Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Arginine vasopressin deficiency: diagnosis, management and the relevance of oxytocin deficiency

A Publisher Correction to this article was published on 08 May 2024

This article has been updated

Abstract

Polyuria–polydipsia syndrome can be caused by central diabetes insipidus, nephrogenic diabetes insipidus or primary polydipsia. To avoid confusion with diabetes mellitus, the name ‘central diabetes insipidus’ was changed in 2022 to arginine vasopressin (AVP) deficiency and ‘nephrogenic diabetes insipidus’ was renamed as AVP resistance. To differentiate the three entities, various osmotic and non-osmotic copeptin-based stimulation tests have been introduced in the past decade. The hypertonic saline test plus plasma copeptin measurement emerged as the test with highest diagnostic accuracy, replacing the water deprivation test as the gold standard in differential diagnosis of the polyuria–polydipsia syndrome. The mainstay of treatment for AVP deficiency is AVP replacement with desmopressin, a synthetic analogue of AVP specific for AVP receptor 2 (AVPR2), which usually leads to rapid improvements in polyuria and polydipsia. The main adverse effect of desmopressin is dilutional hyponatraemia, which can be reduced by regularly performing the so-called desmopressin escape method. Evidence from the past few years suggests an additional oxytocin deficiency in patients with AVP deficiency. This potential deficiency should be further evaluated in future studies, including feasible provocation tests for clinical practice and interventional trials with oxytocin substitution.

Key points

  • Central diabetes insipidus has been renamed to arginine vasopressin (AVP) deficiency and nephrogenic diabetes insipidus to AVP resistance.

  • Polyuria–polydipsia syndrome comprises AVP deficiency or resistance and primary polydipsia.

  • Copeptin-based stimulation tests have simplified and improved the diagnostic procedure for AVP deficiency and of these, the hypertonic saline test with measurement of plasma levels of copeptin has the highest diagnostic accuracy.

  • AVP deficiency can be treated with desmopressin, but this treatment confers a risk of hyponatraemia; patients should be instructed to use the desmopressin escape method to decrease the risk of hyponatraemia.

  • Oxytocin deficiency can occur in patients with AVP deficiency and can be assessed via stimulation with 3,4-methylenedioxymethamphetamine (that is, MDMA); whether oxytocin treatment is a future option for patients with AVP deficiency should be investigated in larger studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The hypothalamic–posterior pituitary axis.
Fig. 2: Algorithm for diagnostic approach in patients with suspected arginine vasopressin deficiency.
Fig. 3: Prevalence of hyponatraemia in patients with arginine vasopressin deficiency and strategies for the desmopressin escape method.
Fig. 4: Psychoactive behavioural responses and plasma concentrations of oxytocin in response to the MDMA provocation test.

Similar content being viewed by others

Change history

References

  1. Christ-Crain, M. et al. Diabetes insipidus. Nat. Rev. Dis. Prim. 5, 54 (2019). This review outlines diagnosis and treatment of diabetes insipidus (arginine vasopressin deficiency and arginine vasopressin resistance) and primary polydipsia.

    PubMed  Google Scholar 

  2. Mutter, C. M. et al. Diabetes insipidus: pathogenesis, diagnosis, and clinical management. Cureus 13, e13523 (2021).

    PubMed  PubMed Central  Google Scholar 

  3. Prentice, M. Time for change: renaming diabetes insipidus to improve patient safety. Clin. Endocrinol. 88, 625–626 (2018).

    Google Scholar 

  4. Atila, C. et al. Central diabetes insipidus from a patient’s perspective: management, psychological co-morbidities, and renaming of the condition: results from an international web-based survey. Lancet Diabetes Endocrinol. 10, 700–709 (2022). A study presenting data on psychological comorbidities and treatment adverse effects from a web-based survey in >1,000 patients with arginine vasopressin deficiency.

    PubMed  Google Scholar 

  5. Arima, H. et al. Changing the name of diabetes insipidus: a position statement of the working group for renaming diabetes insipidus. J. Clin. Endocrinol. Metab. 108, 1–3 (2022).

    PubMed  PubMed Central  Google Scholar 

  6. Fenske, W. et al. A copeptin-based approach in the diagnosis of diabetes insipidus. N. Engl. J. Med. 379, 428–439 (2018). A multicentre diagnostic study that shows the superiority of the hypertonic saline-stimulated copeptin test compared with the indirect water deprivation test in the differential diagnosis of the polyuria–polydipsia syndrome.

    CAS  PubMed  Google Scholar 

  7. Winzeler, B. et al. Arginine-stimulated copeptin measurements in the differential diagnosis of diabetes insipidus: a prospective diagnostic study. Lancet 394, 587–595 (2019). A diagnostic study showing a high diagnostic accuracy of the arginine-stimulated copeptin test in the differential diagnosis of the polyuria–polydipsia syndrome.

    CAS  PubMed  Google Scholar 

  8. Refardt, J. et al. Arginine or hypertonic saline-stimulated copeptin to diagnose AVP deficiency. N. Engl. J. Med. 389, 1877–1887 (2023). A head-to-head comparison of hypertonic saline versus arginine-stimulated copeptin tests that demonstrates the superiority of the hypertonic saline test in the differential diagnosis of the polyuria–polydipsia syndrome.

    CAS  PubMed  Google Scholar 

  9. Atila, C. et al. Oxytocin in response to MDMA provocation test in patients with arginine vasopressin deficiency (central diabetes insipidus): a single-centre, case–control study with nested, randomised, double-blind, placebo-controlled crossover trial. Lancet Diabetes Endocrinol. 11, 454–464 (2023). A study that provides evidence for an oxytocin deficiency in patients with arginine vasopressin deficiency.

    CAS  PubMed  Google Scholar 

  10. Lindholm, J. Diabetes insipidus: historical aspects. Pituitary 7, 33–38 (2004).

    CAS  PubMed  Google Scholar 

  11. Robertson, G. L. The regulation of vasopressin function in health and disease. Recent Prog. Horm. Res. 33, 333–385 (1976).

    CAS  PubMed  Google Scholar 

  12. Miller, M., Dalakos, T., Moses, A. M., Fellerman, H. & Streeten, D. H. Recognition of partial defects in antidiuretic hormone secretion. Ann. Intern. Med. 73, 721–729 (1970).

    CAS  PubMed  Google Scholar 

  13. Bockenhauer, D. & Bichet, D. G. Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nat. Rev. Nephrol. 11, 576–588 (2015).

    CAS  PubMed  Google Scholar 

  14. Sailer, C., Winzeler, B. & Christ-Crain, M. Primary polydipsia in the medical and psychiatric patient: characteristics, complications and therapy. Swiss Med. Wkly 147, w14514 (2017).

    PubMed  Google Scholar 

  15. Cadnapaphornchai, M. A. et al. Effect of primary polydipsia on aquaporin and sodium transporter abundance. Am. J. Physiol. Ren. Physiol. 285, F965–F971 (2003).

    CAS  Google Scholar 

  16. Robertson, G. L. Differential diagnosis of polyuria. Annu. Rev. Med. 39, 425–442 (1988).

    CAS  PubMed  Google Scholar 

  17. Verbalis, J. G. Disorders of body water homeostasis. Best Pract. Res. Clin. Endocrinol. Metab. 17, 471–503 (2003).

    CAS  PubMed  Google Scholar 

  18. Thompson, C. J. & Baylis, P. H. Thirst in diabetes insipidus: clinical relevance of quantitative assessment. Q. J. Med. 65, 853–862 (1987).

    CAS  PubMed  Google Scholar 

  19. Sailer, C. O. et al. Characteristics and outcomes of patients with profound hyponatraemia due to primary polydipsia. Clin. Endocrinol. 87, 492–499 (2017).

    CAS  Google Scholar 

  20. Arslan, A., Karaarslan, E. & Dinçer, A. High intensity signal of the posterior pituitary. A study with horizontal direction of frequency-encoding and fat suppression MR techniques. Acta Radiol. 40, 142–145 (1999).

    CAS  PubMed  Google Scholar 

  21. Moses, A. M., Clayton, B. & Hochhauser, L. Use of T1-weighted MR imaging to differentiate between primary polydipsia and central diabetes insipidus. Am. J. Neuroradiol. 13, 1273–1277 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Klyn, V. et al. Presence of the posterior pituitary bright spot sign on MRI in the general population: a comparison between 1.5 and 3 T MRI and between 2D-T1 spin-echo- and 3D-T1 gradient-echo sequences. Pituitary 21, 379–383 (2018).

    PubMed  Google Scholar 

  23. Maghnie, M. et al. Central diabetes insipidus in children and young adults. N. Engl. J. Med. 343, 998–1007 (2000).

    CAS  PubMed  Google Scholar 

  24. Hannon, M. et al. Anterior hypopituitarism is rare and autoimmune disease is common in adults with idiopathic central diabetes insipidus. Clin. Endocrinol. 76, 725–728 (2011).

    Google Scholar 

  25. Bonneville, J. F. Magnetic resonance imaging of pituitary tumors. Front. Horm. Res. 45, 97–120 (2016).

    PubMed  Google Scholar 

  26. Leger, J., Velasquez, A., Garel, C., Hassan, M. & Czernichow, P. Thickened pituitary stalk on magnetic resonance imaging in children with central diabetes insipidus. J. Clin. Endocrinol. Metab. 84, 1954–1960 (1999).

    CAS  PubMed  Google Scholar 

  27. Block, L. H., Furrer, J., Locher, R. A., Siegenthaler, W. & Vetter, W. Changes in tissue sensitivity to vasopressin in hereditary hypothalamic diabetes insipidus. Klin. Wochenschr. 59, 831–836 (1981).

    CAS  PubMed  Google Scholar 

  28. Fenske, W. & Allolio, B. Clinical review: current state and future perspectives in the diagnosis of diabetes insipidus: a clinical review. J. Clin. Endocrinol. Metab. 97, 3426–3437 (2012).

    CAS  PubMed  Google Scholar 

  29. Fenske, W. et al. Copeptin in the differential diagnosis of the polydipsia–polyuria syndrome — revisiting the direct and indirect water deprivation tests. J. Clin. Endocrinol. Metab. 96, 1506–1515 (2011).

    CAS  PubMed  Google Scholar 

  30. Zerbe, R. L. & Robertson, G. L. A comparison of plasma vasopressin measurements with a standard indirect test in the differential diagnosis of polyuria. N. Engl. J. Med. 305, 1539–1546 (1981).

    CAS  PubMed  Google Scholar 

  31. Robertson, G. L., Mahr, E. A., Athar, S. & Sinha, T. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J. Clin. Invest. 52, 2340–2352 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Morgenthaler, N. G., Struck, J., Alonso, C. & Bergmann, A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin. Chem. 52, 112–119 (2006).

    CAS  PubMed  Google Scholar 

  33. Czaczkes, J. W. & Kleeman, C. R. The effect of various states of hydration and the plasma concentration on the turnover of antidiuretic hormone in mammals. J. Clin. Invest. 43, 1649–1658 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Holwerda, D. A. A glycopeptide from the posterior lobe of pig pituitaries. I. Isolation and characterization. Eur. J. Biochem. FEBS 28, 334–339 (1972).

    CAS  Google Scholar 

  35. Levy, B., Chauvet, M. T., Chauvet, J. & Acher, R. Ontogeny of bovine neurohypophysial hormone precursors. II. Foetal copeptin, the third domain of the vasopressin precursor. Int. J. Pept. Protein Res. 27, 320–324 (1986).

    CAS  PubMed  Google Scholar 

  36. Balanescu, S. et al. Correlation of plasma copeptin and vasopressin concentrations in hypo-, iso-, and hyperosmolar states. J. Clin. Endocrinol. Metab. 96, 1046–1052 (2011).

    CAS  PubMed  Google Scholar 

  37. Sailer, C. O. et al. Validity of different copeptin assays in the differential diagnosis of the polyuria–polydipsia syndrome. Sci. Rep. 11, 10104 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Morgenthaler, N. G. et al. Copeptin, a stable peptide of the arginine vasopressin precursor, is elevated in hemorrhagic and septic shock. Shock 28, 219–226 (2007).

    CAS  PubMed  Google Scholar 

  39. Szinnai, G. et al. Changes in plasma copeptin, the C-terminal portion of arginine vasopressin during water deprivation and excess in healthy subjects. J. Clin. Endocrinol. Metab. 92, 3973–3978 (2007).

    CAS  PubMed  Google Scholar 

  40. Katan, M. et al. Copeptin: a novel, independent prognostic marker in patients with ischemic stroke. Ann. Neurol. 66, 799–808 (2009).

    CAS  PubMed  Google Scholar 

  41. Reichlin, T. et al. Incremental value of copeptin for rapid rule out of acute myocardial infarction. J. Am. Coll. Cardiol. 54, 60–68 (2009).

    CAS  PubMed  Google Scholar 

  42. Katan, M. & Christ-Crain, M. The stress hormone copeptin: a new prognostic biomarker in acute illness. Swiss Med. Wkly 140, w13101 (2010).

    CAS  PubMed  Google Scholar 

  43. Urwyler, S. A., Schuetz, P., Sailer, C. & Christ-Crain, M. Copeptin as a stress marker prior and after a written examination — the CoEXAM study. Stress 18, 134–137 (2015).

    CAS  PubMed  Google Scholar 

  44. Brooks, E. et al. Copeptin is increased by nausea and vomiting during hypertonic saline infusion in healthy individuals. Clin. Endocrinol. 94, 820–826 (2021).

    CAS  Google Scholar 

  45. Fenske, W. K. et al. Release and decay kinetics of copeptin vs AVP in response to osmotic alterations in healthy volunteers. J. Clin. Endocrinol. Metab. 103, 505–513 (2018).

    PubMed  Google Scholar 

  46. Timper, K. et al. Diagnostic accuracy of copeptin in the differential diagnosis of the polyuria–polydipsia syndrome: a prospective multicenter study. J. Clin. Endocrinol. Metab. 100, 2268–2274 (2015).

    CAS  PubMed  Google Scholar 

  47. Merimee, T. J., Rabinowtitz, D. & Fineberg, S. E. Arginine-initiated release of human growth hormone. Factors modifying the response in normal man. N. Engl. J. Med. 280, 1434–1438 (1969).

    CAS  PubMed  Google Scholar 

  48. Nair, N. P. et al. Effect of normal aging on the prolactin response to graded doses of sulpiride and to arginine. Prog. Neuropsychopharmacol. Biol. Psychiatry 9, 633–637 (1985).

    CAS  PubMed  Google Scholar 

  49. Atila, C. et al. Glucagon-stimulated copeptin measurements in the differential diagnosis of diabetes insipidus: a double-blind, randomized, placebo-controlled study. Eur. J. Endocrinol. 187, 65–74 (2022).

    CAS  PubMed  Google Scholar 

  50. Urwyler, S. A. et al. Effects of oral macimorelin on copeptin and anterior pituitary hormones in healthy volunteers. Pituitary 24, 555–563 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Behan, L. A. et al. Abnormal plasma sodium concentrations in patients treated with desmopressin for cranial diabetes insipidus: results of a long-term retrospective study. Eur. J. Endocrinol. 172, 243–250 (2015).

    CAS  PubMed  Google Scholar 

  52. Pedersen, A. N., Krogh, J., Andreassen, M. & Rasmussen, A. K. Desmopressin dose requirements in adults with congenital and acquired central diabetes insipidus. Horm. Metab. Res. 56, 206–213 (2023).

    PubMed  Google Scholar 

  53. Baldeweg, S. E. et al. Society for Endocrinology Clinical Guidance: inpatient management of cranial diabetes insipidus. Endocr. Connect. 7, G8–G11 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Richardson, D. W. & Robinson, A. G. Desmopressin. Ann. Intern. Med. 103, 228–239 (1985).

    CAS  PubMed  Google Scholar 

  55. Achinger, S. G., Arieff, A. I., Kalantar-Zadeh, K. & Ayus, J. C. Desmopressin acetate (DDAVP)-associated hyponatremia and brain damage: a case series. Nephrol. Dial. Transplant. 29, 2310–2315 (2014).

    CAS  PubMed  Google Scholar 

  56. Bichet, D. G. Regulation of thirst and vasopressin release. Annu. Rev. Physiol. 81, 359–373 (2019).

    CAS  PubMed  Google Scholar 

  57. Kim, G. H. Pathophysiology of drug-induced hyponatremia. J. Clin. Med. 11, 5810 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tomkins, M., Lawless, S., Martin-Grace, J., Sherlock, M. & Thompson, C. J. Diagnosis and management of central diabetes insipidus in adults. J. Clin. Endocrinol. Metab. 107, 2701–2715 (2022).

    PubMed  PubMed Central  Google Scholar 

  59. Teare, H. et al. Challenges and improvement needs in the care of patients with central diabetes insipidus. Orphanet. J. Rare Dis. 17, 58 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Christ-Crain, M., Winzeler, B. & Refardt, J. Diagnosis and management of diabetes insipidus for the internist: an update. J. Intern. Med. 290, 73–87 (2021).

    CAS  PubMed  Google Scholar 

  61. Melmed, S., Polonsky, K. S., Larsen, P. R. & Kronenberg, H. M. Williams Textbook of Endocrinology 14th edn (Elsevier, 2019).

  62. Fukuda, I., Hizuka, N. & Takano, K. Oral DDAVP is a good alternative therapy for patients with central diabetes insipidus: experience of five-year treatment. Endocr. J. 50, 437–443 (2003).

    CAS  PubMed  Google Scholar 

  63. Kataoka, Y., Nishida, S., Hirakawa, A., Oiso, Y. & Arima, H. Comparison of incidence of hyponatremia between intranasal and oral desmopressin in patients with central diabetes insipidus. Endocr. J. 62, 195–200 (2015).

    CAS  PubMed  Google Scholar 

  64. Althammer, F. & Grinevich, V. Diversity of oxytocin neurons: beyond magno- and parvocellular cell types? J. Neuroendocrinol. https://doi.org/10.1111/jne.12549 (2017).

    Article  PubMed  Google Scholar 

  65. Althammer, F., Eliava, M. & Grinevich, V. Central and peripheral release of oxytocin: relevance of neuroendocrine and neurotransmitter actions for physiology and behavior. Handb. Clin. Neurol. 180, 25–44 (2021).

    PubMed  Google Scholar 

  66. Swanson, L. W. & Sawchenko, P. E. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu. Rev. Neurosci. 6, 269–324 (1983).

    CAS  PubMed  Google Scholar 

  67. Zhang, B. et al. Reconstruction of the hypothalamo-neurohypophysial system and functional dissection of magnocellular oxytocin neurons in the brain. Neuron 109, 331–346.e7 (2021).

    CAS  PubMed  Google Scholar 

  68. Knobloch, H. S. et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73, 553–566 (2012).

    CAS  PubMed  Google Scholar 

  69. Mitre, M. et al. A distributed network for social cognition enriched for oxytocin receptors. J. Neurosci. 36, 2517–2535 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Oliveira, V. E. M. et al. Oxytocin and vasopressin within the ventral and dorsal lateral septum modulate aggression in female rats. Nat. Commun. 12, 2900 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Meyer-Lindenberg, A., Domes, G., Kirsch, P. & Heinrichs, M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat. Rev. Neurosci. 12, 524–538 (2011).

    CAS  PubMed  Google Scholar 

  72. Menon, R. et al. Oxytocin signaling in the lateral septum prevents social fear during lactation. Curr. Biol. 28, 1066–1078.e66 (2018).

    CAS  PubMed  Google Scholar 

  73. Ferretti, V. et al. Oxytocin signaling in the central amygdala modulates emotion discrimination in mice. Curr. Biol. 29, 1938–1953.e6 (2019).

    CAS  PubMed  Google Scholar 

  74. Blevins, J. E., Schwartz, M. W. & Baskin, D. G. Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brain stem nuclei controlling meal size. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R87–R96 (2004).

    CAS  PubMed  Google Scholar 

  75. Melis, M. R., Argiolas, A. & Gessa, G. L. Oxytocin-induced penile erection and yawning: site of action in the brain. Brain Res. 398, 259–265 (1986).

    CAS  PubMed  Google Scholar 

  76. Petersson, M. Cardiovascular effects of oxytocin. Prog. Brain Res. 139, 281–288 (2002).

    CAS  PubMed  Google Scholar 

  77. Sabatier, N., Leng, G. & Menzies, J. Oxytocin, feeding, and satiety. Front. Endocrinol. 4, 35 (2013).

    CAS  Google Scholar 

  78. Rash, J. A., Aguirre-Camacho, A. & Campbell, T. S. Oxytocin and pain: a systematic review and synthesis of findings. Clin. J. Pain 30, 453–462 (2014).

    PubMed  Google Scholar 

  79. Eliava, M. et al. A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron 89, 1291–1304 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hasan, M. T. et al. A fear memory engram and its plasticity in the hypothalamic oxytocin system. Neuron 103, 133–146.e8 (2019).

    CAS  PubMed  Google Scholar 

  81. Tang, Y. et al. Social touch promotes interfemale communication via activation of parvocellular oxytocin neurons. Nat. Neurosci. 23, 1125–1137 (2020).

    CAS  PubMed  Google Scholar 

  82. Mantella, R. C., Vollmer, R. R., Li, X. & Amico, J. A. Female oxytocin-deficient mice display enhanced anxiety-related behavior. Endocrinology 144, 2291–2296 (2003).

    CAS  PubMed  Google Scholar 

  83. Ferguson, J. N. et al. Social amnesia in mice lacking the oxytocin gene. Nat. Genet. 25, 284–288 (2000).

    CAS  PubMed  Google Scholar 

  84. Koltowska-Häggström, M. et al. Does long-term GH replacement therapy in hypopituitary adults with GH deficiency normalise quality of life. Eur. J. Endocrinol. 155, 109–119 (2006).

    PubMed  Google Scholar 

  85. Crespo, I., Valassi, E., Santos, A. & Webb, S. M. Health-related quality of life in pituitary diseases. Endocrinol. Metab. Clin. North Am. 44, 161–170 (2015).

    PubMed  Google Scholar 

  86. Nozaki, A. et al. Quality of life in the patients with central diabetes insipidus assessed by Nagasaki Diabetes Insipidus Questionnaire. Endocrine 51, 140–147 (2016).

    CAS  PubMed  Google Scholar 

  87. Karavitaki, N. et al. Craniopharyngiomas in children and adults: systematic analysis of 121 cases with long-term follow-up. Clin. Endocrinol. 62, 397–409 (2005).

    CAS  Google Scholar 

  88. Karavitaki, N., Cudlip, S., Adams, C. B. & Wass, J. A. Craniopharyngiomas. Endocr. Rev. 27, 371–397 (2006).

    PubMed  Google Scholar 

  89. Wijnen, M. et al. Very long-term sequelae of craniopharyngioma. Eur. J. Endocrinol. 176, 755–767 (2017).

    CAS  PubMed  Google Scholar 

  90. Pereira, A. M. et al. High prevalence of long-term cardiovascular, neurological and psychosocial morbidity after treatment for craniopharyngioma. Clin. Endocrinol. 62, 197–204 (2005).

    Google Scholar 

  91. Bhargava, R., Daughters, K. L. & Rees, A. Oxytocin therapy in hypopituitarism: challenges and opportunities. Clin. Endocrinol. 90, 257–264 (2019).

    Google Scholar 

  92. Eisenberg, Y. et al. Oxytocin alterations and neurocognitive domains in patients with hypopituitarism. Pituitary 22, 105–112 (2019).

    CAS  PubMed  Google Scholar 

  93. Gebert, D. et al. De-masking oxytocin-deficiency in craniopharyngioma and assessing its link with affective function. Psychoneuroendocrinology 88, 61–69 (2018).

    CAS  PubMed  Google Scholar 

  94. Daughters, K., Manstead, A. S. R. & Rees, D. A. Hypopituitarism is associated with lower oxytocin concentrations and reduced empathic ability. Endocrine 57, 166–174 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Daubenbüchel, A. M. et al. Oxytocin in survivors of childhood-onset craniopharyngioma. Endocrine 54, 524–531 (2016).

    PubMed  Google Scholar 

  96. Aulinas, A. et al. Low plasma oxytocin levels and increased psychopathology in hypopituitary men with diabetes insipidus. J. Clin. Endocrinol. Metab. 104, 3181–3191 (2019).

    PubMed  PubMed Central  Google Scholar 

  97. Leng, G. & Sabatier, N. Measuring oxytocin and vasopressin: bioassays, immunoassays and random numbers. J. Neuroendocrinol. https://doi.org/10.1111/jne.12413 (2016).

  98. Valstad, M. et al. The correlation between central and peripheral oxytocin concentrations: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 78, 117–124 (2017).

    CAS  PubMed  Google Scholar 

  99. Chiodera, P. et al. Hypoglycemia-induced arginine vasopressin and oxytocin release is mediated by glucoreceptors located inside the blood–brain barrier. Neuroendocrinology 55, 655–659 (1992).

    CAS  PubMed  Google Scholar 

  100. Sailer, C. O. et al. Oxytocin levels in response to pituitary provocation tests in healthy volunteers. Eur. J. Endocrinol. 185, 355–364 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Brandi, M. L., Gebert, D., Kopczak, A., Auer, M. K. & Schilbach, L. Oxytocin release deficit and social cognition in craniopharyngioma patients. J. Neuroendocrinol. 32, e12842 (2020).

    CAS  PubMed  Google Scholar 

  102. Holze, F. et al. Distinct acute effects of LSD, MDMA, and d-amphetamine in healthy subjects. Neuropsychopharmacology 45, 462–471 (2020).

    CAS  PubMed  Google Scholar 

  103. Kirkpatrick, M. G., Lee, R., Wardle, M. C., Jacob, S. & de Wit, H. Effects of MDMA and intranasal oxytocin on social and emotional processing. Neuropsychopharmacology 39, 1654–1663 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Dolder, P. C., Müller, F., Schmid, Y., Borgwardt, S. J. & Liechti, M. E. Direct comparison of the acute subjective, emotional, autonomic, and endocrine effects of MDMA, methylphenidate, and modafinil in healthy subjects. Psychopharmacology 235, 467–479 (2018).

    CAS  PubMed  Google Scholar 

  105. Vizeli, P. et al. Effects of 3,4-methylenedioxymethamphetamine on conditioned fear extinction and retention in a crossover study in healthy subjects. Front. Pharmacol. 13, 906639 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Verbalis, J. G. Oxytocin deficiency — a ‘new’ human disorder? Nat. Rev. Endocrinol. 19, 505–506 (2023).

    PubMed  Google Scholar 

  107. Simmler, L. D. & Liechti, M. E. Pharmacology of MDMA- and amphetamine-like new psychoactive substances. Handb. Exp. Pharmacol. 252, 143–164 (2018).

    CAS  PubMed  Google Scholar 

  108. Hunt, G. E., McGregor, I. S., Cornish, J. L. & Callaghan, P. D. MDMA-induced c-Fos expression in oxytocin-containing neurons is blocked by pretreatment with the 5-HT-1A receptor antagonist WAY 100635. Brain Res. Bull. 86, 65–73 (2011).

    CAS  PubMed  Google Scholar 

  109. Schulze, L. et al. Oxytocin increases recognition of masked emotional faces. Psychoneuroendocrinology 36, 1378–1382 (2011).

    CAS  PubMed  Google Scholar 

  110. Lischke, A. et al. Intranasal oxytocin enhances emotion recognition from dynamic facial expressions and leaves eye-gaze unaffected. Psychoneuroendocrinology 37, 475–481 (2012).

    CAS  PubMed  Google Scholar 

  111. Domes, G. et al. Effects of intranasal oxytocin administration on empathy and approach motivation in women with borderline personality disorder: a randomized controlled trial. Transl. Psychiatry 9, 328 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Quintana, D. S. et al. Oxytocin pathway gene networks in the human brain. Nat. Commun. 10, 668 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, D., Yan, X., Li, M. & Ma, Y. Neural substrates underlying the effects of oxytocin: a quantitative meta-analysis of pharmaco-imaging studies. Soc. Cogn. Affect Neurosci. 12, 1565–1573 (2017).

    PubMed  PubMed Central  Google Scholar 

  114. Grace, S. A., Rossell, S. L., Heinrichs, M., Kordsachia, C. & Labuschagne, I. Oxytocin and brain activity in humans: a systematic review and coordinate-based meta-analysis of functional MRI studies. Psychoneuroendocrinology 96, 6–24 (2018).

    CAS  PubMed  Google Scholar 

  115. Domes, G. et al. Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol. Psychiatry 62, 1187–1190 (2007).

    CAS  PubMed  Google Scholar 

  116. Striepens, N. et al. Oxytocin facilitates protective responses to aversive social stimuli in males. Proc. Natl Acad. Sci. USA 109, 18144–18149 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Leng, G. & Ludwig, M. Intranasal oxytocin: myths and delusions. Biol. Psychiatry 79, 243–250 (2016).

    CAS  PubMed  Google Scholar 

  118. Churchland, P. S. & Winkielman, P. Modulating social behavior with oxytocin: how does it work? What does it mean. Horm. Behav. 61, 392–399 (2012).

    CAS  PubMed  Google Scholar 

  119. Lee, M. R. et al. Labeled oxytocin administered via the intranasal route reaches the brain in rhesus macaques. Nat. Commun. 11, 2783 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lee, M. R. et al. Oxytocin by intranasal and intravenous routes reaches the cerebrospinal fluid in rhesus macaques: determination using a novel oxytocin assay. Mol. Psychiatry 23, 115–122 (2018).

    CAS  PubMed  Google Scholar 

  121. Smith, A. S., Korgan, A. C. & Young, W. S. Oxytocin delivered nasally or intraperitoneally reaches the brain and plasma of normal and oxytocin knockout mice. Pharmacol. Res. 146, 104324 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Bowen, M. T. Does peripherally administered oxytocin enter the brain? Compelling new evidence in a long-running debate. Pharmacol. Res. 146, 104325 (2019).

    CAS  PubMed  Google Scholar 

  123. Cook, N., Miller, J. & Hart, J. Parent observed neuro-behavioral and pro-social improvements with oxytocin following surgical resection of craniopharyngioma. J. Pediatr. Endocrinol. Metab. 29, 995–1000 (2016).

    PubMed  Google Scholar 

  124. Hoffmann, A. et al. First experiences with neuropsychological effects of oxytocin administration in childhood-onset craniopharyngioma. Endocrine 56, 175–185 (2017).

    CAS  PubMed  Google Scholar 

  125. Uvnäs Moberg, K. et al. Maternal plasma levels of oxytocin during breastfeeding — a systematic review. PLoS ONE 15, e0235806 (2020).

    PubMed  PubMed Central  Google Scholar 

  126. Uvnäs-Moberg, K. et al. Maternal plasma levels of oxytocin during physiological childbirth — a systematic review with implications for uterine contractions and central actions of oxytocin. BMC Pregnancy Childb. 19, 285 (2019).

    Google Scholar 

  127. Volz, J., Heinrich, U. & Volz-Köster, S. Conception and spontaneous delivery after total hypophysectomy. Fertil. Steril. 77, 624–625 (2002).

    PubMed  Google Scholar 

  128. Shinar, S., Many, A. & Maslovitz, S. Questioning the role of pituitary oxytocin in parturition: spontaneous onset of labor in women with panhypopituitarism — a case series. Eur. J. Obstet. Gynecol. Reprod. Biol. 197, 83–85 (2016).

    CAS  PubMed  Google Scholar 

  129. De Coopman, J. Breastfeeding after pituitary resection: support for a theory of autocrine control of milk supply? J. Hum. Lact. 9, 35–40 (1993).

    PubMed  Google Scholar 

  130. Young, W. S. III et al. Deficiency in mouse oxytocin prevents milk ejection, but not fertility or parturition. J. Neuroendocrinol. 8, 847–853 (1996).

    CAS  PubMed  Google Scholar 

  131. Aulinas, A. et al. Hypopituitarism and pregnancy: clinical characteristics, management and pregnancy outcome. Pituitary 25, 275–284 (2022).

    PubMed  Google Scholar 

  132. Sowithayasakul, P., Boekhoff, S., Bison, B. & Müller, H. L. Pregnancies after childhood craniopharyngioma: results of KRANIOPHARYNGEOM 2000/2007 and review of the literature. Neuroendocrinology 111, 16–26 (2021).

    CAS  PubMed  Google Scholar 

  133. Correa, F. A. et al. Successful pregnancies after adequate hormonal replacement in patients with combined pituitary hormone deficiencies. J. Endocr. Soc. 1, 1322–1330 (2017).

    PubMed  PubMed Central  Google Scholar 

  134. Bichet, D. G. & Verbalis, J. G. Arginine vasopressin deficiency (central diabetes insipidus): etiology, clinical manifestations, and postdiagnostic evaluation. UpToDate. Wolters Kluwer. https://www.uptodate.com/contents/arginine-vasopressin-deficiency-central-diabetes-insipidus-etiology-clinical-manifestations-and-postdiagnostic-evaluation (2023).

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Mirjam Christ-Crain.

Ethics declarations

Competing interests

C.A., J.R. and M.C.-C. received occasional kits for copeptin measurements from Thermo Fisher AG, the manufacturer of the copeptin assay.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Ashley Grossman and Susan Webb for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atila, C., Refardt, J. & Christ-Crain, M. Arginine vasopressin deficiency: diagnosis, management and the relevance of oxytocin deficiency. Nat Rev Endocrinol 20, 487–500 (2024). https://doi.org/10.1038/s41574-024-00985-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-024-00985-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing