Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Burden re-analysis of neurodevelopmental disorder cohorts for prioritization of candidate genes

Abstract

This study aimed to uncover novel genes associated with neurodevelopmental disorders (NDD) by leveraging recent large-scale de novo burden analysis studies to enhance a virtual gene panel used in a diagnostic setting. We re-analyzed historical trio-exome sequencing data from 745 individuals with NDD according to the most recent diagnostic standards, resulting in a cohort of 567 unsolved individuals. Next, we designed a virtual gene panel containing candidate genes from three large de novo burden analysis studies in NDD and prioritized candidate genes by stringent filtering for ultra-rare de novo variants with high pathogenicity scores. Our analysis revealed an increased burden of de novo variants in our selected candidate genes within the unsolved NDD cohort and identified qualifying de novo variants in seven candidate genes: RIF1, CAMK2D, RAB11FIP4, AGO3, PCBP2, LEO1, and VCP. Clinical data were collected from six new individuals with de novo or inherited LEO1 variants and three new individuals with de novo PCBP2 variants. Our findings add additional evidence for LEO1 as a risk gene for autism and intellectual disability. Furthermore, we prioritize PCBP2 as a candidate gene for NDD associated with motor and language delay. In summary, by leveraging de novo burden analysis studies, employing a stringent variant filtering pipeline, and engaging in targeted patient recruitment, our study contributes to the identification of novel genes implicated in NDDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diagnostic process overview and candidate gene assembly.
Fig. 2: LEO1 variants reported in patients with ASD/ID.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its��Supplementary Information. Raw sequencing data are available from the corresponding author on reasonable request if in line with the provided consent of the families.

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Washington, D.C: American Psychiatric Association; 2013. p. 947.

  2. Yang Y, Zhao S, Zhang M, Xiang M, Zhao J, Chen S, et al. Prevalence of neurodevelopmental disorders among US children and adolescents in 2019 and 2020. Front Psychol. 2022;13:997648.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Blesson A, Cohen JS. Genetic counseling in neurodevelopmental disorders. Cold Spring Harb Perspect Med. 2020;10:a036533.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Seo GH, Lee H, Lee J, Han H, Cho YK, Kim M, et al. Diagnostic performance of automated, streamlined, daily updated exome analysis in patients with neurodevelopmental delay. Mol Med. 2022;28:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bean L, Funke B, Carlston CM, Gannon JL, Kantarci S, Krock BL, et al. Diagnostic gene sequencing panels: from design to report—a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2020;22:453–61.

    Article  PubMed  Google Scholar 

  6. Strande NT, Riggs ER, Buchanan AH, Ceyhan-Birsoy O, DiStefano M, Dwight SS, et al. Evaluating the clinical validity of gene-disease associations: an evidence-based framework developed by the clinical genome resource. Am J Hum Genet. 2017;100:895–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dai P, Honda A, Ewans L, McGaughran J, Burnett L, Law M, et al. Recommendations for next generation sequencing data reanalysis of unsolved cases with suspected Mendelian disorders: a systematic review and meta-analysis. Genet Med Off J Am Coll Med Genet. 2022;24:1618–29.

    CAS  Google Scholar 

  8. Kaplanis J, Samocha KE, Wiel L, Zhang Z, Arvai KJ, Eberhardt RY, et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature. 2020;586:757–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang T, Kim CN, Bakken TE, Gillentine MA, Henning B, Mao Y, et al. Integrated gene analyses of de novo variants from 46,612 trios with autism and developmental disorders. Proc Natl Acad Sci USA. 2022;119:e2203491119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou X, Feliciano P, Shu C, Wang T, Astrovskaya I, Hall JB, et al. Integrating de novo and inherited variants in 42,607 autism cases identifies mutations in new moderate-risk genes. Nat Genet. 2022;54:1305–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fu JM, Satterstrom FK, Peng M, Brand H, Collins RL, Dong S, et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat Genet. 2022;54:1320–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grozeva D, Carss K, Spasic-Boskovic O, Tejada M-I, Gecz J, Shaw M, et al. Targeted next-generation sequencing analysis of 1,000 individuals with intellectual disability. Hum Mutat. 2015;36:1197–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vissers LELM, Gilissen C, Veltman JA. Genetic studies in intellectual disability and related disorders. Nat Rev Genet. 2016;17:9–18.

    Article  CAS  PubMed  Google Scholar 

  14. Vandeweyer G, Van Laer L, Loeys B, Van den Bulcke T, Kooy RF. VariantDB: a flexible annotation and filtering portal for next generation sequencing data. Genome Med. 2014;6:74.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Danis D, Jacobsen JOB, Carmody LC, Gargano MA, McMurry JA, Hegde A, et al. Interpretable prioritization of splice variants in diagnostic next-generation sequencing. Am J Hum Genet. 2021;108:1564–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med Off J Am Coll Med Genet. 2015;17:405–24.

    Google Scholar 

  17. Ware JS, Samocha KE, Homsy J, Daly MJ. Interpreting de novo variation in human disease using denovolyzeR. Curr Protoc Hum Genet. 2015;87:7.25.1–7.15.

    PubMed  Google Scholar 

  18. Sobering AK, Bryant LM, Li D, McGaughran J, Maystadt I, Moortgat S, et al. Variants in PHF8 cause a spectrum of X-linked neurodevelopmental disorders and facial dysmorphology. Hum Genet Genom Adv. 2022;3:100102.

    Article  CAS  Google Scholar 

  19. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Samocha KE, Kosmicki JA, Karczewski KJ, O’Donnell-Luria AH, Pierce-Hoffman E, MacArthur DG, et al. Regional missense constraint improves variant deleteriousness prediction. bioRxiv: 148353 [Preprint]. 2017. Available from: https://doi.org/10.1101/148353

  21. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–48.e24.

    Article  CAS  PubMed  Google Scholar 

  22. Havrilla JM, Pedersen BS, Layer RM, Quinlan AR. A map of constrained coding regions in the human genome. Nat Genet. 2019;51:88–95.

    Article  CAS  PubMed  Google Scholar 

  23. Ferrini A, Steel D, Barwick K, Kurian MA. An update on the phenotype, genotype and neurobiology of ADCY5-related disease. Mov Disord. 2021;36:1104–14.

    Article  CAS  PubMed  Google Scholar 

  24. Kaur M, Blair J, Devkota B, Fortunato S, Clark D, Lawrence A, et al. Genomic analyses in Cornelia de Lange Syndrome and related diagnoses: novel candidate genes, genotype–phenotype correlations and common mechanisms. Am J Med Genet A. 2023;191:2113–31.

    Article  PubMed  Google Scholar 

  25. Jouret G, Heide S, Sorlin A, Faivre L, Chantot-Bastaraud S, Beneteau C, et al. Understanding the new BRD4-related syndrome: clinical and genomic delineation with an international cohort study. Clin Genet. 2022;102:117–22.

    Article  CAS  PubMed  Google Scholar 

  26. Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015;36:928–30.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Brandler WM, Antaki D, Gujral M, Kleiber ML, Whitney J, Maile MS, et al. Paternally inherited cis-regulatory structural variants are associated with autism. Science. 2018;360:327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang T, Hoekzema K, Vecchio D, Wu H, Sulovari A, Coe BP, et al. Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders. Nat Commun. 2020;11:4932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional, and chromatin genes disrupted in autism. Nature. 2014;515:209–15.

    Article  PubMed  PubMed Central  Google Scholar 

  30. McRae JF, Clayton S, Fitzgerald TW, Kaplanis J, Prigmore E, Rajan D, et al. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433–8.

    Article  CAS  Google Scholar 

  31. Oliver KL, Scheffer IE, Bennett MF, Grinton BE, Bahlo M, Berkovic SF. Genes4Epilepsy: an epilepsy gene resource. Epilepsia. 2023;64:1368–75.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Francette AM, Tripplehorn SA, Arndt KM. The Paf1 complex: a keystone of nuclear regulation operating at the interface of transcription and chromatin. J Mol Biol. 2021;433:166979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nguyen CT, Langenbacher A, Hsieh M, Chen J-N. The PAF1 complex component Leo1 is essential for cardiac and neural crest development in zebrafish. Dev Biol. 2010;341:167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Groza T, Gomez FL, Mashhadi HH, Muñoz-Fuentes V, Gunes O, Wilson R, et al. The International Mouse Phenotyping Consortium: comprehensive knockout phenotyping underpinning the study of human disease. Nucleic Acids Res. 2023;51:D1038–D45.

    Article  CAS  PubMed  Google Scholar 

  35. Tiwari V, Kulikowicz T, Wilson DM, Bohr VA. LEO1 is a partner for Cockayne syndrome protein B (CSB) in response to transcription-blocking DNA damage. Nucleic Acids Res. 2021;49:6331–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taha MS, Haghighi F, Stefanski A, Nakhaei-Rad S, Kazemein Jasemi NS, Al Kabbani MA, et al. Novel FMRP interaction networks linked to cellular stress. FEBS J. 2021;288:837–60.

    Article  CAS  PubMed  Google Scholar 

  37. Ji X, Jha A, Humenik J, Ghanem LR, Kromer A, Duncan-Lewis C, et al. RNA-binding proteins PCBP1 and PCBP2 are critical determinants of murine erythropoiesis. Mol Cell Biol. 2021;41:e0066820.

    Article  PubMed  Google Scholar 

  38. Mao X, Liu J, Chen C, Zhang W, Qian R, Chen X, et al. PCBP2 modulates neural apoptosis and astrocyte proliferation after spinal cord injury. Neurochem Res. 2016;41:2401–14.

    Article  CAS  PubMed  Google Scholar 

  39. Richards L, Das S, Nordman JT. Rif1-dependent control of replication timing. Genes. 2022;13:550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seaby EG, Smedley D, Taylor Tavares AL, Brittain H, van Jaarsveld RH, Baralle D, et al. A gene-to-patient approach uplifts novel disease gene discovery and identifies 18 putative novel disease genes. Genet Med. 2022;24:1697–707.

    Article  CAS  PubMed  Google Scholar 

  41. Küry S, van Woerden GM, Besnard T, Proietti Onori M, Latypova X, Towne MC, et al. De novo mutations in protein kinase genes CAMK2A and CAMK2B cause intellectual disability. Am J Hum Genet. 2017;101:768–88.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu X-B, Murray KD. Neuronal excitability and calcium/calmodulin-dependent protein kinase type II: location, location, location. Epilepsia. 2012;53:45–52.

    Article  CAS  PubMed  Google Scholar 

  43. Pantazopoulou VI, Georgiou S, Kakoulidis P, Giannakopoulou SN, Tseleni S, Stravopodis DJ, et al. From the Argonauts mythological sailors to the argonautes RNA-silencing navigators: their emerging roles in human-cell pathologies. Int J Mol Sci. 2020;21:4007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schalk A, Cousin MA, Dsouza NR, Challman TD, Wain KE, Powis Z, et al. De novo coding variants in the AGO1 gene cause a neurodevelopmental disorder with intellectual disability. J Med Genet. 2022;59:965–75.

    Article  CAS  PubMed  Google Scholar 

  45. Lessel D, Zeitler DM, Reijnders MRF, Kazantsev A, Hassani Nia F, Bartholomäus A, et al. Germline AGO2 mutations impair RNA interference and human neurological development. Nat Commun. 2020;11:5797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tokita MJ, Chow PM, Mirzaa G, Dikow N, Maas B, Isidor B, et al. Five children with deletions of 1p34.3 encompassing AGO1 and AGO3. Eur J Hum Genet. 2015;23:761–5.

    Article  CAS  PubMed  Google Scholar 

  47. Kehrer-Sawatzki H, Cooper DN. Classification of NF1 microdeletions and its importance for establishing genotype/phenotype correlations in patients with NF1 microdeletions. Hum Genet. 2021;140:1635–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fielding AB, Schonteich E, Matheson J, Wilson G, Yu X, Hickson GRX, et al. Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J. 2005;24:3389–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Muto A, Arai K-I, Watanabe S. Rab11-FIP4 is predominantly expressed in neural tissues and involved in proliferation as well as in differentiation during zebrafish retinal development. Dev Biol. 2006;292:90–102.

    Article  CAS  PubMed  Google Scholar 

  50. Schiava M, Ikenaga C, Villar-Quiles RN, Caballero-Ávila M, Topf A, Nishino I, et al. Genotype–phenotype correlations in valosin-containing protein disease: a retrospective muticentre study. J Neurol Neurosurg Psychiatry. 2022:jnnp-2022-328921 https://doi.org/10.1136/jnnp-2022-328921.

Download references

Funding

NS received funding from UA-Bijzonder Onderzoeksfonds (BOF)-DOCPRO4 (FFB180186). FM received funding from the H2020-Twinning SEED project. SW received funding from Fonds Wetenchappelijk Onderzoek (FWO: 1861419 N, 1861424 N, and G056122N). Research reported in this publication was supported by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under Award Number U01HG007709. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Conceptualization: NS, FM, RFK, SW; data curation: NS, FM, HN, JBH, LL, EE, SG, AS, LR, RF, CNM, AH, TS, RF, PS, KS, JAR, SRL, HS; formal analysis: NS, FM; supervision: RFK, SW; writing – original draft: NS, FM; writing – review & editing: NS, FM, KJ, ER, MECM, BC, HN, JBH, LL, EE, SG, AS, LR, RF, CNM, AH, TS, RF, PS, KS, YB, JAR, SRL, HS, RFK, SW.

Corresponding author

Correspondence to Sarah Weckhuysen.

Ethics declarations

Competing interests

YB is an employee of GeneDx, LLC. The Department of Molecular and Human Genetics at Baylor College of Medicine receives revenue from clinical genetic testing completed at Baylor Genetics Laboratories. All other authors declare no conflict of interest.

Ethics approval and consent to participate

This study was conducted with approval from the Ethical Committee of the University of Antwerp. All institutions involved in human participant research received local IRB approval. All families or legal guardians of recruited participants provided informed consent for this study. Participant data were de-identified.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smal, N., Majdoub, F., Janssens, K. et al. Burden re-analysis of neurodevelopmental disorder cohorts for prioritization of candidate genes. Eur J Hum Genet (2024). https://doi.org/10.1038/s41431-024-01661-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41431-024-01661-4

Search

Quick links