Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gut hormones and bone homeostasis: potential therapeutic implications

Subjects

Abstract

Bone resorption follows a circadian rhythm, with a marked reduction in circulating markers of resorption (such as carboxy-terminal telopeptide region of collagen type I in serum) in the postprandial period. Several gut hormones, including glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP1) and GLP2, have been linked to this effect in humans and rodent models. These hormones are secreted from enteroendocrine cells in the gastrointestinal tract in response to a variety of stimuli and effect a wide range of physiological processes within and outside the gut. Single GLP1, dual GLP1–GIP or GLP1–glucagon and triple GLP1–GIP–glucagon receptor agonists have been developed for the treatment of type 2 diabetes mellitus and obesity. In addition, single GIP, GLP1 and GLP2 analogues have been investigated in preclinical studies as novel therapeutics to improve bone strength in bone fragility disorders. Dual GIP–GLP2 analogues have been developed that show therapeutic promise for bone fragility in preclinical studies and seem to exert considerable activity at the bone material level. This Review summarizes the evidence of the action of gut hormones on bone homeostasis and physiology.

Key points

  • Circulating markers of bone resorption, and to a lesser extent bone formation, follow a circadian pattern, with a notable reduction occurring in humans during the postprandial period.

  • Glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP1) and GLP2 modulate circulating markers of bone resorption during the postprandial period in humans.

  • In humans and rodents, GIP–GIP receptor and GLP2–GLP2 receptor have distinct but additive effects on bone turnover and bone material properties, including enhanced enzymatic collagen crosslinking.

  • In rodents, single analogues of GIP, GLP1 and GLP2 improve bone density, microstructure and material properties.

  • In rodent models of bone fragility, dual GIP–GLP2 analogues improve bone strength by acting at the bone material level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pioneering research in the crosstalk between EECs and bone.
Fig. 2: Schematic representation of EEC–bone tissue crosstalk.
Fig. 3: Expression of gut hormone receptors, their signalling pathways and downstream responses in bone cells.

Similar content being viewed by others

References

  1. Su, N. et al. Bone function, dysfunction and its role in diseases including critical illness. Int. J. Biol. Sci. 15, 776–787 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lloret, M. J. et al. Evaluating osteoporosis in chronic kidney disease: both bone quantity and quality matter. J. Clin. Med. 13, 1010 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Assis-Ribas, T., Forni, M. F., Winnischofer, S. M. B., Sogayar, M. C. & Trombetta-Lima, M. Extracellular matrix dynamics during mesenchymal stem cells differentiation. Dev. Biol. 437, 63–74 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Marini, J. C. et al. Osteogenesis imperfecta. Nat. Rev. Dis. Prim. 3, 17052 (2017).

    Article  PubMed  Google Scholar 

  5. Zhao, Y. et al. Crosstalk between the neuroendocrine system and bone homeostasis. Endocr. Rev. 45, 95–124 (2024).

    Article  PubMed  Google Scholar 

  6. Delaisse, J. M. et al. Re-thinking the bone remodeling cycle mechanism and the origin of bone loss. Bone 141, 115628 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. McDonald, M. M. et al. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell 184, 1330–1347.e13 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bolamperti, S., Villa, I. & Rubinacci, A. Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res. 10, 48 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Allaire, J. M. et al. The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol. 39, 677–696 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Posovszky, C. Development and anatomy of the enteroendocrine system in humans. Endocr. Dev. 32, 20–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Gribble, F. M. & Reimann, F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 78, 277–299 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Bany Bakar, R., Reimann, F. & Gribble, F. M. The intestine as an endocrine organ and the role of gut hormones in metabolic regulation. Nat. Rev. Gastroenterol. Hepatol. 20, 784–796 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Fothergill, L. J. & Furness, J. B. Diversity of enteroendocrine cells investigated at cellular and subcellular levels: the need for a new classification scheme. Histochem. Cell Biol. 150, 693–702 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Habib, A. M. et al. Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 153, 3054–3065 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adriaenssens, A. E., Reimann, F. & Gribble, F. M. Distribution and stimulus secretion coupling of enteroendocrine cells along the intestinal tract. Compr. Physiol. 8, 1603–1638 (2018).

    Article  PubMed  Google Scholar 

  16. Jenny, M. et al. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J. 21, 6338–6347 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, J. et al. Mutant neurogenin-3 in congenital malabsorptive diarrhea. N. Engl. J. Med. 355, 270–280 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Eastell, R. et al. Postmenopausal osteoporosis. Nat. Rev. Dis. Prim. 2, 16069 (2016).

    Article  PubMed  Google Scholar 

  19. Paschalis, E. P. et al. Aging versus postmenopausal osteoporosis: bone composition and maturation kinetics at actively-forming trabecular surfaces of female subjects aged 1 to 84 years. J. Bone Miner. Res. 31, 347–357 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Janghorbani, M., Van Dam, R. M., Willett, W. C. & Hu, F. B. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am. J. Epidemiol. 166, 495–505 (2007).

    Article  PubMed  Google Scholar 

  21. Khosla, S., Samakkarnthai, P., Monroe, D. G. & Farr, J. N. Update on the pathogenesis and treatment of skeletal fragility in type 2 diabetes mellitus. Nat. Rev. Endocrinol. 17, 685–697 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Napoli, N. et al. Mechanisms of diabetes mellitus-induced bone fragility. Nat. Rev. Endocrinol. 13, 208–219 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Delmas, P. D. Clinical use of biochemical markers of bone remodeling in osteoporosis. Bone 13, S17–S21 (1992).

    Article  PubMed  Google Scholar 

  24. Eastell, R. et al. Abnormalities in circadian patterns of bone resorption and renal calcium conservation in type I osteoporosis. J. Clin. Endocrinol. Metab. 74, 487–494 (1992).

    CAS  PubMed  Google Scholar 

  25. Schlemmer, A., Hassager, C., Jensen, S. B. & Christiansen, C. Marked diurnal variation in urinary excretion of pyridinium cross-links in premenopausal women. J. Clin. Endocrinol. Metab. 74, 476–480 (1992).

    CAS  PubMed  Google Scholar 

  26. Diemar, S. S. et al. A systematic review of the circadian rhythm of bone markers in blood. Calcif. Tissue Int. 112, 126–147 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Clowes, J. A. et al. Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone 30, 886–890 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Henriksen, D. B. et al. Role of gastrointestinal hormones in postprandial reduction of bone resorption. J. Bone Miner. Res. 18, 2180–2189 (2003). The first study that unambiguously shows a role for GIP and GLP2 in controlling bone turnover.

    Article  CAS  PubMed  Google Scholar 

  29. Walsh, J. S. & Henriksen, D. B. Feeding and bone. Arch. Biochem. Biophys. 503, 11–19 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Heshmati, H. M. et al. Effects of the circadian variation in serum cortisol on markers of bone turnover and calcium homeostasis in normal postmenopausal women. J. Clin. Endocrinol. Metab. 83, 751–756 (1998).

    CAS  PubMed  Google Scholar 

  31. Lakatos, P. et al. Circadian rhythm of in vitro bone-resorbing activity in human serum. J. Clin. Endocrinol. Metab. 80, 3185–3190 (1995).

    CAS  PubMed  Google Scholar 

  32. Ledger, G. A. et al. Role of parathyroid hormone in mediating nocturnal and age-related increases in bone resorption. J. Clin. Endocrinol. Metab. 80, 3304–3310 (1995).

    CAS  PubMed  Google Scholar 

  33. Westberg-Rasmussen, S. et al. Differential impact of glucose administered intravenously or orally on bone turnover markers in healthy male subjects. Bone 97, 261–266 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Clowes, J. A., Allen, H. C., Prentis, D. M., Eastell, R. & Blumsohn, A. Octreotide abolishes the acute decrease in bone turnover in response to oral glucose. J. Clin. Endocrinol. Metab. 88, 4867–4873 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Holst, J. J. et al. Bone resorption is decreased postprandially by intestinal factors and glucagon-like peptide-2 is a possible candidate. Scand. J. Gastroenterol. 42, 814–820 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Gottschalck, I. B., Jeppesen, P. B., Holst, J. J. & Henriksen, D. B. Reduction in bone resorption by exogenous glucagon-like peptide-2 administration requires an intact gastrointestinal tract. Scand. J. Gastroenterol. 43, 929–937 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Abildgaard, J. et al. Preserved postprandial suppression of bone turnover markers, despite increased fasting levels, in postmenopausal women. Bone 143, 115612 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Helsted, M. M. et al. The role of endogenous GIP and GLP-1 in postprandial bone homeostasis. Bone 140, 115553 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Jensen, N. W. et al. Associations between postprandial gut hormones and markers of bone remodeling. Nutrients 13, 3197 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lei, W. S. et al. Bone metabolism and incretin hormones following glucose ingestion in young adults with pancreatic insufficient cystic fibrosis. J. Clin. Transl. Endocrinol. 30, 100304 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Montes Castillo, M. C. et al. Glucagon-like peptide 1 and glucagon-like peptide 2 in relation to osteoporosis in non-diabetic postmenopausal women. Sci. Rep. 9, 13651 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Stensen, S. et al. Effects of endogenous GIP in patients with type 2 diabetes. Eur. J. Endocrinol. 185, 33–45 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Askov-Hansen, C. et al. Effect of glucagon-like peptide-2 exposure on bone resorption: effectiveness of high concentration versus prolonged exposure. Regul. Pept. 181, 4–8 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Bergmann, N. C. et al. Separate and combined effects of GIP and GLP-1 infusions on bone metabolism in overweight men without diabetes. J. Clin. Endocrinol. Metab. 104, 2953–2960 (2019).

    Article  PubMed  Google Scholar 

  45. Christensen, M. B. et al. Glucose-dependent insulinotropic polypeptide (GIP) inhibits bone resorption independently of insulin and glycemia. J. Clin. Endocrinol. Metab. 103, 288–294 (2018).

    Article  PubMed  Google Scholar 

  46. Christensen, M. B. et al. Glucose-dependent insulinotropic polypeptide (GIP) reduces bone resorption in patients with type 2 diabetes. J. Endocr. Soc. 4, bvaa097 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gabe, M. B. N. et al. GIP and GLP-2 together improve bone turnover in humans supporting GIPR-GLP-2R co-agonists as future osteoporosis treatment. Pharmacol. Res. 176, 106058 (2022). This paper describes the development of dual GIP–GLP2 analogues developed for their capacity to modulate bone turnover.

    Article  CAS  PubMed  Google Scholar 

  48. Henriksen, D. B. et al. Reduction of nocturnal rise in bone resorption by subcutaneous GLP-2. Bone 34, 140–147 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Nissen, A. et al. Glucose-dependent insulinotropic polypeptide inhibits bone resorption in humans. J. Clin. Endocrinol. Metab. 99, E2325–E2329 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Nissen, A. et al. A pilot study showing acute inhibitory effect of GLP-1 on the bone resorption marker CTX in humans. JBMR Plus 3, e10209 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Skov-Jeppesen, K. et al. The antiresorptive effect of GIP, but not GLP-2, is preserved in patients with hypoparathyroidism – a randomized crossover study. J. Bone Miner. Res. 36, 1448–1458 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Skov-Jeppesen, K. et al. GLP-2 and GIP exert separate effects on bone turnover: a randomized, placebo-controlled, crossover study in healthy young men. Bone 125, 178–185 (2019). This study shows that GIP and GLP2 exert separate but additive effects on bone turnover in humans.

    Article  CAS  PubMed  Google Scholar 

  53. Skov-Jeppesen, K. et al. Subcutaneous GIP and GLP-2 inhibit nightly bone resorption in postmenopausal women: a preliminary study. Bone 152, 116065 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Nauck, M. A. et al. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J. Clin. Invest. 91, 301–307 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stensen, S. et al. Endogenous glucose-dependent insulinotropic polypeptide contributes to sitagliptin-mediated improvement in β-cell function in patients with type 2 diabetes. Diabetes 71, 2209–2221 (2022).

    CAS  PubMed  Google Scholar 

  56. Hojberg, P. V. et al. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia 52, 199–207 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. El, K. et al. The incretin co-agonist tirzepatide requires GIPR for hormone secretion from human islets. Nat. Metab. 5, 945–954 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gobron, B. et al. Development of a first-in-class unimolecular dual GIP/GLP-2 analogue, GL-0001, for the treatment of bone fragility. J. Bone Miner. Res. 38, 733–748 (2023). This paper describes the development of dual GIP–GLP2 analogues developed specifically to enhance enzymatic collagen crosslinking.

    Article  CAS  PubMed  Google Scholar 

  59. Eriksson, R. et al. Bone status in obese, non-diabetic, antipsychotic-treated patients, and effects of the glucagon-like peptide-1 receptor agonist exenatide on bone turnover markers and bone mineral density. Front. Psychiatry 9, 781 (2018).

    Article  PubMed  Google Scholar 

  60. Hygum, K. et al. Bone resorption is unchanged by liraglutide in type 2 diabetes patients: a randomised controlled trial. Bone 132, 115197 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Iepsen, E. W. et al. GLP-1 receptor agonist treatment increases bone formation and prevents bone loss in weight-reduced obese women. J. Clin. Endocrinol. Metab. 100, 2909–2917 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Li, R. et al. Effect of exenatide, insulin and pioglitazone on bone metabolism in patients with newly diagnosed type 2 diabetes. Acta Diabetol. 52, 1083–1091 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Maagensen, H., Larsen, J. R., Jorgensen, N. R., Fink-Jensen, A. & Vilsboll, T. Liraglutide does not change bone turnover in clozapine- and olanzapine-treated schizophrenia overweight patients with prediabetes – randomized controlled trial. Psychiatry Res. 296, 113670 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Lee, N. K. et al. Endocrine regulation of energy metabolism by the skeleton. Cell 130, 456–469 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mizokami, A. et al. Osteocalcin induces release of glucagon-like peptide-1 and thereby stimulates insulin secretion in mice. PLoS ONE 8, e57375 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mizokami, A. et al. Oral administration of osteocalcin improves glucose utilization by stimulating glucagon-like peptide-1 secretion. Bone 69, 68–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Mizokami, A. et al. GLP-1 signaling is required for improvement of glucose tolerance by osteocalcin. J. Endocrinol. 244, 285–296 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Jorsal, T. et al. Enteroendocrine K and L cells in healthy and type 2 diabetic individuals. Diabetologia 61, 284–294 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Bollag, R. J. et al. Osteoblast-derived cells express functional glucose-dependent insulinotropic peptide receptors. Endocrinology 141, 1228–1235 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Mieczkowska, A., Bouvard, B., Chappard, D. & Mabilleau, G. Glucose-dependent insulinotropic polypeptide (GIP) directly affects collagen fibril diameter and collagen cross-linking in osteoblast cultures. Bone 74, 29–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Daley, E. J. & Trackman, P. C β-Catenin mediates glucose-dependent insulinotropic polypeptide increases in lysyl oxidase expression in osteoblasts. Bone Rep. 14, 101063 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mabilleau, G. et al. Glucose-dependent insulinotropic polypeptide (GIP) dose-dependently reduces osteoclast differentiation and resorption. Bone 91, 102–112 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Zhong, Q. et al. Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am. J. Physiol. Endocrinol. Metab. 292, E543–E548 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Gobron, B. et al. Enteroendocrine K cells exert complementary effects to control bone quality and mass in mice. J. Bone Miner. Res. 35, 1363–1374 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Xie, D. et al. Glucose-dependent insulinotropic peptide-overexpressing transgenic mice have increased bone mass. Bone 40, 1352–1360 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Gaudin-Audrain, C. et al. Glucose-dependent insulinotropic polypeptide receptor deficiency leads to modifications of trabecular bone volume and quality in mice. Bone 53, 221–230 (2013). The first study showing a deterioration of bone material properties following deletion of the GIPR.

    Article  CAS  PubMed  Google Scholar 

  77. Tsukiyama, K. et al. Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol. Endocrinol. 20, 1644–1651 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Mantelmacher, F. D. et al. Glucose-dependent insulinotropic polypeptide receptor deficiency leads to impaired bone marrow hematopoiesis. J. Immunol. 198, 3089–3098 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Pujadas, G. et al. The gut hormone receptor GIPR links energy availability to the control of hematopoiesis. Mol. Metab. 39, 101008 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Torekov, S. S. et al. A functional amino acid substitution in the glucose-dependent insulinotropic polypeptide receptor (GIPR) gene is associated with lower bone mineral density and increased fracture risk. J. Clin. Endocrinol. Metab. 99, E729–E733 (2014). This study highlights that GIPR single nucleotide polymorphism can lead to skeletal fragility.

    Article  CAS  PubMed  Google Scholar 

  81. Morris, J. A. et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat. Genet. 51, 258–266 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Styrkarsdottir, U. et al. Obesity variants in the GIPR gene do not associate with risk of fracture or bone mineral density. J. Clin. Endocrinol. Metab. https://doi.org/10.1210/clinem/dgad734 (2023).

  83. Garg, G. et al. Glucose-dependent insulinotropic polypeptide (GIP) and GIP receptor (GIPR) genes: an association analysis of polymorphisms and bone in young and elderly women. Bone Rep. 4, 23–27 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Muller, T. D. et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pacheco-Pantoja, E. L., Ranganath, L. R., Gallagher, J. A., Wilson, P. J. & Fraser, W. D. Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol. 11, 12 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim, J. Y. et al. Exendin-4 increases bone mineral density in type 2 diabetic OLETF rats potentially through the down-regulation of SOST/sclerostin in osteocytes. Life Sci. 92, 533–540 (2013).

    Article  PubMed  Google Scholar 

  87. Aoyama, E., Watari, I., Podyma-Inoue, K. A., Yanagishita, M. & Ono, T. Expression of glucagon-like peptide-1 receptor and glucose-dependent insulinotropic polypeptide receptor is regulated by the glucose concentration in mouse osteoblastic MC3T3-E1 cells. Int. J. Mol. Med. 34, 475–482 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Mieczkowska, A., Bouvard, B., Legrand, E. & Mabilleau, G. [Gly2]-GLP-2, but not glucagon or [D-Ala2]-GLP-1, controls collagen crosslinking in murine osteoblast cultures. Front. Endocrinol. 12, 721506 (2021).

    Article  Google Scholar 

  89. Nuche-Berenguer, B. et al. Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMP-linked GLP-1 receptor. J. Cell Physiol. 225, 585–592 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Li, Z., Li, S., Wang, N., Xue, P. & Li, Y. Liraglutide, a glucagon-like peptide-1 receptor agonist, suppresses osteoclastogenesis through the inhibition of NF-κB and MAPK pathways via GLP-1R. Biomed. Pharmacother. 130, 110523 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Madsen, L. W. et al. GLP-1 receptor agonists and the thyroid: C-cell effects in mice are mediated via the GLP-1 receptor and not associated with RET activation. Endocrinology 153, 1538–1547 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pyke, C. et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 155, 1280–1290 (2014).

    Article  PubMed  Google Scholar 

  93. Hegedus, L., Moses, A. C., Zdravkovic, M., Le Thi, T. & Daniels, G. H. GLP-1 and calcitonin concentration in humans: lack of evidence of calcitonin release from sequential screening in over 5000 subjects with type 2 diabetes or nondiabetic obese subjects treated with the human GLP-1 analog, liraglutide. J. Clin. Endocrinol. Metab. 96, 853–860 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Mabilleau, G., Mieczkowska, A., Irwin, N., Flatt, P. R. & Chappard, D. Optimal bone mechanical and material properties require a functional glucagon-like peptide-1 receptor. J. Endocrinol. 219, 59–68 (2013). This study shows that deletion of the GLP1 receptor leads to skeletal fragility.

    Article  CAS  PubMed  Google Scholar 

  95. Yamada, C. et al. The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology 149, 574–579 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, L. et al. Relationship between glucagon-like peptide-1 receptor gene polymorphism and bone mineral density in postmenopausal women in Shanghai. Ann. Palliat. Med. 9, 1732–1741 (2020).

    Article  PubMed  Google Scholar 

  97. Markovic, M. A. & Brubaker, P. L. The roles of glucagon-like peptide-2 and the intestinal epithelial insulin-like growth factor-1 receptor in regulating microvillus length. Sci. Rep. 9, 13010 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Yusta, B. et al. Localization of glucagon-like peptide-2 receptor expression in the mouse. Endocrinology 160, 1950–1963 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xiao, J., Drucker, D. J. & Clowes, J. A. A marked abnormality in myeloid and mesenchymal somatic stem cells explains the skeletal defect in glucagon-like polypeptide-2 receptor KO mice. J. Bone Miner. Res. 22, S466 (2007).

    Google Scholar 

  100. Guan, X. et al. GLP-2 receptor in POMC neurons suppresses feeding behavior and gastric motility. Am. J. Physiol. Endocrinol. Metab. 303, E853–E864 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Haedersdal, S., Andersen, A., Knop, F. K. & Vilsboll, T. Revisiting the role of glucagon in health, diabetes mellitus and other metabolic diseases. Nat. Rev. Endocrinol. 19, 321–335 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Lund, A. et al. Evidence of extrapancreatic glucagon secretion in man. Diabetes 65, 585–597 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Muller, T. D., Finan, B., Clemmensen, C., DiMarchi, R. D. & Tschop, M. H. The new biology and pharmacology of glucagon. Physiol. Rev. 97, 721–766 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Condon, J. R. Glucagon in the treatment of Paget’s disease of bone. Br. Med. J. 4, 719–721 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mabilleau, G. et al. Beneficial effects of a N-terminally modified GIP agonist on tissue-level bone material properties. Bone 63, 61–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Mansur, S. A. et al. Stable incretin mimetics counter rapid deterioration of bone quality in type 1 diabetes mellitus. J. Cell Physiol. 230, 3009–3018 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Mabilleau, G., Gobron, B., Mieczkowska, A., Perrot, R. & Chappard, D. Efficacy of targeting bone-specific GIP receptor in ovariectomy-induced bone loss. J. Endocrinol. 239, 215–227 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Vyavahare, S. S. et al. GIP analogues augment bone strength by modulating bone composition in diet-induced obesity in mice. Peptides 125, 170207 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Luciani, P. et al. The effects of exendin-4 on bone marrow-derived mesenchymal cells. Endocrine 60, 423–434 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Pang, Y. et al. The effect of liraglutide on the proliferation, migration, and osteogenic differentiation of human periodontal ligament cells. J. Periodontal Res. 54, 106–114 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Zhai, S. et al. Glucagon-like peptide-1 receptor promotes osteoblast differentiation of dental pulp stem cells and bone formation in a zebrafish scale regeneration model. Peptides 163, 170974 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Zhang, Y. et al. Liraglutide regulates bone destruction and exhibits anti-inflammatory effects in periodontitis in vitro and in vivo. J. Dent. 94, 103310 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Feng, Y. et al. Exendin-4 promotes proliferation and differentiation of MC3T3-E1 osteoblasts by MAPKs activation. J. Mol. Endocrinol. 56, 189–199 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Gao, L., Li, S. L. & Li, Y. K. Liraglutide promotes the osteogenic differentiation in MC3T3-E1 cells via regulating the expression of smad2/3 through PI3K/Akt and Wnt/β-catenin pathways. DNA Cell Biol. 37, 1031–1043 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Wu, X., Li, S., Xue, P. & Li, Y. Liraglutide, a glucagon-like peptide-1 receptor agonist, facilitates osteogenic proliferation and differentiation in MC3T3-E1 cells through phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), extracellular signal-related kinase (ERK)1/2, and cAMP/protein kinase A (PKA) signaling pathways involving β-catenin. Exp. Cell Res. 360, 281–291 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Zhang, M. et al. Exendin-4 enhances proliferation of senescent osteoblasts through activation of the IGF-1/IGF-1R signaling pathway. Biochem. Biophys. Res. Commun. 516, 300–306 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Eminov, E. et al. Exenatide preserves trabecular bone microarchitecture in experimental ovariectomized rat model. Arch. Gynecol. Obstet. 297, 1587–1593 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Lu, N. et al. Glucagon-like peptide-1 receptor agonist liraglutide has anabolic bone effects in ovariectomized rats without diabetes. PLoS ONE 10, e0132744 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ma, X. et al. Exendin-4, a glucagon-like peptide-1 receptor agonist, prevents osteopenia by promoting bone formation and suppressing bone resorption in aged ovariectomized rats. J. Bone Miner. Res. 28, 1641–1652 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Pal, S. et al. The osteogenic effect of liraglutide involves enhanced mitochondrial biogenesis in osteoblasts. Biochem. Pharmacol. 164, 34–44 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pereira, M. et al. Chronic administration of glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone 81, 459–467 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Yang, L., Yang, J., Pan, T. & Zhong, X. Liraglutide increases bone formation and inhibits bone resorption in rats with glucocorticoid-induced osteoporosis. J. Endocrinol. Invest. 42, 1125–1131 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Cheng, Y. et al. Glucagon-like peptide-1 attenuates diabetes-associated osteoporosis in ZDF rat, possibly through the RAGE pathway. BMC Musculoskelet. Disord. 23, 465 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li, J., Fu, L. Z., Liu, L., Xie, F. & Dai, R. C. Glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide alters bone marrow exosome-mediated miRNA signal pathways in ovariectomized rats with type 2 diabetes. Med. Sci. Monit. 23, 5410–5419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mansur, S. A. et al. The GLP-1 receptor agonist exenatide ameliorates bone composition and tissue material properties in high fat fed diabetic mice. Front. Endocrinol. 10, 51 (2019).

    Article  Google Scholar 

  126. Mieczkowska, A., Millar, P., Chappard, D., Gault, V. A. & Mabilleau, G. Dapagliflozin and liraglutide therapies rapidly enhanced bone material properties and matrix biomechanics at bone formation site in a type 2 diabetic mouse model. Calcif. Tissue Int. 107, 281–293 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Pereira, M. et al. Exenatide improves bone quality in a murine model of genetically inherited type 2 diabetes mellitus. Front. Endocrinol. 8, 327 (2017).

    Article  Google Scholar 

  128. Sun, H. X., Lu, N., Luo, X., Zhao, L. & Liu, J. M. Liraglutide, the glucagon-like peptide-1 receptor agonist, has anabolic bone effects in diabetic Goto-Kakizaki rats. J. Diabetes 7, 584–588 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Wen, B., Zhao, L., Zhao, H. & Wang, X. Liraglutide exerts a bone-protective effect in ovariectomized rats with streptozotocin-induced diabetes by inhibiting osteoclastogenesis. Exp. Ther. Med. 15, 5077–5083 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Yu, J. et al. Liraglutide inhibits osteoclastogenesis and improves bone loss by downregulating Trem2 in female type 1 diabetic mice: findings from transcriptomics. Front. Endocrinol. 12, 763646 (2021).

    Article  Google Scholar 

  131. Chai, S. et al. Risk of fracture with dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis combining 177 randomized controlled trials with a median follow-up of 26 weeks. Front. Pharmacol. 13, 825417 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Driessen, J. H. et al. Use of glucagon-like-peptide 1 receptor agonists and risk of fracture as compared to use of other anti-hyperglycemic drugs. Calcif. Tissue Int. 97, 506–515 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hidayat, K., Du, X. & Shi, B. M. Risk of fracture with dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors in real-world use: systematic review and meta-analysis of observational studies. Osteoporos. Int. 30, 1923–1940 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Mabilleau, G., Mieczkowska, A. & Chappard, D. Use of glucagon-like peptide-1 receptor agonists and bone fractures: a meta-analysis of randomized clinical trials. J. Diabetes 6, 260–266 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Su, B. et al. Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists’ treatment: a meta-analysis of randomized controlled trials. Endocrine 48, 107–115 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Zhang, Y. S. et al. Glucagon-like peptide-1 receptor agonists and fracture risk: a network meta-analysis of randomized clinical trials. Osteoporos. Int. 29, 2639–2644 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Zhang, Y. S., Zheng, Y. D., Yuan, Y., Chen, S. C. & Xie, B. C. Effects of anti-diabetic drugs on fracture risk: a systematic review and network meta-analysis. Front. Endocrinol. 12, 735824 (2021).

    Article  Google Scholar 

  138. Cheng, L. et al. Glucagon-like peptide-1 receptor agonists and risk of bone fracture in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetes Metab. Res. Rev. 35, e3168 (2019).

    Article  PubMed  Google Scholar 

  139. Gobron, B., Bouvard, B., Legrand, E., Chappard, D. & Mabilleau, G. GLP-2 administration in ovariectomized mice enhances collagen maturity but did not improve bone strength. Bone Rep. 12, 100251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Xu, B. et al. Glucagon like peptide 2 has a positive impact on osteoporosis in ovariectomized rats. Life Sci. 226, 47–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Huang, Y. M. et al. Glucagon-like peptide-2 ameliorates age-associated bone loss and gut barrier dysfunction in senescence-accelerated mouse prone 6 mice. Gerontology 69, 428–449 (2023).

    Article  CAS  PubMed  Google Scholar 

  142. Jeppesen, P. B. et al. Short bowel patients treated for two years with glucagon-like Peptide 2: effects on intestinal morphology and absorption, renal function, bone and body composition, and muscle function. Gastroenterol. Res. Pract. 2009, 616054 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Henriksen, D. B. et al. Four-month treatment with GLP-2 significantly increases hip BMD: a randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD. Bone 45, 833–842 (2009). This study highlights that gut hormone analogues could have the potential to be used for the treatment of osteoporosis.

    Article  CAS  PubMed  Google Scholar 

  144. Sparre-Ulrich, A. H. et al. Species-specific action of (Pro3)GIP – a full agonist at human GIP receptors, but a partial agonist and competitive antagonist at rat and mouse GIP receptors. Br. J. Pharmacol. 173, 27–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Ansari, S., Khoo, B. & Tan, T. Targeting the incretin system in obesity and type 2 diabetes mellitus. Nat. Rev. Endocrinol. https://doi.org/10.1038/s41574-024-00979-9 (2024).

  146. Mansur, S. A. et al. A new stable GIP-oxyntomodulin hybrid peptide improved bone strength both at the organ and tissue levels in genetically-inherited type 2 diabetes mellitus. Bone 87, 102–113 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Paschalis, E. P., Klaushofer, K. & Hartmann, M. A. Material properties and osteoporosis. F1000Res. 8(F1000 Faculty Rev.), 1481 (2019).

    Article  Google Scholar 

  148. Fukushima, N. et al. Ghrelin directly regulates bone formation. J. Bone Miner. Res. 20, 790–798 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Sun, Y., Ahmed, S. & Smith, R. G. Deletion of ghrelin impairs neither growth nor appetite. Mol. Cell Biol. 23, 7973–7981 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sun, Y., Wang, P., Zheng, H. & Smith, R. G. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc. Natl Acad. Sci. USA 101, 4679–4684 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mihara, Y. et al. Deterioration of apatite orientation in the cholecystokinin B receptor gene (Cckbr)-deficient mouse femurs. J. Bone Miner. Metab. 41, 752–759 (2023).

    Article  CAS  PubMed  Google Scholar 

  152. Schinke, T. et al. Impaired gastric acidification negatively affects calcium homeostasis and bone mass. Nat. Med. 15, 674–681 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. de Vernejoul, M. C., Collet, C. & Chabbi-Achengli, Y. Serotonin: good or bad for bone. Bonekey Rep. 1, 120 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Mieczkowska, A., Irwin, N., Flatt, P. R., Chappard, D. & Mabilleau, G. Glucose-dependent insulinotropic polypeptide (GIP) receptor deletion leads to reduced bone strength and quality. Bone 56, 337–342 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Wong, I. P. et al. Peptide YY regulates bone remodeling in mice: a link between gut and skeletal biology. PLoS ONE 7, e40038 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Guillaume Mabilleau.

Ethics declarations

Competing interests

B.B. and G.M. are employees of the University of Angers and CHU Angers, which have jointly applied for a patent for the use of dual GIP–GLP2 analogues in the treatment of bone fragility disorders (patent application number: WO2020169792A1). G.M. is also listed as a co-inventor on this patent application.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Juliet Compston, Sundeep Khosla and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouvard, B., Mabilleau, G. Gut hormones and bone homeostasis: potential therapeutic implications. Nat Rev Endocrinol (2024). https://doi.org/10.1038/s41574-024-01000-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-024-01000-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing