Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GSTO1 aggravates EGFR-TKIs resistance and tumor metastasis via deglutathionylation of NPM1 in lung adenocarcinoma

Abstract

Despite significantly improved clinical outcomes in EGFR-mutant lung adenocarcinoma, all patients develop acquired resistance and malignancy on the treatment of EGFR tyrosine kinase inhibitors (EGFR-TKIs). Understanding the resistance mechanisms is crucial to uncover novel therapeutic targets to improve the efficacy of EGFR-TKI treatment. Here, integrated analysis using RNA-Seq and shRNAs metabolic screening reveals glutathione S-transferase omega 1 (GSTO1) as one of the key metabolic enzymes that is required for EGFR-TKIs resistance in lung adenocarcinoma cells. Aberrant upregulation of GSTO1 confers EGFR-TKIs resistance and tumor metastasis in vitro and in vivo dependent on its active-site cysteine 32 (C32). Pharmacological inhibition or knockdown of GSTO1 restores sensitivity to EGFR-TKIs and synergistically enhances tumoricidal effects. Importantly, nucleophosmin 1 (NPM1) cysteine 104 is deglutathionylated by GSTO1 through its active C32 site, which leads to activation of the AKT/NF-κB signaling pathway. In addition, clinical data illustrates that GSTO1 level is positively correlated with NPM1 level, NF-κB-mediated transcriptions and progression of human lung adenocarcinoma. Overall, our study highlights a novel mechanism of GSTO1 mediating EGFR-TKIs resistance and malignant progression via protein deglutathionylation, and GSTO1/NPM1/AKT/NF-κB axis as a potential therapeutic vulnerability in lung adenocarcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GSTO1 contributes to EGFR-TKIs resistance and cell migration in lung adenocarcinoma cells.
Fig. 2: GSTO1-NPM1 interaction promotes erlotinib resistance and cell migration in an AKT/NF-κB-dependent manner.
Fig. 3: GSTO1 enzyme activity is essential for NPM1 deglutathionylation.
Fig. 4: GSTO1 promotes metastasis and erlotinib resistance in mouse xenograft models of lung adenocarcinoma.
Fig. 5: GSTO1 facilitates tumor growth and osimeritinib resistance via its enzyme activity in lung adenocarcinoma.
Fig. 6: High level of GSTO1 is positively correlated with cancer progression of human lung adenocarcinoma.

Similar content being viewed by others

Data availability

GSTO1 level analysis, correlation analysis and Kaplan–Meier analysis were conducted with a LUAD cohort composed of 51 individuals from GSE140343 dataset (https://www.ncbi.nlm.nih.gov/geo/) [34] and a 181-individual cohort from GSE50081 dataset derived from LUNG CANCER EXPLORER (https://lce.biohpc.swmed.edu/lungcancer/) [35, 60]. The gene sets for GSEA were downloaded from MSigDB databases (http://www.gsea-msigdb.org/gsea/downloads.jsp). GO and KEGG analysis was performed with the DAVID (Version 6.8) bioinformatics Database [61, 62] (https://david.ncifcrf.gov/). Graphical abstract was created with BioRender.com. The shRNA screening, RNA-Seq and mass spectrometry data from this publication would be deposited to the Mendeley Data (https://data.mendeley.com/datasets/xjrj4zgc34/1).

References

  1. Levantini E, Maroni G, Del Re M, Tenen DG. EGFR signaling pathway as therapeutic target in human cancers. Semin Cancer Biol. 2022;85:253–275.

    Article  CAS  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.

    Article  PubMed  Google Scholar 

  3. Arbour KC, Riely GJ. Systemic therapy for locally advanced and metastatic non-small cell lung cancer: a review. JAMA. 2019;322:764–74.

    Article  CAS  PubMed  Google Scholar 

  4. Cooper AJ, Sequist LV, Lin JJ. Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat Rev Clin Oncol. 2022;19:499–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Passaro A, Janne PA, Mok T, Peters S. Overcoming therapy resistance in EGFR-mutant lung cancer. Nat Cancer. 2021;2:377–91.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang KR, Zhang YF, Lei HM, Tang YB, Ma CS, Lv QM, et al. Targeting AKR1B1 inhibits glutathione de novo synthesis to overcome acquired resistance to EGFR-targeted therapy in lung cancer. Sci Transl Med. 2021;13:eabg6428.

    Article  CAS  PubMed  Google Scholar 

  7. Guo Y, Liu Y, Zhao S, Xu W, Li Y, Zhao P, et al. Oxidative stress-induced FABP5 S-glutathionylation protects against acute lung injury by suppressing inflammation in macrophages. Nat Commun. 2021;12:7094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shih YY, Lin HY, Jan HM, Chen YJ, Ong LL, Yu AL, et al. S-glutathionylation of Hsp90 enhances its degradation and correlates with favorable prognosis of breast cancer. Redox Biol. 2022;57:102501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li X, Ma Y, Wu J, Ni M, Chen A, Zhou Y, et al. Thiol oxidative stress-dependent degradation of transglutaminase2 via protein S-glutathionylation sensitizes 5-fluorouracil therapy in 5-fluorouracil-resistant colorectal cancer cells. Drug Resist Updat. 2023;67:100930.

    Article  CAS  PubMed  Google Scholar 

  10. Byun JK, Park M, Lee S, Yun JW, Lee J, Kim JS, et al. Inhibition of glutamine utilization synergizes with immune checkpoint inhibitor to promote antitumor immunity. Mol Cell. 2020;80:592–606.e598.

    Article  CAS  PubMed  Google Scholar 

  11. Board PG, Menon D. Structure, function and disease relevance of Omega-class glutathione transferases. Arch Toxicol. 2016;90:1049–67.

    Article  CAS  PubMed  Google Scholar 

  12. Xu Y, Bankhead A 3rd, Tian X, Tang J, Ljungman M, Neamati N. Deletion of glutathione S-transferase omega 1 activates type I interferon genes and downregulates tissue factor. Cancer Res. 2020;80:3692–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu H, Chen I, Shimoda LA, Park Y, Zhang C, Tran L, et al. Chemotherapy-induced Ca(2+) release stimulates breast cancer stem cell enrichment. Cell Rep. 2017;18:1946–57.

    Article  CAS  PubMed  Google Scholar 

  14. Ramkumar K, Samanta S, Kyani A, Yang S, Tamura S, Ziemke E, et al. Mechanistic evaluation and transcriptional signature of a glutathione S-transferase omega 1 inhibitor. Nat Commun. 2016;7:13084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Djukic T, Simic T, Pljesa-Ercegovac M, Matic M, Suvakov S, Coric V, et al. Upregulated glutathione transferase omega-1 correlates with progression of urinary bladder carcinoma. Redox Rep. 2017;22:486–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dong JK, Lei HM, Liang Q, Tang YB, Zhou Y, Wang Y, et al. Overcoming erlotinib resistance in EGFR mutation-positive lung adenocarcinomas through repression of phosphoglycerate dehydrogenase. Theranostics. 2018;8:1808–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lv QM, Lei HM, Wang SY, Zhang KR, Tang YB, Shen Y, et al. Cancer cell-autonomous cGAS-STING response confers drug resistance. Cell Chem Biol. 2023;30:591–605.e594.

    Article  CAS  PubMed  Google Scholar 

  18. Luo MY, Zhou Y, Gu WM, Wang C, Shen NX, Dong JK, et al. Metabolic and nonmetabolic functions of PSAT1 coordinate signaling cascades to confer EGFR inhibitor resistance and drive progression in lung adenocarcinoma. Cancer Res. 2022;82:3516–31.

    Article  CAS  PubMed  Google Scholar 

  19. Huang K, Liang Q, Zhou Y, Jiang LL, Gu WM, Luo MY, et al. A novel allosteric inhibitor of phosphoglycerate mutase 1 suppresses growth and metastasis of non-small-cell lung cancer. Cell Metab. 2019;30:1107–19.e1108.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Q, Lenardo MJ, Baltimore D. 30 years of NF-kappaB: a blossoming of relevance to human pathobiology. Cell. 2017;168:37–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dimitrakopoulos FD, Kottorou AE, Kalofonou M, Kalofonos HP. The fire Within: NF-kappaB involvement in non-small cell lung cancer. Cancer Res. 2020;80:4025–36.

    Article  CAS  PubMed  Google Scholar 

  22. Scherer DC, Brockman JA, Chen Z, Maniatis T, Ballard DW. Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination. Proc Natl Acad Sci USA. 1995;92:11259–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang C, Lin Y, Li H, Hu H, Chen Y, Huang Y, et al. Fatty acid binding protein 4 (FABP4) induces chondrocyte degeneration via activation of the NF-kappab signaling pathway. FASEB J. 2024;38:e23347.

    Article  CAS  PubMed  Google Scholar 

  24. Kunze B, Wein F, Fang HY, Anand A, Baumeister T, Strangmann J, et al. Notch signaling mediates differentiation in Barrett’s esophagus and promotes progression to adenocarcinoma. Gastroenterology. 2020;159:575–90.

    Article  CAS  PubMed  Google Scholar 

  25. Lee SB, Xuan Nguyen TL, Choi JW, Lee KH, Cho SW, Liu Z, et al. Nuclear Akt interacts with B23/NPM and protects it from proteolytic cleavage, enhancing cell survival. Proc Natl Acad Sci USA. 2008;105:16584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu ACY, Chern YJ, Zhang P, Pasiliao CC, Rahman M, Chang G, et al. Inhibition of nucleophosmin 1 suppresses colorectal cancer tumor growth of patient -derived xenografts via activation of p53 and inhibition of AKT. Cancer Biol Ther. 2021;22:112–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yi J, Zhu J, Wu J, Thompson CB, Jiang X. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA. 2020;117:31189–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Romashkova JA, Makarov SS. NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature. 1999;401:86–90.

    Article  CAS  PubMed  Google Scholar 

  29. Song L, Xiong H, Li J, Liao W, Wang L, Wu J, et al. Sphingosine kinase-1 enhances resistance to apoptosis through activation of PI3K/Akt/NF-kappaB pathway in human non-small cell lung cancer. Clin Cancer Res. 2011;17:1839–49.

    Article  CAS  PubMed  Google Scholar 

  30. Ko E, Seo HW, Jung G. Telomere length and reactive oxygen species levels are positively associated with a high risk of mortality and recurrence in hepatocellular carcinoma. Hepatology. 2018;67:1378–91.

    Article  CAS  PubMed  Google Scholar 

  31. Savill KMZ, Lee BB, Oeh J, Lin J, Lin E, Chung WJ, et al. Distinct resistance mechanisms arise to allosteric vs. ATP-competitive AKT inhibitors. Nat Commun. 2022;13:2057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Menon D, Board PG. A role for glutathione transferase Omega 1 (GSTO1-1) in the glutathionylation cycle. J Biol Chem. 2013;288:25769–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang K, Wang M, Zhao Y, Sun X, Yang Y, Li X, et al. A redox mechanism underlying nucleolar stress sensing by nucleophosmin. Nat Commun. 2016;7:13599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu JY, Zhang C, Wang X, Zhai L, Ma Y, Mao Y, et al. Integrative proteomic characterization of human lung adenocarcinoma. Cell. 2020;182:245–61.e217.

    Article  CAS  PubMed  Google Scholar 

  35. Der SD, Sykes J, Pintilie M, Zhu CQ, Strumpf D, Liu N, et al. Validation of a histology-independent prognostic gene signature for early-stage, non-small-cell lung cancer including stage IA patients. J Thorac Oncol. 2014;9:59–64.

    Article  CAS  PubMed  Google Scholar 

  36. Wong PP, Munoz-Felix JM, Hijazi M, Kim H, Robinson SD, De Luxan-Delgado B, et al. Cancer burden is controlled by mural cell-beta3-integrin regulated crosstalk with tumor cells. Cell. 2020;181:1346–63.e1321.

    Article  CAS  PubMed  Google Scholar 

  37. Ahmmed B, Kampo S, Khan M, Faqeer A, Kumar SP, Yulin L, et al. Rg3 inhibits gemcitabine-induced lung cancer cell invasiveness through ROS-dependent, NF-kappaB- and HIF-1alpha-mediated downregulation of PTX3. J Cell Physiol. 2019;234:10680–97.

    Article  CAS  PubMed  Google Scholar 

  38. Welch C, Santra MK, El-Assaad W, Zhu X, Huber WE, Keys RA, et al. Identification of a protein, G0S2, that lacks Bcl-2 homology domains and interacts with and antagonizes Bcl-2. Cancer Res. 2009;69:6782–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang X, Bustos MA, Zhang X, Ramos RI, Tan C, Iida Y. et al. Downregulation of the ubiquitin-E3 ligase RNF123 promotes upregulation of the NF-kappaB1 target SerpinE1 in aggressive glioblastoma tumors. Cancers. 2020;12:1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu J, Wu Z, Han D, Wei C, Liang Y, Jiang T, et al. Mesencephalic astrocyte-derived neurotrophic factor inhibits liver cancer through small ubiquitin-related modifier (SUMO)ylation-related suppression of NF-kappaB/snail signaling pathway and epithelial-mesenchymal transition. Hepatology. 2020;71:1262–78.

    Article  CAS  PubMed  Google Scholar 

  41. Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science. 2020;368:eaaw5473.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46.

    Article  CAS  PubMed  Google Scholar 

  43. Fu K, Xie F, Wang F, Fu L. Therapeutic strategies for EGFR-mutated non-small cell lung cancer patients with osimertinib resistance. J Hematol Oncol. 2022;15:173.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Westover D, Zugazagoitia J, Cho BC, Lovly CM, Paz-Ares L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann Oncol. 2018;29:i10–i19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Piaggi S, Raggi C, Corti A, Pitzalis E, Mascherpa MC, Saviozzi M, et al. Glutathione transferase omega 1-1 (GSTO1-1) plays an anti-apoptotic role in cell resistance to cisplatin toxicity. Carcinogenesis. 2010;31:804–11.

    Article  CAS  PubMed  Google Scholar 

  46. Paul S, Bhardwaj M, Kang SC. GSTO1 confers drug resistance in HCT-116 colon cancer cells through an interaction with TNFalphaIP3/A20. Int J Oncol. 2022;61:136.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ianni A, Kumari P, Tarighi S, Simonet NG, Popescu D, Guenther S, et al. SIRT7-dependent deacetylation of NPM promotes p53 stabilization following UV-induced genotoxic stress. Proc Natl Acad Sci USA. 2021;118.

  48. Tanikawa C, Ueda K, Nakagawa H, Yoshida N, Nakamura Y, Matsuda K. Regulation of protein Citrullination through p53/PADI4 network in DNA damage response. Cancer Res. 2009;69:8761–9.

    Article  CAS  PubMed  Google Scholar 

  49. Das SK, Lewis BA, Levens D. MYC: a complex problem. Trends Cell Biol. 2022;33:235–246.

  50. E Costa RAP, Granato DC, Trino LD, Yokoo S, Carnielli CM, Kawahara R, et al. ADAM17 cytoplasmic domain modulates Thioredoxin-1 conformation and activity. Redox Biol. 2020;37:101735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li Z, Ivanov AA, Su R, Gonzalez-Pecchi V, Qi Q, Liu S, et al. The OncoPPi network of cancer-focused protein-protein interactions to inform biological insights and therapeutic strategies. Nat Commun. 2017;8:14356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mo X, Niu Q, Ivanov AA, Tsang YH, Tang C, Shu C, et al. Systematic discovery of mutation-directed neo-protein-protein interactions in cancer. Cell. 2022;185:1974–85.e1912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer. 2022;22:45–64.

    Article  CAS  PubMed  Google Scholar 

  54. Liang Q, Gong M, Zou JH, Luo MY, Jiang LL, Wang C, et al. A phosphoglycerate mutase 1 allosteric inhibitor overcomes drug resistance to EGFR-targeted therapy via disrupting IL-6/JAK2/STAT3 signaling pathway in lung adenocarcinoma. Drug Resist Updat. 2023;68:100957.

    Article  CAS  PubMed  Google Scholar 

  55. Ma P, Fu Y, Chen M, Jing Y, Wu J, Li K, et al. Adaptive and acquired resistance to EGFR inhibitors converge on the MAPK pathway. Theranostics. 2016;6:1232–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 2010;38:1767–71.

    Article  CAS  PubMed  Google Scholar 

  57. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323.

    Article  CAS  Google Scholar 

  58. Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq: a matter of depth. Genome Res. 2011;21:2213–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cai L, Lin S, Girard L, Zhou Y, Yang L, Ci B, et al. LCE: an open web portal to explore gene expression and clinical associations in lung cancer. Oncogene. 2019;38:2551–64.

    Article  CAS  PubMed  Google Scholar 

  61. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  PubMed  Google Scholar 

  62. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50:W216–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for the grants from the National Natural Science Foundation of China (82073868), Science and Technology Commission of Shanghai Municipality (20S11900100), China Postdoctoral Science Foundation (2022M722138), the Fundamental Research Funds for the Central Universities. Prof. Jie Yang kindly provided technical assistance with construction of NPM1 C/S mutant plasmids. Our proteomics and mass spectrometry work were performed at the Proteomics Platform of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

YS conceived and supervised the project. N-XS, M-YL, W-MG, M-MG, H-ML, LB, CW, M-CZ, and LX designed and conducted the experiments. G-LZ provided some essential materials, such as established EGFR-TKIs-resistant cells and plasmids. YS, LZ, and H-ZC edited the manuscript with inputs from N-XS, M-YL, and W-MG All the authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Ying Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Nx., Luo, My., Gu, Wm. et al. GSTO1 aggravates EGFR-TKIs resistance and tumor metastasis via deglutathionylation of NPM1 in lung adenocarcinoma. Oncogene (2024). https://doi.org/10.1038/s41388-024-03096-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03096-z

Search

Quick links