Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomic variants associated with age at diagnosis of childhood-onset type 1 diabetes

Abstract

Age at diagnosis (AAD) of Type 1 diabetes (T1D) is determined by the age at onset of the autoimmune attack and by the rate of beta cell destruction that follows. Twin studies found that T1D AAD is strongly influenced by genetics, notably in young children. In young UK, Finnish, Sardinian patients AAD-associated genomic variants were previously identified, which may vary across populations and with time. In 1956 children of European ancestry born in mainland France in 1980-2008 who declared T1D before 15 years, we tested 94 T1D-associated SNPs for their association with AAD using nonparametric Kruskal–Wallis test. While high-risk HLA genotypes were not found to be associated with AAD, fourteen SNPs located in 12 non-HLA loci showed a strong association (2.9 × 10−12 < P < 1.4 × 10−3 after FDR correction). Four of these loci have been associated with AAD in previous cohorts (GSDMB, IL2, TNFAIP3, IL1), supporting a partially shared genetic influence on AAD of T1D in the studied European populations. In contrast, the association of 8 new loci CLEC16A, TYK2, ERBB3, CCR7, FCRL3, DNAH2, FGF3/4, and HPSE2 with AAD is novel. The 12 protein-coding genes located within these loci are involved in major immune pathways or in predisposition to other autoimmune diseases, which suggests a prominent role for these genes in the early immune mechanisms of beta cell destruction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Patterson CC, Karuranga S, Salpea P, Saeedi P, Dahlquist G, Soltesz G et al. Worldwide estimates of incidence, prevalence and mortality of type 1 diabetes in children and adolescents: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res Clin Pract. 2019;157:107842.

    Article  PubMed  Google Scholar 

  2. Green A, Hede SM, Patterson CC, Wild SH, Imperatore G, Roglic G, et al. Type 1 diabetes in 2017: global estimates of incident and prevalent cases in children and adults. Diabetologia. 2021;64:2741–50.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Leete P, Mallone R, Richardson SJ, Sosenko JM, Redondo MJ, Evans-Molina C. The effect of age on the progression and severity of type 1 diabetes: potential effects on disease mechanisms. Curr diabetes Rep. 2018;18:1–8.

    Article  CAS  Google Scholar 

  4. Rakyan VK, Beyan H, Down TA, Hawa MI, Maslau S, Aden D, et al. Identification of Type 1 Diabetes– Associated DNA Methylation Variable Positions That Precede Disease Diagnosis. PLOS Genet. 2011;7:e1002300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar D, Gemayel NS, Deapen D, Kapadia D, Yamashita PH, Lee M, et al. North- American twins with IDDM. Genetic, etiological, and clinical significance of disease concordance according to age, zygosity, and the interval after diagnosis in first twin. Diabetes. 1993;42:1351–63.

    Article  CAS  PubMed  Google Scholar 

  6. Olmos P, A’Hern R, Heaton DA, Millward BA, Risley D, Pyke DA et al. The significance of the concordance rate for type 1 diabetes in identical twins. Diabetologia. 1988;31:747–50.

  7. Kyvik KO, Green A, Beck-Nielsen H. Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins. BMJ. 1995;311:913–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hyttinen V, Kaprio J, Kinnunen L, Koskenvuo M, Tuomilehto J. Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes. 2003;52:1052–5.

    Article  CAS  PubMed  Google Scholar 

  9. Nerup J, Platz P, Andersen OO, Christy M, Lyngsoe J, Poulsen JE, et al. HL-A antigens and diabetes mellitus. Lancet Lond Engl. 1974;2:864–6.

    Article  CAS  Google Scholar 

  10. Bell GI, Horita S, Karam JH. A polymorphic locus near the human insulin gene is associated with insulin- dependent diabetes mellitus. Diabetes. 1984;33:176–83.

    Article  CAS  PubMed  Google Scholar 

  11. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, et al. Genome-wide association study and meta- analysis find that over 40 loci affect risk of type 1 diabetes. Nate Genet. 2009;41:703–7.

    Article  CAS  Google Scholar 

  12. Bradfield JP, Qu HQ, Wang K, Zhang H, Sleiman PM, Kim CE, et al. A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet. 2011;7:e1002293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Onengut-Gumuscu S, Chen WM, Burren O, Cooper NJ, Quinlan AR, Mychaleckyj JC, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet. 2015;47:381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Virgin HW, Todd JA. Metagenomics and personalized medicine. Cell. 2011;147:44–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inshaw JRJ, Cutler AJ, Burren OS, Stefana MI, Todd JA. Approaches and advances in the genetic causes of autoimmune disease and their implications. Nat Immunol. 2018;19:674–84.

    Article  CAS  PubMed  Google Scholar 

  16. Caillat-Zucman S, Garchon HJ, Timsit J, Assan R, Boitard C, Djilali-Saiah I et al. Age- dependent HLA genetic heterogeneity of type 1 insulin-dependent diabetes mellitus. J Clin Invest. 1992;90:2242–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Howson JMM, Cooper JD, Smyth DJ, Walker NM, Stevens H, She JX, et al. Evidence of Gene-Gene Interaction and Age-at-Diagnosis Effects in Type 1 Diabetes. Diabetes. 2012;61:3012–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Inshaw JRJ, Cutler AJ, Crouch DJM, Wicker LS, Todd JA. Genetic Variants Predisposing Most Strongly to Type 1 Diabetes Diagnosed Under Age 7 Years Lie Near Candidate Genes That Function in the Immune System and in Pancreatic β-Cells. Diabetes Care. 2020;43:169–77.

    Article  CAS  PubMed  Google Scholar 

  19. Syreeni A, Sandholm N, Sidore C, Cucca F, Haukka J, Harjutsalo V, et al. Genome-wide search for genes affecting the age at diagnosis of type 1 diabetes. J Intern Med. 2021;289:662–74.

    Article  CAS  PubMed  Google Scholar 

  20. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363:1211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;11:2498–504.

    Article  Google Scholar 

  23. Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic acids Res. 2017;45:D833–D839.

    Article  PubMed  Google Scholar 

  24. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.

    Article  Google Scholar 

  25. Kieleväinen V, Turtinen M, Luopajärvi K, Härkönen T, Ilonen J, Knip M, et al. Increased HLA class II risk is associated with a more aggressive presentation of clinical type 1 diabetes. Acta Paediatr. 2023;112:522–8.

    Article  PubMed  Google Scholar 

  26. Pöllänen PM, Lempainen J, Laine AP, Toppari J, Veijola R, Vähäsalo P, et al. Characterisation of rapid progressors to type 1 diabetes among children with HLA-conferred disease susceptibility. Diabetologia. 2017;60:1284–93.

    Article  PubMed  Google Scholar 

  27. Bougnères P, Valleron AJ. Causes of early-onset type 1 diabetes: toward data-driven environmental approaches. J Exp Med. 2008;205:2953–7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bougnères P, LeFur S, Valleron AJ. Early varicella infection is associated with a delayed onset of childhood type 1 diabetes. Diabetes Metabol. 2022;48:101394.

  29. Verlaan DJ, Berlivet S, Hunninghake GM, Madore AM, Larivière M, Moussette S, et al. Allele-Specific Chromatin Remodeling in the ZPBP2/GSDMB/ORMDL3 Locus Associated with the Risk of Asthma and Autoimmune Disease. Am J Hum Genet. 2009;85:377–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kochi Y, Yamada R, Suzuki A, Harley JB, Shirasawa S, Sawada T, et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat Genet. 2005;37:478–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eskdale J, McNicholl J, Wordsworth P, Jonas B, Huizinga T, Field M, et al. Interleukin-10 microsatellite polymorphisms and IL-10 locus alleles in rheumatoid arthritis susceptibility. Lancet. 1998;352:1282–3.

    Article  CAS  PubMed  Google Scholar 

  32. Lin YJ, Wan L, Sheu JJC, Huang CM, Lin CW, Lan YC, et al. G/T polymorphism in the interleukin-2 exon 1 region among Han Chinese systemic lupus erythematosus patients in Taiwan. Clin Immunol. 2008;129:36–9.

    Article  CAS  PubMed  Google Scholar 

  33. Sun SC. Deubiquitylation and regulation of the immune response. Nat Rev Immunol. 2008;8:501–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pothlichet J, Quintana-Murci L. The genetics of innate immunity sensors and human disease. Int Rev Immunol. 2013;32:157–208.

    Article  CAS  PubMed  Google Scholar 

  36. Kahlmann D, Davalos-Misslitz ACM, Ohl L, Stanke F, Witte T, Förster R. Genetic variants of chemokine receptor CCR7 in patients with systemic lupus erythematosus, Sjogren’s syndrome and systemic sclerosis. BMC Genet. 2007;8:33.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sigurdsson S, Nordmark G, Göring HHH, Lindroos K, Wiman AC, Sturfelt G, et al. Polymorphisms in the Tyrosine Kinase 2 and Interferon Regulatory Factor 5 Genes Are Associated with Systemic Lupus Erythematosus. Am J Hum Genet. 2005;76:528–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The diabetes centers and doctors who contributed to the Isis cohort are listed in Supplementary Table 1. We thank B. Aboumrad+, P. Lucchini and all nurses in Isis-Diab centers. We thank the patients and parents who participated in the study. We thank A. Fourreau, G. Leprun, A. Guégan and V. Jauffret for collecting samples and data, C. Mille and D Boudia for technical help.

Funding

The Isis-Diab study was sponsored by a joint 2009-2014 “Alliance Isis-Diab” grant from INSERM under the aegis of former director Christian Bréchot, and the French affiliate of the NovoNordisk Foundation under the aegis of Stéphane Calmar. The Isis-Diab cohort was also supported by the Programme Hospitalier de Recherche Clinique (PHRC) of the French Health Ministry, the Association pour la Recherche sur le Diabète (ARD) and GETDOC Association.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

PB designed the study, analyzed the data, and drafted the manuscript. AJV supervised statistical analyses. SLF organized the study protocol, data and sample collection, and data interpretation. TNM performed statistical analyses. YK performed genomic imputations. XS did the GO and pathway analyses. Clinicians of the Isis-Diab group and KP recruited the patients. MPB performed SNP genotyping using PCR-based techniques. ML organized GWAS and supervised genomic analyses.

Corresponding author

Correspondence to Pierre Bougnères.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bougnères, P., Le Fur, S., Kamatani, Y. et al. Genomic variants associated with age at diagnosis of childhood-onset type 1 diabetes. J Hum Genet (2024). https://doi.org/10.1038/s10038-024-01272-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s10038-024-01272-3

Search

Quick links