. F. The sniff as a unit of olfactory processing. Chem. Senses 31, 167–179 (2006).

    Article  PubMed  Google Scholar 

  315. Mainland, J. & Sobel, N. The sniff is part of the olfactory percept. Chem. Senses 31, 181–196 (2006).

    Article  PubMed  Google Scholar 

  316. Wachowiak, M. All in a sniff: olfaction as a model for active sensing. Neuron 71, 962–973 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Sayin, S., Boehm, A. C. & Kobler, J. M., De Backer, J.-F. & Grunwald Kadow, I. C. Internal state dependent odor processing and perception: the role of neuromodulation in the fly olfactory system. Front. Cell Neurosci. 12, 11 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  318. Muria, A. et al. Social facilitation of long-lasting memory is mediated by CO2 in Drosophila. Curr. Biol. 31, 2065–2074.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  319. Dahanukar, A. & Ray, A. Courtship, aggression and avoidance: pheromones, receptors and neurons for social behaviors in Drosophila. Fly 5, 58–63 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.V. acknowledges support from the Deutsche Forschungsgemeinschaft (German Research Foundation) under Germany’s Excellence Strategy EXC 2117-422037984 and FOR5424 (466488864). S.R.D. is supported by NIH grants R011DC016222 and U19 NS112953 and by grants from the Simons Collaboration on the Global Brain, the Brain Research Foundation and the Tan Yang Center at Harvard Medical School.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Katrin Vogt or Sandeep Robert Datta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Silke Sachse and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Connectome

A comprehensive map of the synaptic connections between neurons across the brain.

Critical period

A window of time during development when neurons exhibit greater activity-dependent synaptic plasticity and structural remodelling or refinement.

Ensemble

A set of neurons encoding specific information, such as odour identity.

Gain control

The transformation that serves to reduce the firing rate of a population of neurons. Gain control may be dependent on input strength (divisive) or not (subtractive).

Habituation

Reduced response sensitivity to repeated exposure to an odorant.

Hebbian plasticity

A mechanism for activity-dependent learning that occurs through the strengthening of ensembles or associative connections by repeated co-activation of neurons.

Lateral inhibition

A mechanism for contrast enhancement in which an activated neuron inhibits the activity of neighbouring neurons.

Memory extinction

A paradigm in which a learned association with a given odour is erased by repeated exposure to the odour in the absence of paired reinforcement.

Neuromodulation

The effect on neural activity of neurons that release neuromodulators, such as acetylcholine, noradrenaline or dopamine. Neuromodulation often outlasts the effect of neurotransmitter release.

Odour space

A high-dimensional representation of odours based on their chemical and perceptual qualities.

Pattern separation

The transformation of similar population-level odour representations into more distinct activity patterns.

Pheromone

An odour molecule excreted by the body that can generally trigger a social response.

Recurrent circuitry

A form of circuitry in which the output of a neuron influences its own input through excitatory or inhibitory feedback.

Topographic map

A stereotyped spatial map in which olfactory receptor neurons or olfactory sensory neurons converge in discrete glomerular channels in specific areas of the antennal lobe or olfactory bulb.

Valence

The hedonic value of an odour, described as appetitive, aversive or neutral, that can be either learned or innate.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fulton, K.A., Zimmerman, D., Samuel, A. et al. Common principles for odour coding across vertebrates and invertebrates. Nat. Rev. Neurosci. 25, 453–472 (2024). https://doi.org/10.1038/s41583-024-00822-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-024-00822-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing