Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards targeting the breast cancer immune microenvironment

Abstract

The tumour immune microenvironment is shaped by the crosstalk between cancer cells, immune cells, fibroblasts, endothelial cells and other stromal components. Although the immune tumour microenvironment (TME) serves as a source of therapeutic targets, it is also considered a friend or foe to tumour-directed therapies. This is readily illustrated by the importance of T cells in triple-negative breast cancer (TNBC), culminating in the advent of immune checkpoint therapy in combination with cytotoxic chemotherapy as standard of care for both early and advanced-stage TNBC, as well as recent promising signs of efficacy in a subset of hormone receptor-positive disease. In this Review, we discuss the various components of the immune TME in breast cancer and therapies that target or impact the immune TME, as well as the complexity of host physiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Breast cancer subtypes, their origin and staging.
Fig. 2: Tumour microenvironment of an immunogenic breast cancer and the breast cancer subtypes.
Fig. 3: Evolution of the breast cancer tumour microenvironment from preneoplastic lesion to invasive cancer.
Fig. 4: Factors that contribute to the immune response in breast cancer.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Article  PubMed  Google Scholar 

  2. Arnold, M. et al. Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast 66, 15–23 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Taylor, C. et al. Breast cancer mortality in 500 000 women with early invasive breast cancer diagnosed in England, 1993-2015: population based observational cohort study. BMJ 381, e074684 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Caswell-Jin, J. L. et al. Change in survival in metastatic breast cancer with treatment advances: meta-analysis and systematic review. JNCI Cancer Spectr. 2, pky062 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. World Health Organization. Global health estimates 2020: deaths by cause, age, sex, by country and by region, 20002019 (WHO, 2020).

  6. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Prat, A. et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 12, R68 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cortes, J. et al. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer. N. Engl. J. Med. 387, 217–226 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Swanton, C. et al. Embracing cancer complexity: hallmarks of systemic disease. Cell 187, 1589–1616 (2024).

    Article  CAS  PubMed  Google Scholar 

  10. Engels, E. A. Epidemiologic perspectives on immunosuppressed populations and the immunosurveillance and immunocontainment of cancer. Am. J. Transpl. 19, 3223–3232 (2019).

    Article  Google Scholar 

  11. Schmid, P. et al. Event-free survival with pembrolizumab in early triple-negative breast cancer. N. Engl. J. Med. 386, 556–567 (2022). This phase III trial demonstrates that targeting PD1 with pembrolizumab combined with chemotherapy is more effective than chemotherapy alone in patients with early TNBC.

    Article  CAS  PubMed  Google Scholar 

  12. Schmid, P. et al. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 382, 810–821 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Mittendorf, E. A. et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial. Lancet 396, 1090–1100 (2020). This phase III trial demonstrates that targeting PDL1 with atezolizumab combined with chemotherapy is more effective than chemotherapy alone in patients with early TNBC.

    Article  CAS  PubMed  Google Scholar 

  14. Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Loi, S. et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J. Clin. Oncol. 31, 860–867 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Danenberg, E. et al. Breast tumor microenvironment structures are associated with genomic features and clinical outcome. Nat. Genet. 54, 660–669 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pittet, M. J., Michielin, O. & Migliorini, D. Clinical relevance of tumour-associated macrophages. Nat. Rev. Clin. Oncol. 19, 402–421 (2022).

    Article  PubMed  Google Scholar 

  18. Costa, A. et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33, 463–479.e10 (2018). This study identifies four different subtypes of CAFs in breast cancer and elucidates their role in regulating T cell function by promoting immune suppression.

    Article  CAS  PubMed  Google Scholar 

  19. Kieffer, Y. et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 10, 1330–1351 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Savas, P. et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat. Med. 24, 986–993 (2018). This study uses scRNA-seq to identify T cells with a tissue-resident memory-like phenotype in breast cancer that are associated with an improved prognosis and suggests that these cells are key responders to ICB.

    Article  CAS  PubMed  Google Scholar 

  21. Salgado, R. et al. Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a secondary analysis of the NeoALTTO trial. JAMA Oncol. 1, 448–454 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Loi, S. et al. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J. Clin. Oncol. 37, 559–569 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Denkert, C. et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 19, 40–50 (2018).

    Article  PubMed  Google Scholar 

  24. Loi, S. et al. Association between biomarkers and clinical outcomes of pembrolizumab monotherapy in patients with metastatic triple-negative breast cancer: KEYNOTE-086 exploratory analysis. JCO Precis. Oncol. 7, e2200317 (2023).

    Article  PubMed  Google Scholar 

  25. Leon-Ferre, R. A. et al. Tumor-infiltrating lymphocytes in triple-negative breast cancer. JAMA 331, 1135–1144 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Salgado, R. et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann. Oncol. 26, 259–271 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Cardoso, F. et al. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 30, 1194–1220 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Burstein, H. J. et al. Estimating the benefits of therapy for early-stage breast cancer: the St. Gallen International Consensus Guidelines for the primary therapy of early breast cancer 2019. Ann. Oncol. 30, 1541–1557 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Luen, S., Virassamy, B., Savas, P., Salgado, R. & Loi, S. The genomic landscape of breast cancer and its interaction with host immunity. Breast 29, 241–250 (2016).

    Article  PubMed  Google Scholar 

  30. Wagner, J. et al. A single-cell atlas of the tumor and immune ecosystem of human breast cancer. Cell 177, 1330–1345.e18 (2019). This study uses mass cytometry to analyse breast cancer samples to provide a comprehensive atlas of immune cell composition and phenotype in the TME and relationship with tumour cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387.e19 (2018). This study uses multiplexed ion beam imaging by time-of-flight to analyse the immune microenvironment of TNBC samples, providing quantitative information and spatial information to reveal the organization of the TME.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ali, H. R. et al. Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer. Nat. Cancer 1, 163–175 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Desmedt, C. et al. Immune infiltration in invasive lobular breast cancer. J. Natl Cancer Inst. 110, 768–776 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cepek, K. L. et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature 372, 190–193 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Tietscher, S. et al. A comprehensive single-cell map of T cell exhaustion-associated immune environments in human breast cancer. Nat. Commun. 14, 98 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pal, B. et al. A single-cell RNA expression atlas of normal, preneoplastic and tumorigenic states in the human breast. Embo j. 40, e107333 (2021). This study uses scRNA-seq to analyse the transcriptome of healthy breast, pre-neoplastic and breast cancer tissue, providing detailed resolution of the cellular diversity in healthy tissue to tumour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Virassamy, B. et al. Intratumoral CD8+ T cells with a tissue-resident memory phenotype mediate local immunity and immune checkpoint responses in breast cancer. Cancer Cell 41, 585–601.e588 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Z. Q. et al. CD103 and intratumoral immune response in breast cancer. Clin. Cancer Res. 22, 6290–6297 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Lee, Y. J. et al. CD39+ tissue-resident memory CD8+ T cells with a clonal overlap across compartments mediate antitumor immunity in breast cancer. Sci. Immunol. 7, eabn8390 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Mackay, L. K. et al. Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. J. Immunol. 194, 2059–2063 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Skon, C. N. et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 14, 1285–1293 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Allakhverdi, Z. et al. Expression of CD103 identifies human regulatory T-cell subsets. J. Allergy Clin. Immunol. 118, 1342–1349 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Shiow, L. R. et al. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440, 540–544 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Gavil, N. V. et al. Chronic antigen in solid tumors drives a distinct program of T cell residence. Sci. Immunol. 8, eadd5976 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Corgnac, S. et al. CD103+CD8+ TRM cells accumulate in tumors of anti-PD-1-responder lung cancer patients and are tumor-reactive lymphocytes enriched with Tc17. Cell Rep. Med. 1, 100127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Luoma, A. M. et al. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy. Cell 185, 2918–2935.e29 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Losurdo, A. et al. Single-cell profiling defines the prognostic benefit of CD39high tissue resident memory CD8+ T cells in luminal-like breast cancer. Commun. Biol. 4, 1117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Canale, F. P. et al. CD39 expression defines cell exhaustion in tumor-infiltrating CD8+ T cells. Cancer Res. 78, 115–128 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Bossio, S. N. et al. CD39+ conventional CD4+ T cells with exhaustion traits and cytotoxic potential infiltrate tumors and expand upon CTLA-4 blockade. Oncoimmunology 12, 2246319 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Weber, B. N. et al. A critical role for TCF-1 in T-lineage specification and differentiation. Nature 476, 63–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Raghu, D., Xue, H. H. & Mielke, L. A. Control of lymphocyte fate, infection, and tumor immunity by TCF-1. Trends Immunol. 40, 1149–1162 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Johnson, J. L. et al. Lineage-determining transcription factor TCF-1 initiates the epigenetic identity of T cells. Immunity 48, 243–257.e10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, X. Q. et al. Spatial predictors of immunotherapy response in triple-negative breast cancer. Nature 621, 868–876 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bassez, A. et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat. Med. 27, 820–832 (2021). This study identifies genes associated with T cell expansion post-treatment through single-cell profiling and T cell receptor sequencing of biopsies collected pre-anti-PD1 treatment and after anti-PD1 treatment.

    Article  CAS  PubMed  Google Scholar 

  57. Salgado, R. et al. How current assay approval policies are leading to unintended imprecision medicine. Lancet Oncol. 21, 1399–1401 (2020).

    Article  PubMed  Google Scholar 

  58. Qin, Y. et al. Tumor-infiltrating B cells as a favorable prognostic biomarker in breast cancer: a systematic review and meta-analysis. Cancer Cell Int. 21, 310 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Garaud, S. et al. Tumor infiltrating B-cells signal functional humoral immune responses in breast cancer. JCI Insight 5, e129641 (2019).

    Article  PubMed  Google Scholar 

  60. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thacker, G. et al. Immature natural killer cells promote progression of triple-negative breast cancer. Sci. Transl. Med. 15, eabl4414 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, Y. et al. Tissue-resident macrophages promote extracellular matrix homeostasis in the mammary gland stroma of nulliparous mice. eLife 9, e57438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dawson, C. A. et al. Tissue-resident ductal macrophages survey the mammary epithelium and facilitate tissue remodelling. Nat. Cell Biol. 22, 546–558 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Plaks, V. et al. Adaptive immune regulation of mammary postnatal organogenesis. Dev. Cell 34, 493–504 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308.e36 (2018). This study concludes, through scRNA-seq and T cell receptor sequencing profiling of immune cells from breast tumours and matched, blood, lymph node and normal breast tissue, that T cells exist in a state of continuous activation and that macrophages do not exist in distinct states of polarization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cassetta, L. et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 35, 588–602.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Onkar, S. et al. Immune landscape in invasive ductal and lobular breast cancer reveals a divergent macrophage-driven microenvironment. Nat. Cancer 4, 516–534 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jaitin, D. A. et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178, 686–698.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nalio Ramos, R. et al. Tissue-resident FOLR2+ macrophages associate with CD8+ T cell infiltration in human breast cancer. Cell 185, 1189–1207.e25 (2022). This study identifies FOLR2+ tissue-resident macrophages in breast cancer which interact with and prime T cells and are associated with improved patient survival.

    Article  CAS  PubMed  Google Scholar 

  70. Cansever, D. et al. Lactation-associated macrophages exist in murine mammary tissue and human milk. Nat. Immunol. 24, 1098–1109 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Molgora, M. et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell 182, 886–900.e17 (2020). This study finds TREM2 expression to be inversely correlated with overall survival in patients with TNBC and identifies TREM2 as a potential target on tumour-associated macrophages to improve responses to ICB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yofe, I. et al. Spatial and temporal mapping of breast cancer lung metastases identify TREM2 macrophages as regulators of the metastatic boundary. Cancer Discov. 13, 2610–2631 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Ulland, T. K. et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell 170, 649–663.e13 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bense, R. D. et al. Relevance of tumor-infiltrating immune cell composition and functionality for disease outcome in breast cancer. J. Natl Cancer Inst. 109, djw192 (2017).

    Article  PubMed  Google Scholar 

  76. Ali, H. R., Chlon, L., Pharoah, P. D., Markowetz, F. & Caldas, C. Patterns of immune infiltration in breast cancer and their clinical implications: a gene-expression-based retrospective study. PLoS Med. 13, e1002194 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Majorini, M. T., Colombo, M. P. & Lecis, D. Few, but efficient: the role of mast cells in breast cancer and other solid tumors. Cancer Res. 82, 1439–1447 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Reddy, S. M. et al. Poor response to neoadjuvant chemotherapy correlates with mast cell infiltration in inflammatory breast cancer. Cancer Immunol. Res. 7, 1025–1035 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cords, L. et al. Cancer-associated fibroblast classification in single-cell and spatial proteomics data. Nat. Commun. 14, 4294 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mayer, S. et al. The tumor microenvironment shows a hierarchy of cell-cell interactions dominated by fibroblasts. Nat. Commun. 14, 5810 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu, S. Z. et al. Stromal cell diversity associated with immune evasion in human triple-negative breast cancer. EMBO J. 39, e104063 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pelon, F. et al. Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms. Nat. Commun. 11, 404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu, Y. et al. FGFR blockade boosts T cell infiltration into triple-negative breast cancer by regulating cancer-associated fibroblasts. Theranostics 12, 4564–4580 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Geldhof, V. et al. Single cell atlas identifies lipid-processing and immunomodulatory endothelial cells in healthy and malignant breast. Nat. Commun. 13, 5511 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Goveia, J. et al. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates. Cancer Cell 37, 21–36.e13 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Motz, G. T. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 20, 607–615 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Asrir, A. et al. Tumor-associated high endothelial venules mediate lymphocyte entry into tumors and predict response to PD-1 plus CTLA-4 combination immunotherapy. Cancer Cell 40, 318–334.e19 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Martinet, L. et al. Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res. 71, 5678–5687 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Chen, L. et al. Famitinib with camrelizumab and nab-paclitaxel for advanced immunomodulatory triple-negative breast cancer (FUTURE-C-Plus): an open-label, single-arm, phase II trial. Clin. Cancer Res. 28, 2807–2817 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Risom, T. et al. Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. Cell 185, 299–310.e18 (2022). This study, using multiplexed ion beam imaging by time-of-flight to compare the TME of matched normal breast, DCIS and invasive breast cancer samples, suggests that DCIS with increased expression of E-cadherin and a continuous myoepithelium are at increased risk of recurrence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gil Del Alcazar, C. R. et al. Immune escape in breast cancer during in situ to invasive carcinoma transition. Cancer Discov. 7, 1098–1115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nachmanson, D. et al. The breast pre-cancer atlas illustrates the molecular and micro-environmental diversity of ductal carcinoma in situ. NPJ Breast Cancer 8, 6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Almekinders, M. M. et al. Comprehensive multiplexed immune profiling of the ductal carcinoma in situ immune microenvironment regarding subsequent ipsilateral invasive breast cancer risk. Br. J. Cancer 127, 1201–1213 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Strand, S. H. et al. Molecular classification and biomarkers of clinical outcome in breast ductal carcinoma in situ: analysis of TBCRC 038 and RAHBT cohorts. Cancer Cell 40, 1521–1536.e27 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Szekely, B. et al. Immunological differences between primary and metastatic breast cancer. Ann. Oncol. 29, 2232–2239 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Cimino-Mathews, A. et al. PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Hum. Pathol. 47, 52–63 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Boman, C. et al. Discordance of PD-L1 status between primary and metastatic breast cancer: a systematic review and meta-analysis. Cancer Treat. Rev. 99, 102257 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Emens, L. A. et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer: biomarker evaluation of the IMpassion130 study. J. Natl Cancer Inst. 113, 1005–1016 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bonneau, C. et al. A subset of activated fibroblasts is associated with distant relapse in early luminal breast cancer. Breast Cancer Res. 22, 76 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Aftimos, P. et al. Genomic and transcriptomic analyses of breast cancer primaries and matched metastases in AURORA, the Breast International Group (BIG) molecular screening initiative. Cancer Discov. 11, 2796–2811 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Garcia-Recio, S. et al. Multiomics in primary and metastatic breast tumors from the AURORA US network finds microenvironment and epigenetic drivers of metastasis. Nat. Cancer 4, 128–147 (2023).

    CAS  PubMed  Google Scholar 

  102. Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Schmid, P. et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379, 2108–2121 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Adams, S. et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study. Ann. Oncol. 30, 397–404 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Brown, K. A. et al. Menopause is a determinant of breast aromatase expression and its associations with BMI, inflammation, and systemic markers. J. Clin. Endocrinol. Metab. 102, 1692–1701 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Dunbier, A. K. et al. Relationship between plasma estradiol levels and estrogen-responsive gene expression in estrogen receptor-positive breast cancer in postmenopausal women. J. Clin. Oncol. 28, 1161–1167 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nanda, R. et al. Effect of pembrolizumab plus neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast cancer: an analysis of the ongoing phase 2 adaptively randomized I-SPY2 trial. JAMA Oncol. 6, 676–684 (2020).

    Article  PubMed  Google Scholar 

  108. Pusztai, L. et al. Durvalumab with olaparib and paclitaxel for high-risk HER2-negative stage II/III breast cancer: results from the adaptively randomized I-SPY2 trial. Cancer Cell 39, 989–998.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Voorwerk, L. et al. Immune landscape of breast tumors with low and intermediate estrogen receptor expression. NPJ Breast Cancer 9, 39 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Loi, S. et al. LBA20 a randomized, double-blind trial of nivolumab (NIVO) vs placebo (PBO) with neoadjuvant chemotherapy (NACT) followed by adjuvant endocrine therapy (ET) ± NIVO in patients (pts) with high-risk, ER+ HER2− primary breast cancer (BC). Ann. Oncol. 34, S1259–S1260 (2023).

    Article  Google Scholar 

  111. Hanamura, T. et al. Expression of hormone receptors is associated with specific immunological profiles of the breast cancer microenvironment. Breast Cancer Res. 25, 13 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Quigley, D. A. et al. Age, estrogen, and immune response in breast adenocarcinoma and adjacent normal tissue. Oncoimmunology 6, e1356142 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Oesterreich, S. et al. Estrogen-mediated down-regulation of E-cadherin in breast cancer cells. Cancer Res. 63, 5203–5208 (2003).

    CAS  PubMed  Google Scholar 

  114. Rae, J. M. & Lippman, M. E. The role of estrogen receptor signaling in suppressing the immune response to cancer. J. Clin. Invest. 131, e155476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Svoronos, N. et al. Tumor cell-independent estrogen signaling drives disease progression through mobilization of myeloid-derived suppressor cells. Cancer Discov. 7, 72–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Polanczyk, M. J. et al. Cutting edge: estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. J. Immunol. 173, 2227–2230 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Polanczyk, M. J., Hopke, C., Vandenbark, A. A. & Offner, H. Treg suppressive activity involves estrogen-dependent expression of programmed death-1 (PD-1). Int. Immunol. 19, 337–343 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Hazlett, J. et al. Oestrogen deprivation induces chemokine production and immune cell recruitment in in vitro and in vivo models of oestrogen receptor-positive breast cancer. Breast Cancer Res. 23, 95 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jacobson, D. L., Gange, S. J., Rose, N. R. & Graham, N. M. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin. Immunol. Immunopathol. 84, 223–243 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Schafer, J. M. et al. Sex-biased adaptive immune regulation in cancer development and therapy. iScience 25, 104717 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ye, Y. et al. Sex-associated molecular differences for cancer immunotherapy. Nat. Commun. 11, 1779 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Erlebacher, A. Mechanisms of T cell tolerance towards the allogeneic fetus. Nat. Rev. Immunol. 13, 23–33 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Ander, S. E., Diamond, M. S. & Coyne, C. B. Immune responses at the maternal-fetal interface. Sci. Immunol. 4, eaat6114 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shao, C. et al. Prognosis of pregnancy-associated breast cancer: a meta-analysis. BMC Cancer 20, 746 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Thomas, R., Wang, W. & Su, D. M. Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun. Ageing 17, 2 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Thompson, E. et al. The immune microenvironment of breast ductal carcinoma in situ. Mod. Pathol. 29, 249–258 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Marongiu, F. & DeGregori, J. The sculpting of somatic mutational landscapes by evolutionary forces and their impacts on aging-related disease. Mol. Oncol. 16, 3238–3258 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Berben, L. et al. Age-related remodelling of the blood immunological portrait and the local tumor immune response in patients with luminal breast cancer. Clin. Transl. Immunol. 9, e1184 (2020).

    Article  CAS  Google Scholar 

  130. Qing, T. et al. Molecular differences between younger versus older ER-positive and HER2-negative breast cancers. NPJ Breast Cancer 8, 119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Piccart, M. J. et al. Gene expression signatures for tailoring adjuvant chemotherapy of luminal breast cancer: stronger evidence, greater trust. Ann. Oncol. 32, 1077–1082 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Sun, H., Huang, W., Ji, F., Pan, Y. & Yang, L. Comparisons of metastatic patterns, survival outcomes and tumor immune microenvironment between young and non-young breast cancer patients. Front. Cell Dev. Biol. 10, 923371 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Sceneay, J. et al. Interferon signaling is diminished with age and is associated with immune checkpoint blockade efficacy in triple-negative breast cancer. Cancer Discov. 9, 1208–1227 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Adams, S. et al. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phase II KEYNOTE-086 study. Ann. Oncol. 30, 405–411 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Garcia, M. G. et al. Immune checkpoint expression and relationships to anti-PD-L1 immune checkpoint blockade cancer immunotherapy efficacy in aged versus young mice. Aging Cancer 3, 68–83 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Stephens, P. J. et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 486, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shin, H. C. et al. Detection of germline mutations in breast cancer patients with clinical features of hereditary cancer syndrome using a multi-gene panel test. Cancer Res. Treat. 52, 697–713 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mak, T. W. et al. Brca1 required for T cell lineage development but not TCR loci rearrangement. Nat. Immunol. 1, 77–82 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Wu, B. et al. BRCA1 deficiency in mature CD8+ T lymphocytes impairs antitumor immunity. J. Immunother. Cancer 11, e005852 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Jeong, J. H., Jo, A., Park, P., Lee, H. & Lee, H. O. Brca2 deficiency leads to T cell loss and immune dysfunction. Mol. Cell 38, 251–258 (2015).

    Article  CAS  Google Scholar 

  141. Barwell, J. et al. Lymphocyte radiosensitivity in BRCA1 and BRCA2 mutation carriers and implications for breast cancer susceptibility. Int. J. Cancer 121, 1631–1636 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Kote-Jarai, Z. et al. Increased level of chromosomal damage after irradiation of lymphocytes from BRCA1 mutation carriers. Br. J. Cancer 94, 308–310 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Nolan, E. et al. Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer. Sci. Transl. Med. 9, eaal4922 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Sun, S. et al. Single-cell analysis of somatic mutation burden in mammary epithelial cells of pathogenic BRCA1/2 mutation carriers. J. Clin. Invest. 132, e148113 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Galluzzi, L., Kepp, O., Hett, E., Kroemer, G. & Marincola, F. M. Immunogenic cell death in cancer: concept and therapeutic implications. J. Transl. Med. 21, 162 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ciampricotti, M., Hau, C.-S., Doornebal, C. W., Jonkers, J. & de Visser, K. E. Chemotherapy response of spontaneous mammary tumors is independent of the adaptive immune system. Nat. Med. 18, 344–346 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Jacob, S. L., Huppert, L. A. & Rugo, H. S. Role of immunotherapy in breast cancer. JCO Oncol. Pract. 19, 167–179 (2023).

    Article  PubMed  Google Scholar 

  148. Emens, L. A. et al. Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer: a phase 1 study. JAMA Oncol. 5, 74–82 (2019).

    Article  PubMed  Google Scholar 

  149. Emens, L. A. & Loi, S. Immunotherapy approaches for breast cancer patients in 2023. Cold Spring Harb. Perspect. Med. 13, a041332 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Bianchini, G., De Angelis, C., Licata, L. & Gianni, L. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat. Rev. Clin. Oncol. 19, 91–113 (2022).

    Article  CAS  PubMed  Google Scholar 

  151. Emens, L. A. et al. 296P tumour mutational burden and clinical outcomes with first-line atezolizumab and nab-paclitaxel in triple-negative breast cancer: exploratory analysis of the phase III IMpassion130 trial. Ann. Oncol. 31, S360–S361 (2020).

    Article  Google Scholar 

  152. Dixon-Douglas, J., Loibl, S., Denkert, C., Telli, M. & Loi, S. Integrating immunotherapy into the treatment landscape for patients with triple-negative breast cancer. Am. Soc. Clin. Oncol. Educ. Book. 42, 1–13 (2022). 

    PubMed  Google Scholar 

  153. Shahbandi, A. et al. Breast cancer cells survive chemotherapy by activating targetable immune-modulatory programs characterized by PD-L1 or CD80. Nat. Cancer 3, 1513–1533 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hodge, J. W. et al. Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. Int. J. Cancer 133, 624–636 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Liu, W. M., Fowler, D. W., Smith, P. & Dalgleish, A. G. Pre-treatment with chemotherapy can enhance the antigenicity and immunogenicity of tumours by promoting adaptive immune responses. Br. J. Cancer 102, 115–123 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Emens, L. A. et al. The tumor microenvironment (TME) and atezolizumab + nab-paclitaxel (A+nP) activity in metastatic triple-negative breast cancer (mTNBC): IMpassion130. J. Clin. Oncol. 39, 1006 (2021).

    Article  Google Scholar 

  157. Winship, A. L. et al. Checkpoint inhibitor immunotherapy diminishes oocyte number and quality in mice. Nat. Cancer 3, 1–13 (2022). 

    Article  CAS  PubMed  Google Scholar 

  158. Loibl, S. et al. Neoadjuvant durvalumab improves survival in early triple-negative breast cancer independent of pathological complete response. Ann. Oncol. 33, 1149–1158 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Liu, J. et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 6, 1382–1399 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03498716 (2018).

  161. Barrios, C. H. et al. Final analysis of the placebo-controlled randomised phase 3 IMpassion031 trial evaluating neoadjuvant atezolizumab (atezo) plus chemotherapy (CT) followed by open-label adjuvant atezo in patients (pts) with early-stage triple-negative breast cancer (eTNBC). Annals Oncol. 8, abstr. LBA1, 101220-101220 (2023).

  162. Ademuyiwa, F. O. et al. A randomized phase 2 study of neoadjuvant carboplatin and paclitaxel with or without atezolizumab in triple negative breast cancer (TNBC) - NCI 10013. NPJ Breast Cancer 8, 134 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sharma, P. et al. Clinical and biomarker findings of neoadjuvant pembrolizumab and carboplatin plus docetaxel in triple-negative breast cancer: NeoPACT phase 2 clinical trial. JAMA Oncol. 10, 227–235 (2023).

    Article  Google Scholar 

  164. Loi, S. et al. Randomized Phase II Study of Neoadjuvant Nivolumab (N) 2 week lead-in followed by 12 weeks of concurrent N+carboplatin plus paclitaxel (CbP) vs concurrent N+CbP in Triple Negative Breast Cancer (TNBC): (BCT1902/IBCSG 61-20 Neo-N). Cancer Res. 84, abstr. LBO1–03, https://doi.org/10.1158/1538-7445.SABCS23-LBO1-03 (2024).

  165. Cardoso, F. et al. LBA21 KEYNOTE-756: phase III study of neoadjuvant pembrolizumab (pembro) or placebo (pbo) + chemotherapy (chemo), followed by adjuvant pembro or pbo + endocrine therapy (ET) for early-stage high-risk ER+/HER2− breast cancer. Ann. Oncol. 34, S1260–S1261 (2023).

    Article  Google Scholar 

  166. Dieci, M. V. et al. Neoadjuvant chemotherapy and immunotherapy in luminal B-like breast cancer: results of the phase II GIADA trial. Clin. Cancer Res. 28, 308–317 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. Rugo, H. S. et al. Safety and antitumor activity of pembrolizumab in patients with estrogen receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer. Clin. Cancer Res. 24, 2804–2811 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03725059 (2018).

  169. Merck. Merck announces phase 3 KEYNOTE-756 trial met primary endpoint of pathological complete response (pCR) rate in patients with high-risk, early-stage ER+/HER2- breast cancer. Merck https://www.merck.com/news/merck-announces-phase-3-keynote-756-trial-met-primary-endpoint-of-pathological-complete-response-pcr-rate-in-patients-with-high-risk-early-stage-er-her2-breast-cancer/ (2023).

  170. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03879174 (2019).

  171. US National Library of Medicine. ClinicalTrials.gov https://classic.clinicaltrials.gov/ct2/show/NCT03393845 (2018).

  172. US National Library of Medicine. ClinicalTrials.gov https://classic.clinicaltrials.gov/ct2/show/NCT03874325 (2019).

  173. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03280563 (2017).

  174. US National Library of Medicine. ClinicalTrials.gov https://classic.clinicaltrials.gov/ct2/show/NCT02778685 (2016).

  175. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02779751 (2016).

  176. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03294694 (2017).

  177. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03573648 (2018).

  178. Weigelt, B., Eberle, C., Cowell, C. F., Ng, C. K. & Reis-Filho, J. S. Metaplastic breast carcinoma: more than a special type. Nat. Rev. Cancer 14, 147–148 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Adams, S. et al. A multicenter phase II trial of ipilimumab and nivolumab in unresectable or metastatic metaplastic breast cancer: cohort 36 of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors (DART, SWOG S1609). Clin. Cancer Res. 28, 271–278 (2022).

    Article  CAS  PubMed  Google Scholar 

  180. Roussos Torres, E. T. et al. Entinostat, nivolumab and ipilimumab for women with advanced HER2-negative breast cancer: a phase Ib trial. Nat. Cancer https://doi.org/10.1038/s43018-024-00729-w (2024).

  181. Loi, S. et al. Neoadjuvant ipilimumab and nivolumab in combination with paclitaxel following anthracycline-based chemotherapy in patients with treatment resistant early-stage triple-negative breast cancer (TNBC): a single-arm phase 2 trial. J. Clin. Oncol. 40, 602 (2022).

    Article  Google Scholar 

  182. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03726879 (2019).

  183. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04873362 (2021).

  184. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04348643 (2020).

  185. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03682744 (2018).

  186. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03696030 (2018).

  187. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03740256 (2020).

  188. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04430595 (2020).

  189. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04511871 (2020).

  190. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT02792114 (2016).

  191. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT02414269 (2015).

  192. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04025216 (2019).

  193. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04020575 (2020).

  194. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04107142 (2019).

  195. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT02706392 (2016).

  196. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT02830724 (2017).

  197. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT02541370 (2015).

  198. Jung, I. Y. et al. Tissue-resident memory CAR T cells with stem-like characteristics display enhanced efficacy against solid and liquid tumors. Cell Rep. Med. 4, 101053 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Zacharakis, N. et al. Breast cancers are immunogenic: immunologic analyses and a phase II pilot clinical trial using mutation-reactive autologous lymphocytes. J. Clin. Oncol. 40, 1741–1754 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ayoub, N. M., Jaradat, S. K., Al-Shami, K. M. & Alkhalifa, A. E. Targeting angiogenesis in breast cancer: current evidence and future perspectives of novel anti-angiogenic approaches. Front. Pharmacol. 13, 838133 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Salgado, R. & Loi, S. What’s in a name? That which we call immune cells by any other name would all smell as sweet. Clin. Cancer Res. 28, 2728–2729 (2022).

    Article  PubMed  Google Scholar 

  202. US National Library of Medicine. ClinicalTrials.gov https://classic.clinicaltrials.gov/ct2/show/NCT04739670 (2021).

  203. Timperi, E. et al. Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer. Cancer Res. 82, 3291–3306 (2022).

    Article  CAS  PubMed  Google Scholar 

  204. House, I. G. et al. Macrophage-derived CXCL9 and CXCL10 are required for antitumor immune responses following immune checkpoint blockade. Clin. Cancer Res. 26, 487–504 (2020).

    Article  CAS  PubMed  Google Scholar 

  205. Linde, N. et al. Macrophages orchestrate breast cancer early dissemination and metastasis. Nat. Commun. 9, 21 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Lin, H. et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320, 807–811 (2008).

    Article  CAS  PubMed  Google Scholar 

  207. Autio, K. A. et al. Immunomodulatory activity of a colony-stimulating factor-1 receptor inhibitor in patients with advanced refractory breast or prostate cancer: a phase I study. Clin. Cancer Res. 26, 5609–5620 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03335540 (2018).

  209. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03431948 (2018).

  210. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT02435680 (2015).

  211. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03742349 (2019).

  212. Terranova-Barberio, M. et al. Exhausted T cell signature predicts immunotherapy response in ER-positive breast cancer. Nat. Commun. 11, 3584 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Matsumoto, H. et al. Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer. Breast Cancer Res. Treat. 156, 237–247 (2016).

    Article  CAS  PubMed  Google Scholar 

  214. Ladoire, S. et al. T-bet expression in intratumoral lymphoid structures after neoadjuvant trastuzumab plus docetaxel for HER2-overexpressing breast carcinoma predicts survival. Br. J. Cancer 105, 366–371 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Gu-Trantien, C. et al. CD4+ follicular helper T cell infiltration predicts breast cancer survival. J. Clin. Invest. 123, 2873–2892 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Plitas, G. et al. Regulatory T cells exhibit distinct features in human breast cancer. Immunity 45, 1122–1134 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Alizadeh, D. et al. Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer. Cancer Res. 74, 104–118 (2014).

    Article  CAS  PubMed  Google Scholar 

  218. Mattarollo, S. R. et al. Pivotal role of innate and adaptive immunity in anthracycline chemotherapy of established tumors. Cancer Res. 71, 4809–4820 (2011).

    Article  CAS  PubMed  Google Scholar 

  219. Voorwerk, L. et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat. Med. 25, 920–928 (2019).

    Article  CAS  PubMed  Google Scholar 

  220. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT02499367 (2015).

  221. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT02819518 (2016).

  222. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03639948 (2018).

  223. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT02883062 (2017).

  224. Kodumudi, K. N. et al. A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin. Cancer Res. 16, 4583–4594 (2010).

    Article  CAS  PubMed  Google Scholar 

  225. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03881878 (2019).

  226. Ahn, H. K. et al. Response rate and safety of a neoadjuvant pertuzumab, atezolizumab, docetaxel, and trastuzumab regimen for patients with ERBB2-positive stage II/III breast cancer: the Neo-PATH phase 2 nonrandomized clinical trial. JAMA Oncol. 8, 1271–1277 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Wanderley, C. W. et al. Paclitaxel reduces tumor growth by reprogramming tumor-associated macrophages to an M1 profile in a TLR4-dependent manner. Cancer Res. 78, 5891–5900 (2018).

    Article  CAS  PubMed  Google Scholar 

  228. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT02425891 (2015).

  229. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT02685059 (2016).

  230. Heylmann, D. et al. Human CD4+CD25+ regulatory T cells are sensitive to low dose cyclophosphamide: implications for the immune response. PLoS ONE 8, e83384 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Zhao, J. et al. Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res. 70, 4850–4858 (2010).

    Article  CAS  PubMed  Google Scholar 

  232. Dimeloe, S. et al. Human regulatory T cells lack the cyclophosphamide-extruding transporter ABCB1 and are more susceptible to cyclophosphamide-induced apoptosis. Eur. J. Immunol. 44, 3614–3620 (2014).

    Article  CAS  PubMed  Google Scholar 

  233. Huober, J. et al. Atezolizumab with neoadjuvant anti-human epidermal growth factor receptor 2 therapy and chemotherapy in human epidermal growth factor receptor 2-positive early breast cancer: primary results of the randomized phase III IMpassion050 trial. J. Clin. Oncol. 40, 2946–2956 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Richards, J. O., Albers, A. J., Smith, T. S. & Tjoe, J. A. NK cell-mediated antibody-dependent cellular cytotoxicity is enhanced by tamoxifen in HER2/neu non-amplified, but not HER2/neu-amplified, breast cancer cells. Cancer Immunol. Immunother. 65, 1325–1335 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Chan, M. S. et al. Changes of tumor infiltrating lymphocyte subtypes before and after neoadjuvant endocrine therapy in estrogen receptor-positive breast cancer patients — an immunohistochemical study of Cd8+ and Foxp3+ using double immunostaining with correlation to the pathobiological response of the patients. Int. J. Biol. Markers 27, e295–e304 (2012).

    Article  CAS  PubMed  Google Scholar 

  236. Generali, D. et al. Immunomodulation of FOXP3+ regulatory T cells by the aromatase inhibitor letrozole in breast cancer patients. Clin. Cancer Res. 15, 1046–1051 (2009).

    Article  CAS  PubMed  Google Scholar 

  237. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04109066 (2019).

  238. Goel, S. et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471–475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Hurvitz, S. A. et al. Potent cell-cycle inhibition and upregulation of immune response with abemaciclib and anastrozole in neoMONARCH, phase II neoadjuvant study in HR+/HER2 breast cancer. Clin. Cancer Res. 26, 566–580 (2020).

    Article  CAS  PubMed  Google Scholar 

  240. Rugo, H. S. et al. Abemaciclib in combination with pembrolizumab for HR+, HER2 metastatic breast cancer: phase 1b study. NPJ Breast Cancer 8, 118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Kaneda, M. M. et al. PI3Kγ is a molecular switch that controls immune suppression. Nature 539, 437–442 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. De Henau, O. et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature 539, 443–447 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Sai, J. et al. PI3K inhibition reduces mammary tumor growth and facilitates antitumor immunity and anti-PD1 responses. Clin. Cancer Res. 23, 3371–3384 (2017).

    Article  CAS  PubMed  Google Scholar 

  244. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03961698 (2019).

  245. Hatem, S. et al. Updated efficacy, safety and translational data from MARIO-3, a phase II open-label study evaluating a novel triplet combination of eganelisib (IPI-549), atezolizumab (atezo), and nab-paclitaxel (nab-pac) as first-line (1L) therapy for locally advanced or metastatic triple-negative breast cancer (TNBC). Cancer Res. 82, abstr. P5-P16-02 (2022).

    Article  Google Scholar 

  246. Marks, D. K. et al. Akt inhibition is associated with favorable immune profile changes within the tumor microenvironment of hormone receptor positive, HER2 negative breast cancer. Front. Oncol. 10, 968 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Bullock, K. K. et al. Endogenous pAKT activity is associated with response to AKT inhibition alone and in combination with immune checkpoint inhibition in murine models of TNBC. Cancer Lett. 586, 216681 (2024).

    Article  CAS  PubMed  Google Scholar 

  248. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03800836 (2018).

  249. Schmid, P. et al. First-line ipatasertib, atezolizumab, and taxane triplet for metastatic triple-negative breast cancer: clinical and biomarker results. Clin. Cancer Res. 30, 767–778 (2024).

    Article  CAS  PubMed  Google Scholar 

  250. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03337724 (2018).

  251. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04177108 (2019).

  252. Mehta, A. K. et al. Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer. Nat. Cancer 2, 66–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  253. Wang, L. et al. PARP-inhibition reprograms macrophages toward an anti-tumor phenotype. Cell Rep. 41, 111462 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT02734004 (2016).

  255. Domchek, S. M. et al. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study. Lancet Oncol. 21, 1155–1164 (2020).

    Article  CAS  PubMed  Google Scholar 

  256. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT01042379 (2010).

  257. Wang, Z. et al. Niraparib activates interferon signaling and potentiates anti-PD-1 antibody efficacy in tumor models. Sci. Rep. 9, 1853 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  258. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT02657889 (2016).

  259. Vinayak, S. et al. Open-label clinical trial of niraparib combined with pembrolizumab for treatment of advanced or metastatic triple-negative breast cancer. JAMA Oncol. 5, 1132–1140 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  260. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03330405 (2017).

  261. Yap, T. A. et al. Avelumab plus talazoparib in patients with advanced solid tumors: the JAVELIN PARP Medley nonrandomized controlled trial. JAMA Oncol. 9, 40–50 (2023).

    Article  PubMed  Google Scholar 

  262. Iwata, T. N., Sugihara, K., Wada, T. & Agatsuma, T. [Fam-] trastuzumab deruxtecan (DS-8201a)-induced antitumor immunity is facilitated by the anti-CTLA-4 antibody in a mouse model. PLoS ONE 14, e0222280 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03523572 (2018).

  264. Hamilton, E. et al. Trastuzumab deruxtecan (T-DXd; DS-8201) with nivolumab in patients with HER2-expressing, advanced breast cancer: a 2-part, phase 1b, multicenter, open-label study. Cancer Res. 81, abstr. PD3-07, https://doi.org/10.1158/1538-7445.SABCS20-PD3-07 (2021).

  265. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03742102 (2018).

  266. Schmid, P. et al. PD11-08 trastuzumab deruxtecan (T-DXd) + durvalumab (D) as first-line (1L) treatment for unresectable locally advanced/metastatic hormone receptor-negative (HR−), HER2-low breast cancer: updated results from BEGONIA, a phase 1b/2 study. Cancer Res. 83, abstr. PD11-08 (2023).

    Article  Google Scholar 

  267. Müller, P. et al. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci. Transl. Med. 7, 315ra188 (2015).

    Article  PubMed  Google Scholar 

  268. Hamilton, E. P. et al. Impact of anti-HER2 treatments combined with atezolizumab on the tumor immune microenvironment in early or metastatic breast cancer: results from a phase Ib study. Clin. Breast Cancer 21, 539–551 (2021).

    Article  CAS  PubMed  Google Scholar 

  269. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT02924883 (2016).

  270. Emens, L. A. et al. Trastuzumab emtansine plus atezolizumab versus trastuzumab emtansine plus placebo in previously treated, HER2-positive advanced breast cancer (KATE2): a phase 2, multicentre, randomised, double-blind trial. Lancet Oncol. 21, 1283–1295 (2020).

    Article  CAS  PubMed  Google Scholar 

  271. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT02605915 (2015).

  272. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT03032107 (2017).

  273. Waks, A. G. et al. Phase Ib study of pembrolizumab in combination with trastuzumab emtansine for metastatic HER2-positive breast cancer. J. Immunother. Cancer 10, e005119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Schmid, P. et al. Datopotamab deruxtecan (Dato-DXd) + durvalumab (D) as first-line (1L) treatment for unresectable locally advanced/metastatic triple-negative breast cancer (a/mTNBC): updated results from BEGONIA, a phase Ib/II study. Ann. Oncol. 34, S337, abstr. 379MO (2023).

  275. Hammond, M. E. et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 28, 2784–2795 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Fu, N. Y. et al. Identification of quiescent and spatially restricted mammary stem cells that are hormone responsive. Nat. Cell Biol. 19, 164–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  277. Lim, E. et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat. Med. 15, 907–913 (2009).

    Article  CAS  PubMed  Google Scholar 

  278. Hu, L. et al. Single-Cell RNA sequencing reveals the cellular origin and evolution of breast cancer in BRCA1 mutation carriers. Cancer Res. 81, 2600–2611 (2021).

    Article  CAS  PubMed  Google Scholar 

  279. Nguyen, Q. H. et al. Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity. Nat. Commun. 9, 2028 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Ding, Y. et al. Cell lineage tracing links ERα loss in Erbb2-positive breast cancers to the arising of a highly aggressive breast cancer subtype. Proc. Natl Acad. Sci. USA 118, e2100673118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. McCart Reed, A. E., Kutasovic, J. R., Lakhani, S. R. & Simpson, P. T. Invasive lobular carcinoma of the breast: morphology, biomarkers and ‘omics. Breast Cancer Res. 17, 12 (2015).

    Article  PubMed  Google Scholar 

  282. Arpino, G., Bardou, V. J., Clark, G. M. & Elledge, R. M. Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res. 6, R149–R156 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Casasent, A. K. et al. Learning to distinguish progressive and non-progressive ductal carcinoma in situ. Nat. Rev. Cancer 22, 663–678 (2022).

    Article  CAS  PubMed  Google Scholar 

  284. Siracusa, F., Tintelnot, J., Cortesi, F. & Gagliani, N. Diet and immune response: how today’s plate shapes tomorrow’s health. Trends Immunol. 45, 4–10 (2023).

    Article  PubMed  Google Scholar 

  285. McIntyre, C. L., Temesgen, A. & Lynch, L. Diet, nutrient supply, and tumor immune responses. Trends Cancer 9, 752–763 (2023).

    Article  CAS  PubMed  Google Scholar 

  286. Swaby, A., Atallah, A., Varol, O., Cristea, A. & Quail, D. F. Lifestyle and host determinants of antitumor immunity and cancer health disparities. Trends Cancer 9, 1019–1040 (2023).

    Article  CAS  PubMed  Google Scholar 

  287. Koivula, T. et al. The effect of acute exercise on circulating immune cells in newly diagnosed breast cancer patients. Sci. Rep. 13, 6561 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Bruinsma, T. J., Dyer, A.-M., Rogers, C. J., Schmitz, K. H. & Sturgeon, K. M. Effects of diet and exercise-induced weight loss on biomarkers of inflammation in breast cancer survivors: a systematic review and meta-analysis. Cancer Epidemiol. Biomark. Prev. 30, 1048–1062 (2021).

    Article  CAS  Google Scholar 

  289. Devi, S. et al. Adrenergic regulation of the vasculature impairs leukocyte interstitial migration and suppresses immune responses. Immunity 54, 1219–1230.e17 (2021).

    Article  CAS  PubMed  Google Scholar 

  290. Hiller, J. G. et al. Preoperative β-blockade with propranolol reduces biomarkers of metastasis in breast cancer: a phase II randomized trial. Clin. Cancer Res. 26, 1803–1811 (2020).

    Article  CAS  PubMed  Google Scholar 

  291. Pan, J. W. et al. The molecular landscape of Asian breast cancers reveals clinically relevant population-specific differences. Nat. Commun. 11, 6433 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Roy, A. M. et al. Racial and ethnic disparity in preoperative chemosensitivity and survival in patients with early-stage breast cancer. JAMA Netw. Open 6, e2344517 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Shubeck, S., Zhao, F., Howard, F. M., Olopade, O. I. & Huo, D. Response to treatment, racial and ethnic disparity, and survival in patients with breast cancer undergoing neoadjuvant chemotherapy in the US. JAMA Netw. Open 6, e235834 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Beral, V. et al. Collaborative group on hormonal factors in breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet 360, 187–195 (2002).

    Article  Google Scholar 

  295. El Tekle, G. & Garrett, W. S. Bacteria in cancer initiation, promotion and progression. Nat. Rev. Cancer 23, 600–618 (2023).

    Article  CAS  PubMed  Google Scholar 

  296. Thompson, P. A. et al. Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis 36, S232–S253 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Hoffmann, J. P., Liu, J. A., Seddu, K. & Klein, S. L. Sex hormone signaling and regulation of immune function. Immunity 56, 2472–2491 (2023).

    Article  CAS  PubMed  Google Scholar 

  298. Passarelli, M. N. et al. Cigarette smoking before and after breast cancer diagnosis: mortality from breast cancer and smoking-related diseases. J. Clin. Oncol. 34, 1315–1322 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Tyagi, A. et al. Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung. Nat. Commun. 12, 474 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Liu, Y. et al. Dysregulation of immunity by cigarette smoking promotes inflammation and cancer: a review. Environ. Pollut. 339, 122730 (2023).

    Article  CAS  PubMed  Google Scholar 

  301. McQuade, J. L. et al. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis. Lancet Oncol. 19, 310–322 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  302. Garbarino, S., Lanteri, P., Bragazzi, N. L., Magnavita, N. & Scoditti, E. Role of sleep deprivation in immune-related disease risk and outcomes. Commun. Biol. 4, 1304 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  303. IARC Monographs Vol 124 group. Carcinogenicity of night shift work. Lancet Oncol. 20, 1058–1059 (2019).

  304. McDonald, K. A. et al. Tumor heterogeneity correlates with less immune response and worse survival in breast cancer patients. Ann. Surg. Oncol. 26, 2191–2199 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Vitale, I., Shema, E., Loi, S. & Galluzzi, L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 27, 212–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  306. Yndestad, S. et al. Homologous recombination deficiency across subtypes of primary breast cancer. JCO Precis. Oncol. 7, e2300338 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Budczies, J. et al. Homologous recombination deficiency is inversely correlated with microsatellite instability and identifies immunologically cold tumors in most cancer types. J. Pathol. Clin. Res. 8, 371–382 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Marabelle, A. et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21, 1353–1365 (2020).

    Article  CAS  PubMed  Google Scholar 

  310. Winer, E. P. et al. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): a randomised, open-label, phase 3 trial. Lancet Oncol. 22, 499–511 (2021).

    Article  CAS  PubMed  Google Scholar 

  311. Barroso-Sousa, R. et al. Prevalence and mutational determinants of high tumor mutation burden in breast cancer. Ann. Oncol. 31, 387–394 (2020).

    Article  CAS  PubMed  Google Scholar 

  312. Karn, T. et al. Tumor mutational burden and immune infiltration as independent predictors of response to neoadjuvant immune checkpoint inhibition in early TNBC in GeparNuevo. Ann. Oncol. 31, 1216–1222 (2020).

    Article  CAS  PubMed  Google Scholar 

  313. Emami Nejad, A. et al. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int. 21, 62 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Noer, J. B., Hørsdal, O. K., Xiang, X., Luo, Y. & Regenberg, B. Extrachromosomal circular DNA in cancer: history, current knowledge, and methods. Trends Genet. 38, 766–781 (2022).

    Article  CAS  PubMed  Google Scholar 

  315. Wu, S., Bafna, V., Chang, H. Y. & Mischel, P. S. Extrachromosomal DNA: an emerging hallmark in human cancer. Annu. Rev. Pathol. 17, 367–386 (2022).

    Article  CAS  PubMed  Google Scholar 

  316. Sade-Feldman, M. et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8, 1136 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  317. Cortes, J. et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 396, 1817–1828 (2020).

    Article  PubMed  Google Scholar 

  318. Sompuram, S. R., Torlakovic, E. E., t Hart, N. A., Vani, K. & Bogen, S. A. Quantitative comparison of PD-L1 IHC assays against NIST standard reference material 1934. Mod. Pathol. 35, 326–332 (2022).

    Article  CAS  PubMed  Google Scholar 

  319. Islami, F. et al. Breastfeeding and breast cancer risk by receptor status-a systematic review and meta-analysis. Ann. Oncol. 26, 2398–2407 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Johansson, A. L. V. & Stensheim, H. Epidemiology of pregnancy-associated breast cancer. Adv. Exp. Med. Biol. 1252, 75–79 (2020).

    Article  CAS  PubMed  Google Scholar 

  321. Hartman, E. K. & Eslick, G. D. The prognosis of women diagnosed with breast cancer before, during and after pregnancy: a meta-analysis. Breast Cancer Res. Treat. 160, 347–360 (2016).

    Article  CAS  PubMed  Google Scholar 

  322. Pilewskie, M. et al. Association between recency of last pregnancy and biologic subtype of breast cancer. Ann. Surg. Oncol. 19, 1167–1173 (2012).

    Article  PubMed  Google Scholar 

  323. Sajjadi, E. et al. Breast cancer during pregnancy as a special type of early-onset breast cancer: analysis of the tumor immune microenvironment and risk profiles. Cells 11, 2286 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Johansson, A. L. V. et al. Tumor characteristics and prognosis in women with pregnancy-associated breast cancer. Int. J. Cancer 142, 1343–1354 (2018).

    Article  CAS  PubMed  Google Scholar 

  325. Schedin, P., O’Brien, J., Rudolph, M., Stein, T. & Borges, V. Microenvironment of the involuting mammary gland mediates mammary cancer progression. J. Mammary Gland Biol. Neoplasia 12, 71–82 (2007).

    Article  PubMed  Google Scholar 

  326. Martinson, H. A., Jindal, S., Durand-Rougely, C., Borges, V. F. & Schedin, P. Wound healing-like immune program facilitates postpartum mammary gland involution and tumor progression. Int. J. Cancer 136, 1803–1813 (2015).

    Article  CAS  PubMed  Google Scholar 

  327. Jindal, S. et al. Postpartum breast cancer has a distinct molecular profile that predicts poor outcomes. Nat. Commun. 12, 6341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Azim, H. A. Jr. et al. Tumour infiltrating lymphocytes (TILs) in breast cancer during pregnancy. Breast 24, 290–293 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are extremely grateful to T. Geukens, N. Chic, A. Makhale and M. Hun for their contributions, providing insightful feedback from their respective areas of expertise and invaluable discussions. The authors thank J. Parrodi for her assistance in administration, organizing and formatting of the manuscript. R.S. is supported by the Breast Cancer Research Foundation (BCRF, grant number 17-194). S.L. is supported by the National Breast Cancer Foundation of Australia Endowed Chair and the Breast Cancer Research Foundation, New York.

Author information

Authors and Affiliations

Authors

Contributions

M.A.H., P.S., M.M.R.O. and S.L. researched data for the article. All authors contributed substantially to discussion of the content. M.A.H., P.S. and S.L. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Sherene Loi.

Ethics declarations

Competing interests

P.S. receives funding to institution from Roche-Genentech. R.S. reports non-financial support from Merck and Bristol Myers Squibb (BMS), research support from Merck, Puma Biotechnology and Roche, and personal fees from Roche, BMS, Astra Zeneca, Daicchii Sankyo and Exact Sciences for advisory boards. S.L. receives research funding to institution from Novartis, Bristol Myers Squibb, MSD, Puma Biotechnology, Eli Lilly, Nektar Therapeutics, Astra Zeneca/Daiichi Sankyo and Seattle Genetics. S.L. has acted as consultant (not compensated) to Seattle Genetics, Novartis, Bristol Myers Squibb, MSD, AstraZeneca–Daiichi Sankyo, Eli Lilly, Pfizer, Gilead Therapeutics, Nektar Therapeutics, PUMA Biotechnologies and Roche-Genentech. S.L. has acted as consultant (paid to institution) to Novartis, GlaxoSmithKline, Roche-Genentech, Astra Zeneca–Daiichi Sankyo, Gilead Sciences, Seattle Genetics, Merck Sharp and Dohme, Eli Lilly and Bristol Myers Squibb. All other authors declare no conflicts.

Peer review

Peer review information

Nature Reviews Cancer thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ASCO cap guidelines: https://society.asco.org/practice-patients/guidelines/breast-cancer

TIL assessment in breast cancer: www.tilsinbreastcancer.org

Glossary

Aromatase

Enzyme involved in oestrogen production.

CD3+ T cells

Encompasses both CD4+ and CD8+ T cells and a subset of natural killer (NK) cells.

CD4+ T cells

Includes T helper cells and Treg cells.

CD8+ T cells

Includes cytotoxic T cells which directly kill tumour or infected cells and stem-like T cells.

CD8+ tissue-resident memory-like T cells

(TRM-like cells). A subpopulation of CD8+ T cells that has a role in peripheral immune surveillance and persists in tissue.

Damage-associated molecular patterns

Molecules that are released from dying cells and activate pattern recognition receptors on innate immune cells.

High endothelial venules

A type of blood vessel involved in lymphocyte trafficking.

Immune scores

A gene expression signature indicating immune infiltration.

Immunosenescence

The decline of immune function associated with ageing.

Invasive ductal carcinoma

(IDC). The most common type of breast cancer which begins in the epithelial cells that line the milk ducts.

Invasive lobular carcinoma

(ILC). A less common type of breast cancer that begins in the cells that line the lobules which are the glands responsible for milk production.

M1-like macrophages

Macrophages that promote antitumour immunity through cytokine production and antigen presentation.

M2-like macrophage

A macrophage that facilitate tumour growth by dampening the adaptive immune response.

Merck’s Combined Positive Score (CPS) assay

An immunohistochemical assay to assess programmed cell death ligand 1 (PDL1) expression.

Multiplexed ion beam imaging

Imaging technology that allows for the spatial analysis in a sample with a high number of parameters by using mass spectrometry to detect metal-tagged antibodies, as opposed to antibodies conventionally tagged with fluorophores.

Oophorectomized mice

Mice that have had their ovaries surgically removed.

T cell-inflamed gene expression profile

A gene signature indicating a cytotoxic T cell response.

T cell-specific transcription factor 1

(TCF1). A critical marker for precursors to exhausted effector cells which display dynamic states of exhaustion and dysfunction.

T follicular helper cells

A subset of CD4+ T cells that can activate B cells.

Tertiary lymphoid structures

(TLSs). An aggregate of immune cells with an ordered structure in non-lymphoid tissue.

Tumour-infiltrating lymphocyte

Broadly defined as T and B lymphocytes that have infiltrated the tumour microenvironment.

Type 2 conventional DCs

A subtype of dendritic cell (DC) that promotes adaptive immunity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, M.A., Savas, P., Virassamy, B. et al. Towards targeting the breast cancer immune microenvironment. Nat Rev Cancer (2024). https://doi.org/10.1038/s41568-024-00714-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41568-024-00714-6

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer