Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Support for fragile porous dust in a gravitationally self-regulated disk around IM Lup

Abstract

Protoplanetary disks, the birthplace of planets, are expected to be gravitationally unstable in their early phase of evolution. IM Lup, a well-known T-Tauri star, is surrounded by a protoplanetary disk with spiral arms. The disk was probably caused by gravitational instability. The IM Lup disk has been observed using various methods, but developing a unified explanatory model is challenging. Here we present a physical model of the IM Lup disk that offers a comprehensive explanation for diverse observations spanning from near-infrared to millimetre wavelengths. Our findings underscore the importance of dust fragility in retaining the observed millimetre emission and reveal the preference for moderately porous dust to explain the observed millimetre polarization. We also find that the inner disk region is probably heated by gas accretion, which provides a natural explanation for bright millimetre emission within 20 au. The actively heated inner region in the model casts a 100 au-scale shadow that aligns seamlessly with the observation of near-infrared scattered light. The accretion heating also supports the fragile-dust scenario in which accretion efficiently heats the disk midplane. Due to the fragility of the dust, it is unlikely that a potential embedded planet at 100 au formed through pebble accretion in the smooth disk, which suggests that local dust enhancement boosted pebble accretion or that there are alternative pathways, such as outward migration or gravitational fragmentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of our model of the IM Lup disk.
Fig. 2: Dust distribution and radial intensity profile obtained from our simulations.
Fig. 3: Comparison of the 1.25 mm intensity profile obtained from our models and the DSHARP observation.
Fig. 4: Polarized intensity along with the polarization vector obtained from the observations and our models.
Fig. 5: H-band (1.6 μm) polarized scattered light multiplied by r2.
Fig. 6: Temperature structure obtained from thermal radiative transfer simulations.

Similar content being viewed by others

Data availability

The observational data used in this work are published in refs. 3,7,19,20,54. Due to the large size of the data files, the full physical dataset generated by the simulations presented in this work are available from the corresponding author upon request.

Code availability

The numerical codes are available from the corresponding author upon reasonable request.

References

  1. Kratter, K. & Lodato, G. Gravitational instabilities in circumstellar disks. Annu. Rev. Astron. Astrophys. 54, 271–311 (2016).

    Article  ADS  Google Scholar 

  2. Pérez, L. M. et al. Spiral density waves in a young protoplanetary disk. Science 353, 1519–1521 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  3. Andrews, S. M. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, sample, calibration, and overview. Astrophys. J. Lett. 869, L41 (2018).

    Article  ADS  Google Scholar 

  4. Tsukamoto, Y., Takahashi, S. Z., Machida, M. N. & Inutsuka, S. Effects of radiative transfer on the structure of self-gravitating discs, their fragmentation and the evolution of the fragments. Mon. Not. R. Astron. Soc. 446, 1175–1190 (2015).

    Article  ADS  Google Scholar 

  5. Helled, R. et al. in Protostars and Planets VI (eds Beuther, H. et al.) 643–665 (Univ. of Arizona Press, 2014).

  6. Alcalá, J. M. et al. X-shooter spectroscopy of young stellar objects in Lupus. Accretion properties of class II and transitional objects. Astron. Astrophys. 600, A20 (2017).

    Article  Google Scholar 

  7. Avenhaus, H. et al. Disks around T Tauri stars with SPHERE (DARTTS-S). I. SPHERE/IRDIS polarimetric imaging of eight prominent T Tauri disks. Astrophys. J. 863, 44 (2018).

    Article  ADS  Google Scholar 

  8. Huang, J. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). III. Spiral structures in the millimeter continuum of the Elias 27, IM Lup, and WaOph 6 disks. Astrophys. J. Lett. 869, L43 (2018).

    Article  ADS  Google Scholar 

  9. Pinte, C. et al. Nine localized deviations from Keplerian rotation in the DSHARP circumstellar disks: kinematic evidence for protoplanets carving the gaps. Astrophys. J. Lett. 890, L9 (2020).

    Article  ADS  Google Scholar 

  10. Tazaki, R., Ginski, C. & Dominik, C. Fractal aggregates of submicron-sized grains in the young planet-forming disk around IM Lup. Astrophys. J. Lett. 944, L43 (2023).

    Article  ADS  Google Scholar 

  11. Ueda, T., Flock, M. & Okuzumi, S. Dust pileup at the dead-zone inner edge and implications for the disk shadow. Astrophys. J. 871, 10 (2019).

    Article  ADS  Google Scholar 

  12. Stammler, S. M. & Birnstiel, T. DustPy: a Python package for dust evolution in protoplanetary disks. Astrophys. J. 935, 35 (2022).

    Article  ADS  Google Scholar 

  13. Birnstiel, T. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). V. Interpreting ALMA maps of protoplanetary disks in terms of a dust model. Astrophys. J. 869, L45 (2018).

    Article  ADS  Google Scholar 

  14. Zhang, S. et al. Porous dust particles in protoplanetary disks: application to the HL Tau disk. Astrophys. J. 953, 96 (2023).

    Article  ADS  Google Scholar 

  15. Dominik, C., Paszun, D. & Borel, H. The structure of dust aggregates in hierarchical coagulation. Preprint at https://arxiv.org/abs/1611.00167 (2016).

  16. Tanaka, H., Anayama, R. & Tazaki, R. Compression of dust aggregates via sequential collisions with high mass ratios. Astrophys. J. 945, 68 (2023).

    Article  ADS  Google Scholar 

  17. Sierra, A. et al. Molecules with ALMA at planet-forming scales (MAPS). XIV. Revealing disk substructures in multiwavelength continuum emission. Astrophys. J. Suppl. Ser. 257, 14 (2021).

    Article  ADS  Google Scholar 

  18. Jiang, H., Macías, E., Guerra-Alvarado, O. M. & Carrasco-González, C. Grain-size measurements in protoplanetary disks indicate fragile pebbles and low turbulence. Astron. Astrophys. 682, A32 (2024).

    Article  ADS  Google Scholar 

  19. Stephens, I. W. et al. Low-level carbon monoxide line polarization in two protoplanetary disks: HD 142527 and IM Lup. Astrophys. J. 901, 71 (2020).

    Article  ADS  Google Scholar 

  20. Hull, C. L. H. et al. ALMA observations of polarization from dust scattering in the IM Lup protoplanetary disk. Astrophys. J. 860, 82 (2018).

    Article  ADS  Google Scholar 

  21. Tazaki, R. et al. Unveiling dust aggregate structure in protoplanetary disks by millimeter-wave scattering polarization. Astrophys. J. 885, 52 (2019).

    Article  ADS  Google Scholar 

  22. Okuzumi, S. & Tazaki, R. Nonsticky ice at the origin of the uniformly polarized submillimeter emission from the HL Tau disk. Astrophys. J. 878, 132 (2019).

    Article  ADS  Google Scholar 

  23. Zhang, K. et al. Molecules with ALMA at Planet-forming Scales (MAPS). V. CO gas distributions. Astrophys. J. Suppl. Ser. 257, 5 (2021).

    Article  ADS  Google Scholar 

  24. Law, C. J. et al. Molecules with ALMA at Planet-forming Scales (MAPS). IV. Emission surfaces and vertical distribution of molecules. Astrophys. J. Suppl. Ser. 257, 4 (2021).

    Article  ADS  Google Scholar 

  25. Huang, J. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). II. Characteristics of annular substructures. Astrophys. J. Lett. 869, L42 (2018).

    Article  ADS  Google Scholar 

  26. Verrios, H. J. et al. Kinematic evidence for an embedded planet in the IM Lupi disk. Astrophys. J. Lett. 934, L11 (2022).

    Article  ADS  Google Scholar 

  27. Dullemond, C. P. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). VI. Dust trapping in thin-ringed protoplanetary disks. Astrophys. J. Lett. 869, L46 (2018).

    Article  ADS  Google Scholar 

  28. Liu, B. & Ormel, C. W. Catching drifting pebbles. I. Enhanced pebble accretion efficiencies for eccentric planets. Astron. Astrophys. 615, A138 (2018).

    Article  ADS  Google Scholar 

  29. Lau, T. C. H. et al. Rapid formation of massive planetary cores in a pressure bump. Astron. Astrophys. 668, A170 (2022).

    Article  Google Scholar 

  30. Jiang, H. & Ormel, C. W. Efficient planet formation by pebble accretion in ALMA rings. Mon. Not. R. Astron. Soc. 518, 3877–3900 (2023).

    Article  ADS  Google Scholar 

  31. Crida, A., Masset, F. & Morbidelli, A. Long range outward migration of giant planets, with application to Fomalhaut b. Astrophys. J. Lett. 705, L148–L152 (2009).

    Article  ADS  Google Scholar 

  32. Boss, A. P. Giant planet formation by gravitational instability. Science 276, 1836–1839 (1997).

    Article  ADS  Google Scholar 

  33. Ormel, C. W. in Formation, Evolution, and Dynamics of Young Solar Systems (eds Pessah, M. & Gressel, O.) 197–228 (Springer, 2017).

  34. Balbus, S. A. & Hawley, J. F. A powerful local shear instability in weakly magnetized disks. I. Linear analysis. Astrophys. J. 376, 214 (1991).

    Article  ADS  Google Scholar 

  35. Bai, X.-N. Global simulations of the inner regions of protoplanetary disks with comprehensive disk microphysics. Astrophys. J. 845, 75 (2017).

    Article  ADS  Google Scholar 

  36. Mori, S., Bai, X.-N. & Okuzumi, S. Temperature structure in the inner regions of protoplanetary disks: inefficient accretion heating controlled by nonideal magnetohydrodynamics. Astrophys. J. 872, 98 (2019).

    Article  ADS  Google Scholar 

  37. Béthune, W. & Latter, H. Electric heating and angular momentum transport in laminar models of protoplanetary discs. Mon. Not. R. Astron. Soc. 494, 6103–6119 (2020).

    Article  ADS  Google Scholar 

  38. Kondo, K., Okuzumi, S. & Mori, S. The roles of dust growth in the temperature evolution and snow line migration in magnetically accreting protoplanetary disks. Astrophys. J. 949, 119 (2023).

    Article  ADS  Google Scholar 

  39. Ohno, K. & Ueda, T. Jupiter’s ‘cold’ formation in the protosolar disk shadow. An explanation for the planet’s uniformly enriched atmosphere. Astron. Astrophys. 651, L2 (2021).

    Article  ADS  Google Scholar 

  40. Notsu, S. et al. The molecular composition of shadowed proto-solar disk midplanes beyond the water snowline. Astrophys. J. 936, 188 (2022).

    Article  ADS  Google Scholar 

  41. Seifert, R. A. et al. Evidence for a cosmic-ray gradient in the IM Lup protoplanetary disk. Astrophys. J. 912, 136 (2021).

    Article  ADS  Google Scholar 

  42. Mennella, V. et al. Activation of an ultraviolet resonance in hydrogenated amorphous carbon grains by exposure to ultraviolet radiation. Astrophys. J. Lett. 464, L191 (1996).

    Article  ADS  Google Scholar 

  43. Bergin, E. A. et al. in Protostars and Planets V (eds Reipurth, B. et al.) 751–766 (Univ. of Arizona Press, 2007).

  44. Bosman, A. D. et al. Molecules with ALMA at Planet-forming Scales (MAPS). XV. Tracing protoplanetary disk structure within 20 au. Astrophys. J. Suppl. Ser. 257, 15 (2021).

    Article  ADS  Google Scholar 

  45. Bosman, A. D. et al. A potential site for wide-orbit giant planet formation in the IM Lup disk. Astrophys. J. Lett. 944, L53 (2023).

    Article  ADS  Google Scholar 

  46. Paczynski, B. A model of selfgravitating accretion disk. Acta Astronaut. 28, 91–109 (1978).

    Google Scholar 

  47. Gammie, C. F. Nonlinear outcome of gravitational instability in cooling, gaseous disks. Astrophys. J. 553, 174–183 (2001).

    Article  ADS  Google Scholar 

  48. Tsukamoto, Y., Okuzumi, S. & Kataoka, A. Apparent disk-mass reduction and planetisimal formation in gravitationally unstable disks in class 0/I young stellar objects. Astrophys. J. 838, 151 (2017).

    Article  ADS  Google Scholar 

  49. Yamamuro, R., Tanaka, K. E. I. & Okuzumi, S. Massive protostellar disks as a hot laboratory of silicate grain evolution. Astrophys. J. 949, 29 (2023).

    Article  ADS  Google Scholar 

  50. Xu, W. & Armitage, P. J. Revisiting collisional dust growth in class 0/I protostellar disks: sweep-up can convert a few 10 M of dust into kilogram pebbles in 0.1 Myr. Astrophys. J. 946, 94 (2023).

    Article  ADS  Google Scholar 

  51. Toomre, A. On the gravitational stability of a disk of stars. Astrophys. J. 139, 1217–1238 (1964).

    Article  ADS  Google Scholar 

  52. Laughlin, G. & Bodenheimer, P. Nonaxisymmetric evolution in protostellar disks. Astrophys. J. 436, 335 (1994).

    Article  ADS  Google Scholar 

  53. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  54. Öberg, K. I. et al. Molecules with ALMA at Planet-forming Scales (MAPS). I. Program overview and highlights. Astrophys. J. Suppl. Ser. 257, 1 (2021).

    Article  ADS  Google Scholar 

  55. Xu, W. & Kunz, M. W. Formation and evolution of protostellar accretion discs. II. From 3D simulation to a simple semi-analytic model of class 0/I discs. Mon. Not. R. Astron. Soc. 508, 2142–2168 (2021).

    Article  ADS  Google Scholar 

  56. Cleeves, L. I. et al. The coupled physical structure of gas and dust in the IM Lup protoplanetary disk. Astrophys. J. 832, 110 (2016).

    Article  ADS  Google Scholar 

  57. Powell, D. et al. Depletion of gaseous CO in protoplanetary disks by surface-energy-regulated ice formation. Nat. Astron. 6, 1147–1155 (2022).

    Article  ADS  Google Scholar 

  58. Lodato, G. et al. Dynamical mass measurements of two protoplanetary discs. Mon. Not. R. Astron. Soc. 518, 4481–4493 (2023).

    Article  ADS  Google Scholar 

  59. Martire, P. et al. Rotation curves in protoplanetary disks with thermal stratification. Astron. Astrophys. 686, A9 (2024).

  60. Franceschi, R. et al. Constraining the turbulence and the dust disk in IM Lup: onset of planetesimal formation. Astron. Astrophys. 671, A125 (2023).

    Article  Google Scholar 

  61. Rosotti, G. P. Empirical constraints on turbulence in proto-planetary discs. New Astron. Rev. 96, 101674 (2023).

    Article  Google Scholar 

  62. Paneque-Carreño, T. et al. High turbulence in the IM Lup protoplanetary disk: direct observational constraints from CN and C2H emission. Astron. Astrophys. 684, A174 (2024).

    Article  Google Scholar 

  63. Rice, W. K. M. et al. Stability of self-gravitating discs under irradiation. Mon. Not. R. Astron. Soc. 418, 1356–1362 (2011).

    Article  ADS  Google Scholar 

  64. Paardekooper, S.-J. Numerical convergence in self-gravitating shearing sheet simulations and the stochastic nature of disc fragmentation. Mon. Not. R. Astron. Soc. 421, 3286–3299 (2012).

    Article  ADS  Google Scholar 

  65. Béthune, W., Latter, H. & Kley, W. Spiral structures in gravito-turbulent gaseous disks. Astron. Astrophys. 650, A49 (2021).

    Article  ADS  Google Scholar 

  66. Birnstiel, T., Ormel, C. W. & Dullemond, C. P. Dust size distributions in coagulation/fragmentation equilibrium: numerical solutions and analytical fits. Astron. Astrophys. 525, A11 (2011).

    Article  ADS  Google Scholar 

  67. Ormel, C. W. & Cuzzi, J. N. Closed-form expressions for particle relative velocities induced by turbulence. Astron. Astrophys. 466, 413–420 (2007).

    Article  ADS  Google Scholar 

  68. Beitz, E. et al. Low-velocity collisions of centimeter-sized dust aggregates. Astrophys. J. 736, 34 (2011).

    Article  ADS  Google Scholar 

  69. Wada, K. et al. Growth efficiency of dust aggregates through collisions with high mass ratios. Astron. Astrophys. 559, A62 (2013).

    Article  Google Scholar 

  70. Arakawa, S. & Nakamoto, T. Rocky planetesimal formation via fluffy aggregates of nanograins. Astrophys. J. Lett. 832, L19 (2016).

    Article  ADS  Google Scholar 

  71. Okuzumi, S. et al. Sintering-induced dust ring formation in protoplanetary disks: application to the HL Tau disk. Astrophys. J. 821, 82 (2016).

    Article  ADS  Google Scholar 

  72. Musiolik, G. & Wurm, G. Contacts of water ice in protoplanetary disks–laboratory experiments. Astrophys. J. 873, 58 (2019).

    Article  ADS  Google Scholar 

  73. Musiolik, G. et al. Collisions of CO2 ice grains in planet formation. Astrophys. J. 818, 16 (2016).

    Article  ADS  Google Scholar 

  74. Musiolik, G. et al. Ice grain collisions in comparison: CO2, H2O, and their mixtures. Astrophys. J. 827, 63 (2016).

    Article  ADS  Google Scholar 

  75. Dullemond, C. P. et al. RADMC-3D: A multi-purpose radiative transfer tool. Astrophysics Source Code Library, record ascl:1202.015 (ASCL, 2012).

  76. Warren, S. G. & Brandt, R. E. Optical constants of ice from the ultraviolet to the microwave: a revised compilation. J. Geophys. Res. D: Atmos. 113, D14220 (2008).

    Article  ADS  Google Scholar 

  77. Draine, B. T. Interstellar dust grains. Annu. Rev. Astron. Astrophys. 41, 241–289 (2003).

    Article  ADS  Google Scholar 

  78. Henning, T. & Stognienko, R. Dust opacities for protoplanetary accretion disks: influence of dust aggregates. Astron. Astrophys. 311, 291–303 (1996).

    ADS  Google Scholar 

  79. Dominik, C., Min, M. & Tazaki, R. OpTool: command-line driven tool for creating complex dust opacities. Astrophysics Source Code Library, record ascl:2104.010 (ASCL, 2021).

  80. Zubko, V. G. et al. Optical constants of cosmic carbon analogue grains. I. Simulation of clustering by a modified continuous distribution of ellipsoids. Mon. Not. R. Astron. Soc. 282, 1321–1329 (1996).

    Article  ADS  Google Scholar 

  81. Min, M., Hovenier, J. W. & de Koter, A. Modeling optical properties of cosmic dust grains using a distribution of hollow spheres. Astron. Astrophys. 432, 909–920 (2005).

    Article  ADS  Google Scholar 

  82. Kataoka, A. et al. Opacity of fluffy dust aggregates. Astron. Astrophys. 568, A42 (2014).

    Article  Google Scholar 

  83. Kataoka, A. et al. Millimeter-wave polarization of protoplanetary disks due to dust scattering. Astrophys. J. 809, 78 (2015).

    Article  ADS  Google Scholar 

  84. Woitke, P. et al. 2D disc modelling of the JWST line spectrum of EX Lupi. Astron. Astrophys. 683, A219 (2024).

    Article  Google Scholar 

  85. Fromang, S. & Papaloizou, J. Dust settling in local simulations of turbulent protoplanetary disks. Astron. Astrophys. 452, 751–762 (2006).

    Article  ADS  Google Scholar 

  86. Youdin, A. N. & Lithwick, Y. Particle stirring in turbulent gas disks: including orbital oscillations. Icarus 192, 588–604 (2007).

    Article  ADS  Google Scholar 

  87. Henyey, L. G. & Greenstein, J. L. Diffuse radiation in the Galaxy. Astrophys. J. 93, 70–83 (1941).

    Article  ADS  Google Scholar 

  88. Birnstiel, T., Klahr, H. & Ercolano, B. A simple model for the evolution of the dust population in protoplanetary disks. Astron. Astrophys. 539, A148 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge I. Stephens, C. Ginski, A. Sierra, C. Law and T. Paneque-Carreño and the ALMA DSHARP and MAPS programmes for providing the observational data used in this work. T.U. also thanks M. Ueda for creating the schematic illustration shown in Fig. 6. Numerical computations were in part carried out on the Small Parallel Computers at the Center for Computational Astrophysics, National Astronomical Observatory of Japan, and on the Smithsonian High Performance Cluster, Smithsonian Institution (https://doi.org/10.25572/SIHPC). T.U. acknowledges the support of the German Research Foundation (Grant No. 465962023) and an overseas research fellowship from the Japan Society for the Promotion of Science. R.T. acknowledges funding from the European Research Council under the European Union’s Horizon Europe research and innovation programme (Grant Agreement No. 101053020, project Dust2Planets). M.F. acknowledges funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 757957). P.S. acknowledges support from the German Research Foundation (Grant No. 495235860). This work is also supported by the Japan Society for the Promotion of Science (KAKENHI Grant Nos. JP23H01227, JP23K25923 and JP20H00182).

Author information

Authors and Affiliations

Authors

Contributions

The project was initiated through an informal conversation between T.U., R.T. and S.O. T.U. constructed the disk model with advice from M.F. and P.S. T.U. performed all the numerical simulations. Technical advice on the radiative transfer simulations was provided by M.F. and P.S. R.T. and S.O. contributed to the opacity modelling. All authors provided comments used in editing the manuscript.

Corresponding author

Correspondence to Takahiro Ueda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Haochang Jiang and Sebastiaan Krijt for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueda, T., Tazaki, R., Okuzumi, S. et al. Support for fragile porous dust in a gravitationally self-regulated disk around IM Lup. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02308-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02308-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing