Skip to main content

Advertisement

Log in

NK cell-mediated antibody-dependent cellular cytotoxicity is enhanced by tamoxifen in HER2/neu non-amplified, but not HER2/neu-amplified, breast cancer cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 2016

Abstract

Tumor-targeting antibodies have been successful in the treatment of various types of cancers. Antibodies engage the immune system with their Fc, stimulating immune cell effector function. In the clinic, FcγRIIIa polymorphisms with higher affinity for the Fc of antibodies were shown to improve response rates and overall survival. Efforts have been made to modify the Fc to enhance affinity to Fc receptors and thereby improve effector function. An alternative for improving immune effector function may be to increase the level of tumor antigen expression. In this study, tamoxifen was used to increase HER2/neu protein level to determine whether increased tumor antigen expression could enhance NK cell-mediated antibody-dependent cytotoxicity (ADCC). Tamoxifen was found to increase HER2/neu 1.5-fold to threefold in breast cancer cell lines that were HER2/neu non-amplified. Using flow cytometry to simultaneously evaluate NK cell degranulation and tumor cell death, the increase in HER2/neu enhanced NK cell-mediated ADCC. However, in cells that had HER2/neu gene amplification and estrogen receptor expression, tamoxifen elevated HER2/neu but failed to improve NK cell function. The quantity of HER2/neu on the tumor cell surface was approximately double that of the number of Fc receptors found on NK cells. This appears to reflect a ceiling at which increasing antigen expression fails to improve NK cell effector function. This has clinical implications as trying to increase antigen expression to enhance NK cell function may be useful for patients with antigen-low tumors, but not in those whose tumors have gene amplification or high levels of antigen expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABC:

Antibody binding capacity

ADCC:

Antibody-dependent cellular cytotoxicity

CFSE:

Carboxyfluorescein succinimidyl ester

ER:

Estrogen receptor

FSC:

Forward scatter

IgG:

Immunoglobulin gamma

PAX2:

Paired box 2

qRT-PCR:

Quantitative reverse transcription polymerase chain reaction

SSC:

Side scatter

4OHT:

4-hydroxytamoxifen

References

  1. Scott AM, Allison JP, Wolchok JD (2012) Monoclonal antibodies in cancer therapy. Cancer Immun 12:14

    PubMed  PubMed Central  Google Scholar 

  2. Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM, Ullrich A (1989) p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol 9:1165–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cooley S, Burns LJ, Repka T, Miller JS (1999) Natural killer cell cytotoxicity of breast cancer targets is enhanced by two distinct mechanisms of antibody-dependent cellular cytotoxicity against LFA-3 and HER2/neu. Exp Hematol 27:1533–1541. doi:10.1016/S0301-472X(99)00089-2

    Article  CAS  PubMed  Google Scholar 

  4. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nature Med 6:443–446. doi:10.1038/74704

    Article  CAS  PubMed  Google Scholar 

  5. Arnould L, Gelly M, Penault-Llorca F et al (2006) Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br J Cancer 94:259–267. doi:10.1038/sj.bjc.6602930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gennari R, Menard S, Fagnoni F et al (2004) Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res 10:5650–5655. doi:10.1158/1078-0432.CCR-04-0225

    Article  CAS  PubMed  Google Scholar 

  7. Liu Q, Sun Y, Rihn S, Nolting A, Tsoukas PN, Jost S, Cohen K, Walker B, Alter G (2009) Matrix metalloprotease inhibitors restore impaired NK cell-mediated antibody-dependent cellular cytotoxicity in human immunodeficiency virus type 1 infection. J Virol 83:8705–8712. doi:10.1128/JVI.02666-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tang Y, Lou J, Alpaugh RK, Robinson MK, Marks JD, Weiner LM (2007) Regulation of antibody-dependent cellular cytotoxicity by IgG intrinsic and apparent affinity for target antigen. J. Immunol 179:2815–2823. doi:10.4049/jimmunol.179.5.2815

    Article  CAS  PubMed  Google Scholar 

  9. Velders MP, van Rhijn CM, Oskam E, Fleuren GJ, Warnaar SO, Litvinov SV (1998) The impact of antigen density and antibody affinity on antibody-dependent cellular cytotoxicity: relevance for immunotherapy of carcinomas. Br J Cancer 78:478–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koene HR, Kleijer M, Algra J, Roos D, von dem Borne AE, de Hass M (1997) Fc gammaRIIIa-158 V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood 90:1109–1114

    CAS  PubMed  Google Scholar 

  11. Wu J, Edberg JC, Redecha PB, Bansal V, Guyre PM, Coleman K, Salmon JE, Kimberly RP (1997) A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 100:1059–1070. doi:10.1172/JCI119616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99:754–758. doi:10.1182/blood.V99.3.754

    Article  CAS  PubMed  Google Scholar 

  13. Horton HM, Bernett MJ, Peipp M et al (2010) Fc-engineered anti-CD40 antibody enhances multiple effector functions and exhibits potent in vitro and in vivo antitumor activity against hematologic malignancies. Blood 116:3004–3012. doi:10.1182/blood-2010-01-265280

    Article  CAS  PubMed  Google Scholar 

  14. Horton HM, Bernett MJ, Pong E et al (2008) Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia. Cancer Res 68:8049–8057. doi:10.1158/0008-5472.CAN-08-2268

    Article  CAS  PubMed  Google Scholar 

  15. Imai-Nishiya H, Mori K, Inoue M, Wakitani M, Iida S, Shitara K, Satoh M (2007) Double knockdown of alpha 1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. BMC Biotechnol 7:84. doi:10.1186/1472-6750-7-84

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kanda Y, Imai-Nishiya H, Kuni-Kamochi R et al (2007) Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics. J Biotechnol 130:300–310. doi:10.1016/j.jbiotec.2007.04.025

    Article  CAS  PubMed  Google Scholar 

  17. Tokunaga E, Oki E, Nishida K, Koga T, Egashira A, Morita M, Kakeji Y, Maehara Y (2006) Trastuzumab and breast cancer: developments and current status. Int J Clin Oncol 11:199–208. doi:10.1007/s10147-006-0575-4

    Article  CAS  PubMed  Google Scholar 

  18. Collins DM, O’Donovan N, McGowan PM, O’Sullivan F, Duffy MJ, Crown J (2012) Trastuzumab induces antibody-dependent cell-mediated cytotoxicity (ADCC) in HER-2-non-amplified breast cancer cell lines. Ann Oncol 23:1788–1795. doi:10.1093/annonc/mdr484

    Article  CAS  PubMed  Google Scholar 

  19. Massarweh S, Osborne CK, Creighton CJ, Qin L, Tsimelzon A, Huang S, Weiss H, Rimawi M, Schiff R (2008) Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res 68:826–833. doi:10.1158/0008-5472.CAN-07-2707

    Article  CAS  PubMed  Google Scholar 

  20. Wang CX, Koay DC, Edwards A, Lu Z, Mor G, Ocal IT, Digiovanna MP (2005) In vitro and in vivo effects of combination of Trastuzumab (Herceptin) and Tamoxifen in breast cancer. Breast Cancer Res Treat 92:251–263. doi:10.1007/s10549-005-3375-z

    Article  CAS  PubMed  Google Scholar 

  21. Fischer L, Penack O, Gentilini C, Nogai A, Muessig A, Thiel E, Uharek L (2006) The anti-lymphoma effect of antibody-mediated immunotherapy is based on an increased degranulation of peripheral blood natural killer (NK) cells. Exp Hematol 34:753–759. doi:10.1016/j.exphem.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  22. Prevodnik VK, Lavrencak J, Horvat M, Novakovic BJ (2011) The predictive significance of CD20 expression in B-cell lymphomas. Diagn Pathol 6:33. doi:10.1186/1746-1596-6-33

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hurtado A, Holmes KA, Geistlinger TR et al (2008) Regulation of ERBB2 by oestrogen receptor-PAX2 determines response to tamoxifen. Nature 456:663–666. doi:10.1038/nature07483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dahl M, Bouchelouche P, Kramer-Marek G, Capala J, Nordling J, Bouchelouche K (2011) Sarcosine induces increase in HER2/neu expression in androgen-dependent prostate cancer cells. Mol Biol Rep 38:4237–4243. doi:10.1007/s11033-010-0442-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumar R, Mandal M, Lipton A, Harvey H, Thompson CB (1996) Overexpression of HER2 modulates bcl-2, bcl-XL, and tamoxifen-induced apoptosis in human MCF-7 breast cancer cells. Clin Cancer Res 2:1215–1219

    CAS  PubMed  Google Scholar 

  26. Riggins RB, Schrecengost RS, Guerrero MS, Bouton AH (2007) Pathways to tamoxifen resistance. Cancer Lett 256:1–24. doi:10.1016/j.canlet.2007.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Torban E, Goodyer PR (1998) Effects of PAX2 expression in a human fetal kidney (HEK293) cell line. Biochim Biophys Acta 1401:53–62. doi:10.1016/S0167-4889(97)00119-5

    Article  CAS  PubMed  Google Scholar 

  28. Franciszkiewicz K, Le Floc’h A, Boutet M, Vergnon I, Schmitt A, Mami-Chouaib F (2013) CD103 or LFA-1 engagement at the immune synapse between cytotoxic T cells and tumor cells promotes maturation and regulates T-cell effector functions. Cancer Res 73:617–628. doi:10.1158/0008-5472.CAN-12-2569

    Article  CAS  PubMed  Google Scholar 

  29. Aquino A, Formica V, Prete SP, Correale PP, Massara MC, Turriziani M, De VL, Bonmassar E (2004) Drug-induced increase of carcinoembryonic antigen expression in cancer cells. Pharmacol Res 49:383–396. doi:10.1016/j.phrs.2003.12.007

    Article  CAS  PubMed  Google Scholar 

  30. Kohrt HE, Houot R, Marabelle A, Cho HJ, Osman K, Goldstein M, Levy R, Brody J (2012) Combination strategies to enhance antitumor ADCC. Immunotherapy 4:511–527. doi:10.2217/imt.12.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Friedberg JW, Kelly JL, Neuberg D et al (2009) Phase II study of a TLR-9 agonist (1018 ISS) with rituximab in patients with relapsed or refractory follicular lymphoma. Br J Haematol 146:282–291. doi:10.1111/j.1365-2141.2009.07773.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Friedberg JW, Kim H, McCauley M, Hessel EM, Sims P, Fisher DC, Nadler LM, Coffman RL, Freedman AS (2005) Combination immunotherapy with a CpG oligonucleotide (1018 ISS) and rituximab in patients with non-Hodgkin lymphoma: increased interferon-alpha/beta-inducible gene expression, without significant toxicity. Blood 105:489–495. doi:10.1182/blood-2004-06-2156

    Article  CAS  PubMed  Google Scholar 

  33. Leonard JP, Link BK, Emmanouilides C et al (2007) Phase I trial of toll-like receptor 9 agonist PF-3512676 with and following rituximab in patients with recurrent indolent and aggressive non Hodgkin’s lymphoma. Clin Cancer Res 13:6168–6174. doi:10.1158/1078-0432.CCR-07-0815

    Article  CAS  PubMed  Google Scholar 

  34. Harrison D, Phillips JH, Lanier LL (1991) Involvement of a metalloprotease in spontaneous and phorbol ester-induced release of natural killer cell-associated Fc gamma RIII (CD16-II). J Immunol 147:3459–3465

    CAS  PubMed  Google Scholar 

  35. Grzywacz B, Kataria N, Verneris MR (2007) CD56(dim)CD16(+) NK cells downregulate CD16 following target cell induced activation of matrix metalloproteinases. Leukemia 21: 356–9; author reply 9. doi: 10.1038/sj.leu.2404499

  36. Romee R, Foley B, Lenvik T et al (2013) NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17). Blood 121:3599–3608. doi:10.1182/blood-2012-04-425397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Richards JO, Karki S, Lazar GA, Chen H, Dang W, Desjarlais JR (2008) Optimization of antibody binding to FcgammaRIIa enhances macrophage phagocytosis of tumor cells. Mol Cancer Ther 7:2517–2527. doi:10.1158/1535-7163.MCT-08-0201

    Article  CAS  PubMed  Google Scholar 

  38. Bargou R, Leo E, Zugmaier G et al (2008) Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321:974–977. doi:10.1126/science.1158545

    Article  CAS  PubMed  Google Scholar 

  39. Topp MS, Gockbuget N, Stein AS (2015) Correction to Lancet Oncol 2015; 16: 60, 61. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol 16: 57–66. doi: 10.1016/S1470-2045(14)71170-2

Download references

Acknowledgments

This research was supported by an Aurora Cancer Care Research Award (Grant #505/3979) and internal funds. We would like to thank Joe Grundle and Katie Klein for assistance with editing and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John O. Richards.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest related to this manuscript.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00262-016-1903-9.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richards, J.O., Albers, A.J., Smith, T.S. et al. NK cell-mediated antibody-dependent cellular cytotoxicity is enhanced by tamoxifen in HER2/neu non-amplified, but not HER2/neu-amplified, breast cancer cells. Cancer Immunol Immunother 65, 1325–1335 (2016). https://doi.org/10.1007/s00262-016-1885-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1885-7

Keywords

Navigation