Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Milestones in tumor vascularization and its therapeutic targeting

Abstract

Research into the mechanisms and manifestations of solid tumor vascularization was launched more than 50 years ago with the proposition and experimental demonstrations that angiogenesis is instrumental for tumor growth and was, therefore, a promising therapeutic target. The biological knowledge and therapeutic insights forthcoming have been remarkable, punctuated by new concepts, many of which were not foreseen in the early decades. This article presents a perspective on tumor vascularization and its therapeutic targeting but does not portray a historical timeline. Rather, we highlight eight conceptual milestones, integrating initial discoveries and recent progress and posing open questions for the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Eight conceptual milestones for tumor vascularization and its therapeutic targeting.
Fig. 2: Accessory cells in tumor angiogenesis.
Fig. 3: Diversity of tumor vascularization: the angiogenic switch and vascular co-option.
Fig. 4: Harnessing vascular–immune crosstalk for cancer therapy.

Similar content being viewed by others

References

  1. Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Kuczynski, E. A., Vermeulen, P. B., Pezzella, F., Kerbel, R. S. & Reynolds, A. R. Vessel co-option in cancer. Nat. Rev. Clin. Oncol. 16, 469–493 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Petrova, T. V. & Koh, G. Y. Biological functions of lymphatic vessels. Science 369, eaax4063 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Goldmann, E. The growth of malignant disease in man and the lower animals, with special reference to the vascular system. Proc. R. Soc. Med. 1, 1–13 (1908).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ribatti, D., Vacca, A. & Dammacco, F. The role of the vascular phase in solid tumor growth: a historical review. Neoplasia 1, 293–302 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ide, A. G., Baker, N. H. & Warren, S. L. Vascularization of the Brown–Pearce rabbit epithelioma transplant as seen in the transparent ear chambers. Am. J. Roentgenol. 32, 891–899 (1939).

    Google Scholar 

  7. Algire, G. H. & Chalkley, H. W. Vascular reactions of normal and malignant tissue in vivo. J. Natl Cancer Inst. 6, 73–85 (1945).

    Article  Google Scholar 

  8. Greenblatt, M. & Shubi, P. Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. J. Natl Cancer Inst. 41, 111–124 (1968).

    CAS  PubMed  Google Scholar 

  9. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  PubMed  Google Scholar 

  10. Gimbrone, M. A.Jr, Leapman, S. B., Cotran, R. S. & Folkman, J. Tumor dormancy in vivo by prevention of neovascularization. J. Exp. Med. 136, 261–276 (1972).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim, K. J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841–844 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Grunstein, J., Roberts, W. G., Mathieu-Costello, O., Hanahan, D. & Johnson, R. S. Tumor-derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. Cancer Res. 59, 1592–1598 (1999).

    CAS  PubMed  Google Scholar 

  13. Yang, J. C. et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med. 349, 427–434 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Sandler, A. et al. Paclitaxel–carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 355, 2542–2550 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Boehm, T., Folkman, J., Browder, T. & O’Reilly, M. S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Jayson, G. C., Kerbel, R., Ellis, L. M. & Harris, A. L. Antiangiogenic therapy in oncology: current status and future directions. Lancet 388, 518–529 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Cao, Y., Langer, R. & Ferrara, N. Targeting angiogenesis in oncology, ophthalmology and beyond. Nat. Rev. Drug Discov. 22, 476–495 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Folkman, J., Watson, K., Ingber, D. & Hanahan, D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339, 58–61 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Bergers, G. & Benjamin, L. E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3, 401–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Hanahan, D. Heritable formation of pancreatic β-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315, 115–122 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Smith-McCune, K., Zhu, Y. H., Hanahan, D. & Arbeit, J. Cross-species comparison of angiogenesis during the premalignant stages of squamous carcinogenesis in the human cervix and K14-HPV16 transgenic mice. Cancer Res. 57, 1294–1300 (1997).

    CAS  PubMed  Google Scholar 

  25. Consolino, L. et al. Functional imaging of the angiogenic switch in a transgenic mouse model of human breast cancer by dynamic contrast enhanced magnetic resonance imaging. Int. J. Cancer 139, 404–413 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Guidi, A. J., Fischer, L., Harris, J. R. & Schnitt, S. J. Microvessel density and distribution in ductal carcinoma in situ of the breast. J. Natl Cancer Inst. 86, 614–619 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Smith-McCune, K. K. & Weidner, N. Demonstration and characterization of the angiogenic properties of cervical dysplasia. Cancer Res. 54, 800–804 (1994).

    CAS  PubMed  Google Scholar 

  28. Hlatky, L., Hahnfeldt, P. & Folkman, J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J. Natl Cancer Inst. 94, 883–893 (2002).

    Article  PubMed  Google Scholar 

  29. De Palma, M., Biziato, D. & Petrova, T. V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 17, 457–474 (2017).

    Article  PubMed  Google Scholar 

  30. Senger, D. R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985 (1983).

    Article  CAS  PubMed  Google Scholar 

  31. Ferrara, N. & Henzel, W. J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161, 851–858 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Keck, P. J. et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246, 1309–1312 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Leung, D. W., Cachianes, G., Kuang, W.-J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Pérez-Gutiérrez, L. & Ferrara, N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat. Rev. Mol. Cell Biol. 24, 816–834 (2023).

    Article  PubMed  Google Scholar 

  35. Simons, M., Gordon, E. & Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol. 17, 611–625 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Plate, K. H., Breier, G., Weich, H. A. & Risau, W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359, 845–848 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Inoue, M., Hager, J. H., Ferrara, N., Gerber, H.-P. & Hanahan, D. VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic β cell carcinogenesis. Cancer Cell 1, 193–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Lewis, J. S., Landers, R. J., Underwood, J. C., Harris, A. L. & Lewis, C. E. Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J. Pathol. 192, 150–158 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Stockmann, C. et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456, 814–818 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fukumura, D. et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 94, 715–725 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Mason, S. D. & Joyce, J. A. Proteolytic networks in cancer. Trends Cell Biol. 21, 228–237 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2, 737–744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Y. & Brekken, R. A. Direct and indirect regulation of the tumor immune microenvironment by VEGF. J. Leukoc. Biol. 111, 1269–1286 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Freire Valls, A. et al. VEGFR1+ metastasis-associated macrophages contribute to metastatic angiogenesis and influence colorectal cancer patient outcome. Clin. Cancer Res. 25, 5674–5685 (2019).

    Article  PubMed  Google Scholar 

  46. Barleon, B. et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87, 3336–3343 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Xu, Z. et al. Inhibition of VEGF binding to neuropilin-2 enhances chemosensitivity and inhibits metastasis in triple-negative breast cancer. Sci. Transl. Med. 15, eadf1128 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu, K. V. et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 22, 21–35 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Noguera-Troise, I. et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444, 1032–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Ridgway, J. et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444, 1083–1087 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Liang, W.-C. et al. Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J. Biol. Chem. 281, 951–961 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Tammela, T. et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Pan, Q. et al. Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell 11, 53–67 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Yuan, F. et al. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc. Natl Acad. Sci. USA 93, 14765–14770 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang, J. et al. Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. Proc. Natl Acad. Sci. USA 100, 7785–7790 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Inai, T. et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am. J. Pathol. 165, 35–52 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mancuso, M. R. et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J. Clin. Invest. 116, 2610–2621 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest. 111, 1287–1295 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Raza, A., Franklin, M. J. & Dudek, A. Z. Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am. J. Hematol. 85, 593–598 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Shojaei, F. et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat. Biotechnol. 25, 911–920 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Bergers, G. & Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 8, 592–603 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nowak-Sliwinska, P. et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21, 425–532 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Maciag, T., Cerundolo, J., Ilsley, S., Kelley, P. R. & Forand, R. An endothelial cell growth factor from bovine hypothalamus: identification and partial characterization. Proc. Natl Acad. Sci. USA 76, 5674–5678 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maciag, T., Mehlman, T., Friesel, R. & Schreiber, A. B. Heparin binds endothelial cell growth factor, the principal endothelial cell mitogen in bovine brain. Science 225, 932–935 (1984).

    Article  CAS  PubMed  Google Scholar 

  65. Ronca, R., Giacomini, A., Rusnati, M. & Presta, M. The potential of fibroblast growth factor/fibroblast growth factor receptor signaling as a therapeutic target in tumor angiogenesis. Expert Opin. Ther. Targets 19, 1361–1377 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Turner, N. & Grose, R. Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer 10, 116–129 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Kandel, J. et al. Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 66, 1095–1104 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Compagni, A., Wilgenbus, P., Impagnatiello, M. A., Cotten, M. & Christofori, G. Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res. 60, 7163–7169 (2000).

    CAS  PubMed  Google Scholar 

  69. Giavazzi, R. et al. Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis. Am. J. Pathol. 162, 1913–1926 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Casanovas, O., Hicklin, D. J., Bergers, G. & Hanahan, D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8, 299–309 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Incio, J. et al. Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Sci. Transl. Med. 10, eaag0945 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Abramsson, A., Lindblom, P. & Betsholtz, C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J. Clin. Invest. 112, 1142–1151 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guo, P. et al. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am. J. Pathol. 162, 1083–1093 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xue, Y. et al. PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells. Nat. Med. 18, 100–110 (2011).

    Article  PubMed  Google Scholar 

  75. Raymond, E. et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 501–513 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Saharinen, P., Eklund, L. & Alitalo, K. Therapeutic targeting of the angiopoietin–TIE pathway. Nat. Rev. Drug Discov. 16, 635–661 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Holash, J. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Mazzieri, R. et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19, 512–526 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Falcón, B. L. et al. Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. Am. J. Pathol. 175, 2159–2170 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hashizume, H. et al. Complementary actions of inhibitors of angiopoietin-2 and VEGF on tumor angiogenesis and growth. Cancer Res. 70, 2213–2223 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Daly, C. et al. Angiopoietin-2 functions as a Tie2 agonist in tumor models, where it limits the effects of VEGF inhibition. Cancer Res. 73, 108–118 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Rigamonti, N. et al. Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade. Cell Rep. 8, 696–706 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Scholz, A. et al. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol. Med. 8, 39–57 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Schmittnaegel, M. et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci. Transl. Med. 9, eaak9670 (2017).

    Article  PubMed  Google Scholar 

  86. Rodriguez-Manzaneque, J. C. et al. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc. Natl Acad. Sci. USA 98, 12485–12490 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. O’Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    Article  PubMed  Google Scholar 

  88. O’Reilly, M. S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).

    Article  PubMed  Google Scholar 

  89. Singh, R. K. et al. Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc. Natl Acad. Sci. USA 92, 4562–4566 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. von Marschall, Z. et al. Effects of interferon alpha on vascular endothelial growth factor gene transcription and tumor angiogenesis. J. Natl Cancer Inst. 95, 437–448 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Dinney, C. P. et al. Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon-α administration. Cancer Res. 58, 808–814 (1998).

    CAS  PubMed  Google Scholar 

  92. Solorzano, C. C. et al. Administration of optimal biological dose and schedule of interferon α combined with gemcitabine induces apoptosis in tumor-associated endothelial cells and reduces growth of human pancreatic carcinoma implanted orthotopically in nude mice. Clin. Cancer Res. 9, 1858–1867 (2003).

    CAS  PubMed  Google Scholar 

  93. De Palma, M. et al. Tumor-targeted interferon-α delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 14, 299–311 (2008).

    Article  PubMed  Google Scholar 

  94. Escudier, B. et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370, 2103–2111 (2007).

    Article  PubMed  Google Scholar 

  95. Kammertoens, T. et al. Tumour ischaemia by interferon-γ resembles physiological blood vessel regression. Nature 545, 98–102 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Baer, C. et al. Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity. Nat. Cell Biol. 18, 790–802 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Schoenfeld, J. et al. Active immunotherapy induces antibody responses that target tumor angiogenesis. Cancer Res. 70, 10150–10160 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Khan, K. A. & Kerbel, R. S. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat. Rev. Clin. Oncol. 15, 310–324 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Beltraminelli, T. & De Palma, M. Biology and therapeutic targeting of tumour-associated macrophages. J. Pathol. 250, 573–592 (2020).

    Article  PubMed  Google Scholar 

  101. Cassetta, L. & Pollard, J. W. A timeline of tumour-associated macrophage biology. Nat. Rev. Cancer 23, 238–257 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Casazza, A. et al. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24, 695–709 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Wenes, M. et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab. 24, 701–715 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Lin, E. Y. et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 66, 11238–11246 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Joyce, J. A. et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5, 443–453 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Giraudo, E., Inoue, M. & Hanahan, D. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J. Clin. Invest. 114, 623–633 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. De Palma, M., Venneri, M. A., Roca, C. & Naldini, L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat. Med. 9, 789–795 (2003).

    Article  PubMed  Google Scholar 

  108. De Palma, M. et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226 (2005).

    Article  PubMed  Google Scholar 

  109. Opzoomer, J. W. et al. Macrophages orchestrate the expansion of a proangiogenic perivascular niche during cancer progression. Sci. Adv. 7, eabg9518 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Teuwen, L.-A. et al. Tumor vessel co-option probed by single-cell analysis. Cell Rep. 35, 109253 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Pucci, F. et al. A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood ‘resident’ monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood 114, 901–914 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Lapenna, A., De Palma, M. & Lewis, C. E. Perivascular macrophages in health and disease. Nat. Rev. Immunol. 18, 689–702 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Hughes, R. et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 75, 3479–3491 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Harney, A. S. et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov. 5, 932–943 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ma, R.-Y., Black, A. & Qian, B.-Z. Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol. 43, 546–563 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Siwicki, M. & Pittet, M. J. Versatile neutrophil functions in cancer. Semin. Immunol. 57, 101538 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Coussens, L. M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 13, 1382–1397 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Eissmann, M. F. et al. IL-33-mediated mast cell activation promotes gastric cancer through macrophage mobilization. Nat. Commun. 10, 2735 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Gaudry, M. et al. Intracellular pool of vascular endothelial growth factor in human neutrophils. Blood 90, 4153–4161 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Ardi, V. C. et al. Neutrophil MMP-9 proenzyme, unencumbered by TIMP-1, undergoes efficient activation in vivo and catalytically induces angiogenesis via a basic fibroblast growth factor (FGF-2)/FGFR-2 pathway. J. Biol. Chem. 284, 25854–25866 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Alshetaiwi, H. et al. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci. Immunol. 5, eaay6017 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jablonska, J., Leschner, S., Westphal, K., Lienenklaus, S. & Weiss, S. Neutrophils responsive to endogenous IFN-β regulate tumor angiogenesis and growth in a mouse tumor model. J. Clin. Invest. 120, 1151–1164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nozawa, H., Chiu, C. & Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl Acad. Sci. USA 103, 12493–12498 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shojaei, F., Singh, M., Thompson, J. D. & Ferrara, N. Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc. Natl Acad. Sci. USA 105, 2640–2645 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gordon-Weeks, A. N. et al. Neutrophils promote hepatic metastasis growth through fibroblast growth factor 2-dependent angiogenesis in mice. Hepatology 65, 1920–1935 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Deryugina, E. I. et al. Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia 16, 771–788 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ng, M. S. F. et al. Deterministic reprogramming of neutrophils within tumors. Science 383, eadf6493 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pahler, J. C. et al. Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia 10, 329–340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rivera, L. B. et al. Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy. Cell Rep. 11, 577–591 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: ‘N1’ versus ‘N2’ TAN. Cancer Cell 16, 183–194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Engblom, C. et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science 358, eaal5081 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kalafati, L. et al. Innate immune training of granulopoiesis promotes anti-tumor activity. Cell 183, 771–785 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475, 226–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Gotthardt, D. et al. STAT5 is a key regulator in NK cells and acts as a molecular switch from tumor surveillance to tumor promotion. Cancer Discov. 6, 414–429 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Nee, K. et al. Preneoplastic stromal cells promote BRCA1-mediated breast tumorigenesis. Nat. Genet. 55, 595–606 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kanzaki, R. & Pietras, K. Heterogeneity of cancer-associated fibroblasts: opportunities for precision medicine. Cancer Sci. 111, 2708–2717 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bartoschek, M. et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat. Commun. 9, 5150 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Hou, X. et al. PDGF-CC blockade inhibits pathological angiogenesis by acting on multiple cellular and molecular targets. Proc. Natl Acad. Sci. USA 107, 12216–12221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Unterleuthner, D. et al. Cancer-associated fibroblast-derived WNT2 increases tumor angiogenesis in colon cancer. Angiogenesis 23, 159–177 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Cao, Y. Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab. 18, 478–489 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Leek, R. D. et al. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res. 56, 4625–4629 (1996).

    CAS  PubMed  Google Scholar 

  144. Jain, S. et al. Single-cell RNA sequencing and spatial transcriptomics reveal cancer-associated fibroblasts in glioblastoma with protumoral effects. J. Clin. Invest. 133, e147087 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Folkman, J. Angiogenesis: initiation and control. Ann. N. Y. Acad. Sci. 401, 212–227 (1982).

    Article  CAS  PubMed  Google Scholar 

  146. Potente, M. & Mäkinen, T. Vascular heterogeneity and specialization in development and disease. Nat. Rev. Mol. Cell Biol. 18, 477–494 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Zeng, Q. et al. Understanding tumour endothelial cell heterogeneity and function from single-cell omics. Nat. Rev. Cancer 23, 544–564 (2023).

    Article  CAS  PubMed  Google Scholar 

  148. Wang, L., Lankhorst, L. & Bernards, R. Exploiting senescence for the treatment of cancer. Nat. Rev. Cancer 22, 340–355 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Dejana, E., Hirschi, K. K. & Simons, M. The molecular basis of endothelial cell plasticity. Nat. Commun. 8, 14361 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Motz, G. T. & Coukos, G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat. Rev. Immunol. 11, 702–711 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Vella, G., Hua, Y. & Bergers, G. High endothelial venules in cancer: regulation, function, and therapeutic implication. Cancer Cell 41, 527–545 (2023).

    Article  CAS  PubMed  Google Scholar 

  152. Goveia, J. et al. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates. Cancer Cell 37, 21–36 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Vartanian, R. K. & Weidner, N. Correlation of intratumoral endothelial cell proliferation with microvessel density (tumor angiogenesis) and tumor cell proliferation in breast carcinoma. Am. J. Pathol. 144, 1188–1194 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Vermeulen, P. B. et al. Microvessel density, endothelial cell proliferation and tumour cell proliferation in human colorectal adenocarcinomas. Ann. Oncol. 6, 59–64 (1995).

    Article  CAS  PubMed  Google Scholar 

  156. Geldhof, V. et al. Single cell atlas identifies lipid-processing and immunomodulatory endothelial cells in healthy and malignant breast. Nat. Commun. 13, 5511 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Wu, Z., Uhl, B., Gires, O. & Reichel, C. A. A transcriptomic pan-cancer signature for survival prognostication and prediction of immunotherapy response based on endothelial senescence. J. Biomed. Sci. 30, 21 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Shiau, C. et al. Treatment-associated remodeling of the pancreatic cancer endothelium at single-cell resolution. Front. Oncol. 12, 929950 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Huinen, Z. R., Huijbers, E. J. M., van Beijnum, J. R., Nowak-Sliwinska, P. & Griffioen, A. W. Anti-angiogenic agents—overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat. Rev. Clin. Oncol. 18, 527–540 (2021).

    Article  PubMed  Google Scholar 

  162. Buckanovich, R. J. et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat. Med. 14, 28–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Hua, Y. et al. Cancer immunotherapies transition endothelial cells into HEVs that generate TCF1+ T lymphocyte niches through a feed-forward loop. Cancer Cell 40, 1600–1618 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bernier-Latmani, J. et al. Apelin-driven endothelial cell migration sustains intestinal progenitor cells and tumor growth. Nat. Cardiovasc. Res. 1, 476–490 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Bridgeman, V. L. et al. Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J. Pathol. 241, 362–374 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Zhang, Y., Wang, S. & Dudley, A. C. Models and molecular mechanisms of blood vessel co-option by cancer cells. Angiogenesis 23, 17–25 (2020).

    Article  PubMed  Google Scholar 

  167. Er, E. E. et al. Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat. Cell Biol. 20, 966–978 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Cuypers, A., Truong, A.-C. K., Becker, L. M., Saavedra-García, P. & Carmeliet, P. Tumor vessel co-option: the past & the future. Front. Oncol. 12, 965277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Frentzas, S. et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat. Med. 22, 1294–1302 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Rada, M. et al. Runt related transcription factor-1 plays a central role in vessel co-option of colorectal cancer liver metastases. Commun. Biol. 4, 950 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yip, R. K. H. et al. Mammary tumour cells remodel the bone marrow vascular microenvironment to support metastasis. Nat. Commun. 12, 6920 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hongu, T. et al. Perivascular tenascin C triggers sequential activation of macrophages and endothelial cells to generate a pro-metastatic vascular niche in the lungs. Nat. Cancer 3, 486–504 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Küsters, B. et al. Vascular endothelial growth factor-A165 induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res. 62, 341–345 (2002).

    PubMed  Google Scholar 

  174. De Palma, M. & Hanahan, D. The biology of personalized cancer medicine: facing individual complexities underlying hallmark capabilities. Mol. Oncol. 6, 111–127 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357, 2666–2676 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Garon, E. B. et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet 384, 665–673 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Tabernero, J. et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol. 16, 499–508 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Van Cutsem, E. et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J. Clin. Oncol. 30, 3499–3506 (2012).

    Article  PubMed  Google Scholar 

  179. Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med. 10, 145–147 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Van der Veldt, A. A. M. et al. Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. Cancer Cell 21, 82–91 (2012).

    Article  PubMed  Google Scholar 

  181. Tolaney, S. M. et al. Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc. Natl Acad. Sci. USA 112, 14325–14330 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ellis, L. M. Mechanisms of action of bevacizumab as a component of therapy for metastatic colorectal cancer. Semin. Oncol. 33, S1–S7 (2006).

    Article  CAS  PubMed  Google Scholar 

  183. Tong, R. T. et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 64, 3731–3736 (2004).

    Article  CAS  PubMed  Google Scholar 

  184. Martin, J. D., Seano, G. & Jain, R. K. Normalizing function of tumor vessels: progress, opportunities, and challenges. Annu. Rev. Physiol. 81, 505–534 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Huang, Y. et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl Acad. Sci. USA 109, 17561–17566 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lu-Emerson, C. et al. Lessons from anti-vascular endothelial growth factor and anti-vascular endothelial growth factor receptor trials in patients with glioblastoma. J. Clin. Oncol. 33, 1197–1213 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. De Palma, M. & Lewis, C. E. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 23, 277–286 (2013).

    Article  PubMed  Google Scholar 

  188. Maione, F. et al. Semaphorin 3A overcomes cancer hypoxia and metastatic dissemination induced by antiangiogenic treatment in mice. J. Clin. Invest. 122, 1832–1848 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. He, B. et al. Remodeling of metastatic vasculature reduces lung colonization and sensitizes overt metastases to immunotherapy. Cell Rep. 30, 714–724 (2020).

    Article  CAS  PubMed  Google Scholar 

  190. Lee, E. et al. An agonistic anti-Tie2 antibody suppresses the normal-to-tumor vascular transition in the glioblastoma invasion zone. Exp. Mol. Med. 55, 470–484 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. O’Connor, M. N. et al. LRG1 destabilizes tumor vessels and restricts immunotherapeutic potency. Med 2, 1231–1252 (2021).

    Article  PubMed  Google Scholar 

  192. Zhao, Q. et al. Single-cell transcriptome analyses reveal endothelial cell heterogeneity in tumors and changes following antiangiogenic treatment. Cancer Res. 78, 2370–2382 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Faes, S., Demartines, N. & Dormond, O. Mechanistic target of rapamycin inhibitors in renal cell carcinoma: potential, limitations, and perspectives. Front. Cell Dev. Biol. 9, 636037 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Griffioen, A. W. et al. Rapid angiogenesis onset after discontinuation of sunitinib treatment of renal cell carcinoma patients. Clin. Cancer Res. 18, 3961–3971 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Khan, K. A., Wu, F. T., Cruz-Munoz, W. & Kerbel, R. S. Ang2 inhibitors and Tie2 activators: potential therapeutics in perioperative treatment of early stage cancer. EMBO Mol. Med. 13, e08253 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Albain, K. S. et al. Neoadjuvant trebananib plus paclitaxel-based chemotherapy for stage II/III breast cancer in the adaptively randomized I-SPY2 trial—efficacy and biomarker discovery. Clin. Cancer Res. 30, 729–740 (2024).

    Article  CAS  PubMed  Google Scholar 

  197. Bendell, J. C. et al. The McCAVE trial: vanucizumab plus mFOLFOX-6 versus bevacizumab plus mFOLFOX-6 in patients with previously untreated metastatic colorectal carcinoma (mCRC). Oncologist 25, e451–e459 (2020).

    Article  CAS  PubMed  Google Scholar 

  198. Ferreira, C. S. et al. Predictive potential of angiopoietin-2 in a mCRC subpopulation treated with vanucizumab in the McCAVE trial. Front. Oncol. 13, 1157596 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. van Beijnum, J. R., Nowak-Sliwinska, P., Huijbers, E. J. M., Thijssen, V. L. & Griffioen, A. W. The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol. Rev. 67, 441–461 (2015).

    Article  PubMed  Google Scholar 

  200. Xie, L. et al. Counterbalancing angiogenic regulatory factors control the rate of cancer progression and survival in a stage-specific manner. Proc. Natl Acad. Sci. USA 108, 9939–9944 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kopetz, S. et al. Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J. Clin. Oncol. 28, 453–459 (2010).

    Article  CAS  PubMed  Google Scholar 

  202. Allen, E., Walters, I. B. & Hanahan, D. Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition. Clin. Cancer Res. 17, 5299–5310 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Llovet, J. M. et al. Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRISK-PS study. J. Clin. Oncol. 31, 3509–3516 (2013).

    Article  CAS  PubMed  Google Scholar 

  204. Goede, V. et al. Identification of serum angiopoietin-2 as a biomarker for clinical outcome of colorectal cancer patients treated with bevacizumab-containing therapy. Br. J. Cancer 103, 1407–1414 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zhu, A. X. et al. Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. J. Clin. Oncol. 27, 3027–3035 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Tabernero, J. et al. Analysis of angiogenesis biomarkers for ramucirumab efficacy in patients with metastatic colorectal cancer from RAISE, a global, randomized, double-blind, phase III study. Ann. Oncol. 29, 602–609 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Chung, A. S. et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat. Med. 19, 1114–1123 (2013).

    Article  CAS  PubMed  Google Scholar 

  208. Crawford, Y. et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15, 21–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  209. Mitsuhashi, A. et al. Fibrocyte-like cells mediate acquired resistance to anti-angiogenic therapy with bevacizumab. Nat. Commun. 6, 8792 (2015).

    Article  CAS  PubMed  Google Scholar 

  210. Keklikoglou, I. et al. Periostin limits tumor response to VEGFA inhibition. Cell Rep. 22, 2530–2540 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Hu, Y.-L. et al. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res. 72, 1773–1783 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Zhai, B. et al. Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Mol. Cancer Ther. 13, 1589–1598 (2014).

    Article  CAS  PubMed  Google Scholar 

  213. Allen, E. et al. Metabolic symbiosis enables adaptive resistance to anti-angiogenic therapy that is dependent on mTOR signaling. Cell Rep. 15, 1144–1160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Jiménez-Valerio, G. et al. Resistance to antiangiogenic therapies by metabolic symbiosis in renal cell carcinoma PDX models and patients. Cell Rep. 15, 1134–1143 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Pisarsky, L. et al. Targeting metabolic symbiosis to overcome resistance to anti-angiogenic therapy. Cell Rep. 15, 1161–1174 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Sounni, N. E. et al. Blocking lipid synthesis overcomes tumor regrowth and metastasis after antiangiogenic therapy withdrawal. Cell Metab. 20, 280–294 (2014).

    Article  CAS  PubMed  Google Scholar 

  217. Bensaad, K. et al. Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep. 9, 349–365 (2014).

    Article  CAS  PubMed  Google Scholar 

  218. Iwamoto, H. et al. Cancer lipid metabolism confers antiangiogenic drug resistance. Cell Metab. 28, 104–117 (2018).

    Article  CAS  PubMed  Google Scholar 

  219. Pàez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Ebos, J. M. L. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15, 232–239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Moserle, L. et al. Kidney cancer PDOXs reveal patient-specific pro-malignant effects of antiangiogenics and its molecular traits. EMBO Mol. Med. 12, e11889 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Kuczynski, E. A. et al. Co-option of liver vessels and not sprouting angiogenesis drives acquired sorafenib resistance in hepatocellular carcinoma. J. Natl Cancer Inst. 108, djw030 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Ebos, J. M. L. & Kerbel, R. S. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat. Rev. Clin. Oncol. 8, 210–221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Hardian, R. F. et al. An autopsy case of widespread brain dissemination of glioblastoma unnoticed by magnetic resonance imaging after treatment with bevacizumab. Surg. Neurol. Int. 10, 137 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Miles, D. et al. Disease course patterns after discontinuation of bevacizumab: pooled analysis of randomized phase III trials. J. Clin. Oncol. 29, 83–88 (2011).

    Article  CAS  PubMed  Google Scholar 

  226. Blagoev, K. B. et al. Sunitinib does not accelerate tumor growth in patients with metastatic renal cell carcinoma. Cell Rep. 3, 277–281 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Sennino, B. et al. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov. 2, 270–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Zhou, L. et al. Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene 35, 2687–2697 (2016).

    Article  CAS  PubMed  Google Scholar 

  229. Chandra, A. et al. Clonal ZEB1-driven mesenchymal transition promotes targetable oncologic antiangiogenic therapy resistance. Cancer Res. 80, 1498–1511 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Oliveres, H., Pineda, E. & Maurel, J. MET inhibitors in cancer: pitfalls and challenges. Expert Opin. Investig. Drugs 29, 73–85 (2020).

    Article  CAS  PubMed  Google Scholar 

  231. Morad, G., Helmink, B. A., Sharma, P. & Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184, 5309–5337 (2021); erratum 185, 576 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Dirkx, A. E. M. et al. Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte–endothelium interactions and infiltration in tumors. FASEB J. 20, 621–630 (2006).

    Article  CAS  PubMed  Google Scholar 

  233. Rini, B. I. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1116–1127 (2019).

    Article  CAS  PubMed  Google Scholar 

  234. Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1103–1115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Rini, B. I. et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet 393, 2404–2415 (2019).

    Article  PubMed  Google Scholar 

  236. Socinski, M. A. et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378, 2288–2301 (2018).

    Article  CAS  PubMed  Google Scholar 

  237. Makker, V. et al. Lenvatinib plus pembrolizumab in previously treated advanced endometrial cancer: updated efficacy and safety from the randomized phase III study 309/KEYNOTE-775. J. Clin. Oncol. 41, 2904–2910 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Wang, F. et al. Combined anti-PD-1, HDAC inhibitor and anti-VEGF for MSS/pMMR colorectal cancer: a randomized phase 2 trial. Nat. Med. 30, 1035–1043 (2024).

    Article  CAS  PubMed  Google Scholar 

  239. Yang, B., Li, Y., Deng, J., Yang, H. & Sun, X. Efficacy and safety of immune checkpoint inhibitors plus recombinant human endostatin therapy as second-line treatment in advanced non-small-cell lung cancer with negative driver gene: a pilot study. Front. Oncol. 13, 1210267 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Kashyap, A. S. et al. Optimized antiangiogenic reprogramming of the tumor microenvironment potentiates CD40 immunotherapy. Proc. Natl Acad. Sci. USA 117, 541–551 (2020).

    Article  CAS  PubMed  Google Scholar 

  241. Allen, E. et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. 9, eaak9679 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Tian, L. et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 544, 250–254 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Zheng, X. et al. Increased vessel perfusion predicts the efficacy of immune checkpoint blockade. J. Clin. Invest. 128, 2104–2115 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Tichet, M. et al. Bispecific PD1-IL2v and anti-PD-L1 break tumor immunity resistance by enhancing stem-like tumor-reactive CD8+ T cells and reprogramming macrophages. Immunity 56, 162–179 (2023).

    Article  CAS  PubMed  Google Scholar 

  245. Di Tacchio, M. et al. Tumor vessel normalization, immunostimulatory reprogramming, and improved survival in glioblastoma with combined inhibition of PD-1, angiopoietin-2, and VEGF. Cancer Immunol. Res. 7, 1910–1927 (2019).

    Article  PubMed  Google Scholar 

  246. Li, Q. et al. Low-dose anti-angiogenic therapy sensitizes breast cancer to PD-1 blockade. Clin. Cancer Res. 26, 1712–1724 (2020).

    Article  CAS  PubMed  Google Scholar 

  247. Park, H.-R. et al. Angiopoietin-2-dependent spatial vascular destabilization promotes T-cell exclusion and limits immunotherapy in melanoma. Cancer Res. 83, 1968–1983 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Meder, L. et al. Combined VEGF and PD-L1 blockade displays synergistic treatment effects in an autochthonous mouse model of small cell lung cancer. Cancer Res. 78, 4270–4281 (2018).

    Article  CAS  PubMed  Google Scholar 

  249. Chryplewicz, A. et al. Cancer cell autophagy, reprogrammed macrophages, and remodeled vasculature in glioblastoma triggers tumor immunity. Cancer Cell 40, 1111–1127 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Lee, E. et al. Angiopoietin-2 blockade suppresses growth of liver metastases from pancreatic neuroendocrine tumors by promoting T cell recruitment. J. Clin. Invest. 133, e167994 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Ragusa, S. et al. Antiangiogenic immunotherapy suppresses desmoplastic and chemoresistant intestinal tumors in mice. J. Clin. Invest. 130, 1199–1216 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Elia, A. R. et al. Targeting tumor vasculature with TNF leads effector T cells to the tumor and enhances therapeutic efficacy of immune checkpoint blockers in combination with adoptive cell therapy. Clin. Cancer Res. 24, 2171–2181 (2018).

    Article  CAS  PubMed  Google Scholar 

  253. Johansson-Percival, A. et al. De novo induction of intratumoral lymphoid structures and vessel normalization enhances immunotherapy in resistant tumors. Nat. Immunol. 18, 1207–1217 (2017).

    Article  CAS  PubMed  Google Scholar 

  254. Hamzah, J. et al. Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 453, 410–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  255. Cartier, A., Leigh, T., Liu, C. H. & Hla, T. Endothelial sphingosine 1-phosphate receptors promote vascular normalization and antitumor therapy. Proc. Natl Acad. Sci. USA 117, 3157–3166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Kim, D. J. et al. Priming a vascular-selective cytokine response permits CD8+ T-cell entry into tumors. Nat. Commun. 14, 2122 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Kabir, A. U. et al. Dual role of endothelial Myct1 in tumor angiogenesis and tumor immunity. Sci. Transl. Med. 13, eabb6731 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Sun, Y. et al. Blockade of the CD93 pathway normalizes tumor vasculature to facilitate drug delivery and immunotherapy. Sci. Transl. Med. 13, eabc8922 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Asrir, A. et al. Tumor-associated high endothelial venules mediate lymphocyte entry into tumors and predict response to PD-1 plus CTLA-4 combination immunotherapy. Cancer Cell 40, 318–334 (2022).

    Article  CAS  PubMed  Google Scholar 

  260. Motzer, R. J. et al. Final overall survival and molecular analysis in IMmotion151, a phase 3 trial comparing atezolizumab plus bevacizumab vs sunitinib in patients with previously untreated metastatic renal cell carcinoma. JAMA Oncol. 8, 275–280 (2022).

    Article  PubMed  Google Scholar 

  261. West, H. J. et al. Clinical efficacy of atezolizumab plus bevacizumab and chemotherapy in KRAS-mutated non-small cell lung cancer with STK11, KEAP1, or TP53 comutations: subgroup results from the phase III IMpower150 trial. J. Immunother. Cancer 10, e003027 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Bilen, M. A. et al. Association of neutrophil-to-lymphocyte ratio with efficacy of first-line avelumab plus axitinib vs. sunitinib in patients with advanced renal cell carcinoma enrolled in the phase 3 JAVELIN Renal 101 trial. Clin. Cancer Res. 28, 738–747 (2022).

    Article  CAS  PubMed  Google Scholar 

  263. Subramanian, M., Kabir, A. U., Barisas, D., Krchma, K. & Choi, K. Conserved angio-immune subtypes of the tumor microenvironment predict response to immune checkpoint blockade therapy. Cell Rep. Med. 4, 100896 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Choueiri, T. K. et al. Updated efficacy results from the JAVELIN Renal 101 trial: first-line avelumab plus axitinib versus sunitinib in patients with advanced renal cell carcinoma. Ann. Oncol. 31, 1030–1039 (2020).

    Article  CAS  PubMed  Google Scholar 

  265. Martinez-Usatorre, A. et al. Overcoming microenvironmental resistance to PD-1 blockade in genetically engineered lung cancer models. Sci. Transl. Med. 13, eabd1616 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Hiratsuka, S., Minowa, O., Kuno, J., Noda, T. & Shibuya, M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl Acad. Sci. USA 95, 9349–9354 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J. E. & Carbone, D. P. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin. Cancer Res. 5, 2963–2970 (1999).

    CAS  PubMed  Google Scholar 

  268. Voron, T. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 212, 139–148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Kim, C. G. et al. VEGF-A drives TOX-dependent T cell exhaustion in anti-PD-1-resistant microsatellite stable colorectal cancers. Sci. Immunol. 4, eaay0555 (2019).

    Article  CAS  PubMed  Google Scholar 

  270. Terme, M. et al. VEGFA–VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res. 73, 539–549 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We note and regret that many pertinent studies were not cited owing to the limited number of references allowed for this article format. We thank K. Ouchen for redrawing our vignettes. M.D.P. acknowledges grant support from the European Research Council (ERC CoG EVOLVE-725051), the Swiss National Science Foundation (SNSF 310030-188868), the Swiss Cancer League (KLS-4505-08-2018) and Carigest SA. D.H. acknowledges grant support from the Ludwig Institute for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michele De Palma or Douglas Hanahan.

Ethics declarations

Competing interests

None of the research results reviewed and discussed herein reflect bona fide competing interests. In the interest of full disclosure, M.D.P. has received sponsored research grants from Hoffmann La-Roche, Deciphera Pharmaceuticals, MedImmune and EVIR Therapeutics, in part to investigate angiogenesis inhibitors and immunotherapy combinations; serves on the scientific advisory boards of EVIR Therapeutics, Montis Biosciences, Macomics, Deciphera Pharmaceuticals, Light Chain Bioscience/Novimmune and Genenta; and is an inventor on patents on engineered immune cells filed by the Swiss Federal Institute of Technology in Lausanne (EPFL). D.H. has received sponsored research grants from Hoffmann La-Roche and Bristol Myers Squibb; serves on the scientific advisory boards of Pfizer Oncology, Opna Bio, 4D Molecular Therapeutics and Cellestia; and is a founder of Opna Bio, which has licensed an EPFL patent describing the RNA-binding protein FMRP as a new cancer target.

Peer review

Peer review information

Nature Cancer thanks Mihaela Skobe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Palma, M., Hanahan, D. Milestones in tumor vascularization and its therapeutic targeting. Nat Cancer 5, 827–843 (2024). https://doi.org/10.1038/s43018-024-00780-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-024-00780-7

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer