Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A new family of septuple-layer 2D materials of MoSi2N4-like crystals

Abstract

Recently synthesized MoSi2N4 is the first septuple-layer two-dimensional material, which does not naturally occur as a layered crystal, and has been obtained with chemical vapour deposition growth. It can be considered as MoN2 crystal (with a crystal structure of MoS2) intercalating Si2N2 two-dimensional layer (with the structure similar to InSe). The discovery of this material has spurred on research into its electronic properties, and also to the prediction and classification of dozens of other members of the family. Whereas the originally synthesized MoSi2N4 is a semiconductor, some of the members of the family are also metallic, some are magnetic, some showing remarkable properties, such as very high room-temperature electron mobilities. The major interest towards these materials is coming from the septuple-layer structure, which allows not only multiple crystal phases but also complex compositions, in particular those with broken mirror-reflection symmetry against the layer of metal atoms. In this Review, we provide a profile of this new family of materials and discuss the possibilities they open up towards new physics and applications.

Key points

  • Septuple-layer 2D materials have been synthesized: MoSi2N4 and WSi2N4. Such materials can be seen as a layer of MoN2 (has a structure similar to MoS2) intercalated into Si2N2 (has a structure similar to InSe).

  • It is possible to intercalate more layers of MoN2 between SiN layers, so derivatives such as MoSi2N4(MoN)4n have also been grown.

  • Potentially many other similar materials of the type MA2Z4 can be created. Here, M can stand for elements of transition metal groups IVB, VB and VIB; A for Si or Ge; and Z for N, P or As.

  • Janus structures with broken out-of-plane inversion symmetry (as, for instance, MoSiGeN4) are possible. Such structures would have a built-in dipole moment and would be of interest for catalysis and optoelectronic applications.

  • Electronic properties of these materials are predicted to be very attractive. For instance, room-temperature hole mobilities exceeding 105 cm2 (V s)−1 have been predicted for α2-WSi2Sb4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of MoSi2N4 family.
Fig. 2: Transmission electron microscopy study of MoSi2N4(MoN)4.
Fig. 3: Valley-contrasting properties of the MA2Z4 family.
Fig. 4: Contacts to MA2Z4 structures.
Fig. 5: Different excitons and relaxation processes.
Fig. 6: Band alignment and energy gaps in MoSi2N4–MoS2 van der Waals heterostructure.
Fig. 7: Photocatalytic properties of MA2Z4 materials.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  2. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  ADS  Google Scholar 

  3. Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

    Article  Google Scholar 

  4. Bhimanapati, G. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015).

    Article  Google Scholar 

  5. Cai, Z., Liu, B., Zou, X. & Cheng, H.-M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 118, 6091–6133 (2018).

    Article  Google Scholar 

  6. Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    Article  Google Scholar 

  7. Naguib, M. et al. Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012).

    Article  Google Scholar 

  8. Naguib, M., Mochalin, V. N., Barsoum, M. W. & Gogotsi, Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014).

    Article  Google Scholar 

  9. Guo, Z., Zhou, J. & Sun, Z. New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J. Mater. Chem. A 5, 23530–23535 (2017).

    Article  Google Scholar 

  10. Zhang, H., Xiang, H., Dai, F.-Z., Zhang, Z. & Zhou, Y. First demonstration of possible two-dimensional MBene CrB derived from MAB phase Cr2AlB2. J. Mater. Sci. Technol. 34, 2022–2026 (2018).

    Article  Google Scholar 

  11. Alameda, L. T., Moradifar, P., Metzger, Z. P., Alem, N. & Schaak, R. E. Topochemical deintercalation of Al from MoAlB: stepwise etching pathway, layered intergrowth structures, and two-dimensional MBene. J. Am. Chem. Soc. 140, 8833–8840 (2018).

    Article  Google Scholar 

  12. Zhang, B., Zhou, J. & Sun, Z. MBenes: progress, challenges and future. J. Mater. Chem. A 10, 15865–15880 (2022).

    Article  Google Scholar 

  13. Hong, Y.-L. et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 369, 670–674 (2020).

    Article  ADS  Google Scholar 

  14. Novoselov, K. S. Discovery of 2D van der Waals layered MoSi2N4 family. Natl Sci. Rev. 7, 1842–1844 (2020).

    Article  Google Scholar 

  15. Lee, D. S. et al. Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4. CrystEngComm 15, 5532–5538 (2013).

    Article  Google Scholar 

  16. Gong, Y. et al. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett. 36, 076801 (2019).

    Article  ADS  Google Scholar 

  17. Peng, Y. & Xu, Y. Proximity-induced Majorana hinge modes in antiferromagnetic topological insulators. Phys. Rev. B 99, 195431 (2019).

    Article  ADS  Google Scholar 

  18. Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, eaaw5685 (2019).

    Article  ADS  Google Scholar 

  19. Zhang, D. et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122, 206401 (2019).

    Article  ADS  Google Scholar 

  20. Otrokov, M. M. et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett. 122, 107202 (2019).

    Article  ADS  Google Scholar 

  21. Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2/Te4. Science 367, 895–900 (2020).

    Article  ADS  Google Scholar 

  22. Gao, A. et al. Layer Hall effect in a 2D topological axion antiferromagnet. Nature 595, 521–525 (2021).

    Article  ADS  Google Scholar 

  23. Wang, L. et al. Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties. Nat. Commun. 12, 2361 (2021).

    Article  ADS  Google Scholar 

  24. Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).

    Article  ADS  Google Scholar 

  25. He, K. MnBi2Te4-family intrinsic magnetic topological materials. npj Quantum Mater. 5, 90 (2020).

    Article  ADS  Google Scholar 

  26. Zhang, L. et al. Recent advances in emerging Janus two-dimensional materials: from fundamental physics to device applications. J. Mater. Chem. A 8, 8813–8830 (2020).

    Article  Google Scholar 

  27. Guo, S.-D., Mu, W.-Q., Zhu, Y.-T., Han, R.-Y. & Ren, W.-C. Predicted septuple-atomic-layer Janus MSiGeN4 (M = Mo and W) monolayers with Rashba spin splitting and high electron carrier mobilities. J. Mater. Chem. C 9, 2464–2473 (2021).

    Article  Google Scholar 

  28. Yu, Y., Zhou, J., Guo, Z. & Sun, Z. Novel two-dimensional Janus MoSiGeN4 and WSiGeN4 as highly efficient photocatalysts for spontaneous overall water splitting. ACS Appl. Mater. Interfaces 13, 28090–28097 (2021).

    Article  Google Scholar 

  29. Guo, S.-D., Zhu, Y.-T., Mu, W.-Q. & Chen, X.-Q. A piezoelectric quantum spin Hall insulator with Rashba spin splitting in Janus monolayer SrAlGaSe4. J. Mater. Chem. C 9, 7465–7473 (2021).

    Article  Google Scholar 

  30. Liu, Z. et al. Two-dimensional superconducting MoSi2N4(MoN)4n homologous compounds. Natl Sci. Rev. 10, nwac273 (2023).

    Article  Google Scholar 

  31. Li, Q., Zhou, W., Wan, X. & Zhou, J. Strain effects on monolayer MoSi2N4: ideal strength and failure mechanism. Physica E Low Dimens. Syst. Nanostruct. 131, 114753 (2021).

    Article  Google Scholar 

  32. Guo, S.-D., Zhu, Y.-T., Mu, W.-Q., Wang, L. & Chen, X.-Q. Structure effect on intrinsic piezoelectricity in septuple-atomic-layer MSi2N4 (M=Mo and W). Comput. Mater. Sci. 188, 110223 (2021).

    Article  Google Scholar 

  33. Bafekry, A. et al. MoSi2N4 single-layer: a novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties. J. Phys. D Appl. Phys. 54, 155303 (2021).

    Article  ADS  Google Scholar 

  34. Mortazavi, B. et al. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. Nano Energy 82, 105716 (2021).

    Article  Google Scholar 

  35. Blonsky, M. N., Zhuang, H. L., Singh, A. K. & Hennig, R. G. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 9, 9885–9891 (2015).

    Article  Google Scholar 

  36. Duerloo, K.-A. N., Ong, M. T. & Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012).

    Article  Google Scholar 

  37. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  38. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  Google Scholar 

  39. Woods, C. R. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021).

    Article  Google Scholar 

  40. Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    Article  ADS  Google Scholar 

  41. Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).

    Article  ADS  Google Scholar 

  42. Zhong, T., Ren, Y., Zhang, Z., Gao, J. & Wu, M. Sliding ferroelectricity in two-dimensional MoA2N4 (A = Si or Ge) bilayers: high polarizations and Moiré potentials. J. Mater. Chem. A 9, 19659–19663 (2021).

    Article  Google Scholar 

  43. Yang, Q., Wu, M. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160–7164 (2018).

    Article  Google Scholar 

  44. Yin, Y., Yi, M. & Guo, W. High and anomalous thermal conductivity in monolayer MSi2Z4 semiconductors. ACS Appl. Mater. Interfaces 13, 45907–45915 (2021).

    Article  Google Scholar 

  45. Yu, J., Zhou, J., Wan, X. & Li, Q. High intrinsic lattice thermal conductivity in monolayer MoSi2N4. N. J. Phys. 23, 033005 (2021).

    Article  Google Scholar 

  46. Zhang, C. et al. Thermoelectric properties of monolayer MoSi2N4 and MoGe2N4 with large Seebeck coefficient and high carrier mobility: a first principles study. J. Solid State Chem. 315, 123447 (2022).

    Article  Google Scholar 

  47. Zhao, Z., Duan, X., Fang, X., Wang, X. & Mi, W. Prediction of electronic structure and magnetic anisotropy of two-dimensional MSi2N4 (M = 3d transition-metal) monolayers. Appl. Surf. Sci. 611, 155693 (2023).

    Article  Google Scholar 

  48. Chen, J. & Tang, Q. The versatile electronic, magnetic and photo-electro catalytic activity of a new 2D MA2Z4 family. Chem. Eur. J. 27, 9925–9933 (2021).

    Article  Google Scholar 

  49. Li, Y. & Liu, Y. Stable ferromagnetism and high Curie temperature in VGe2N4. N. J. Phys. 24, 083008 (2022).

    Article  Google Scholar 

  50. Feng, Y., Wang, Z., Zuo, X. & Gao, G. Electronic phase transition, spin filtering effect, and spin Seebeck effect in 2D high-spin-polarized VSi2X4 (X = N, P, As). Appl. Phys. Lett. 120, 092405 (2022).

    Article  ADS  Google Scholar 

  51. Akanda, M. R. K. & Lake, R. K. Magnetic properties of NbSi2N4, VSi2N4, and VSi2P4 monolayers. Appl. Phys. Lett. 119, 052402 (2021).

    Article  ADS  Google Scholar 

  52. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270���273 (2017).

    Article  ADS  Google Scholar 

  53. Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    Article  ADS  Google Scholar 

  54. Abdelati, M. A., Maarouf, A. A. & Fadlallah, M. M. Substitutional transition metal doping in MoSi2N4 monolayer: structural, electronic and magnetic properties. Phys. Chem. Chem. Phys. 24, 3035–3042 (2022).

    Article  Google Scholar 

  55. Ding, Y. & Wang, Y. First-principles study of two-dimensional MoN2X2Y2 (X=B~In, Y=N~Te) nanosheets: the III–VI analogues of MoSi2N4 with peculiar electronic and magnetic properties. Appl. Surf. Sci. 593, 153317 (2022).

    Article  Google Scholar 

  56. Ray, A., Tyagi, S., Singh, N. & Schwingenschlögl, U. Inducing half-metallicity in monolayer MoSi2N4. ACS Omega 6, 30371–30375 (2021).

    Article  Google Scholar 

  57. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  58. Li, S. et al. Valley-dependent properties of monolayer MoSi2N4, WSi2N4, and MoSi2As4. Phys. Rev. B 102, 235435 (2020).

    Article  ADS  Google Scholar 

  59. Liu, Y. et al. Valley-contrasting physics in single-layer CrSi2N4 and CrSi2P4. J. Phys. Chem. Lett. 12, 8341–8346 (2021).

    Article  Google Scholar 

  60. Yuan, J. et al. Protected valley states and generation of valley- and spin-polarized current in monolayer MA2Z4. Phys. Rev. B 105, 195151 (2022).

    Article  ADS  Google Scholar 

  61. Yang, C., Song, Z., Sun, X. & Lu, J. Valley pseudospin in monolayer MoSi2N4 and MoSi2As4. Phys. Rev. B 103, 035308 (2021).

    Article  ADS  Google Scholar 

  62. Cui, Q., Zhu, Y., Liang, J., Cui, P. & Yang, H. Spin-valley coupling in a two-dimensional VSi2N4 monolayer. Phys. Rev. B 103, 085421 (2021).

    Article  ADS  Google Scholar 

  63. Zhou, X. et al. Sign-reversible valley-dependent Berry phase effects in 2D valley-half-semiconductors. npj Comput. Mater. 7, 160 (2021).

    Article  ADS  Google Scholar 

  64. Li, C. & Cheng, L. Intrinsic electron transport in monolayer MoSi2N4 and WSi2N4. J. Appl. Phys. 132, 075111 (2022).

    Article  Google Scholar 

  65. Qiu, X. et al. High hole mobilities in two dimensional monolayer MSi2Z4 (M = Mo/W; Z = P, As, Sb) for solar cells. J. Mater. Chem. C 10, 15483–15490 (2022).

    Article  Google Scholar 

  66. Mortazavi, B., Shojaei, F., Javvaji, B., Rabczuk, T. & Zhuang, X. Outstandingly high thermal conductivity, elastic modulus, carrier mobility and piezoelectricity in two-dimensional semiconducting CrC2N4: a first-principles study. Mater. Today Energy 22, 100839 (2021).

    Article  Google Scholar 

  67. Lv, X. et al. Dipole-regulated bandgap and high electron mobility for bilayer Janus MoSiGeN4. Appl. Phys. Lett. 120, 213101 (2022).

    Article  ADS  Google Scholar 

  68. Ding, C.-H. et al. XMoSiN2 (X = S, Se, Te): a novel 2D Janus semiconductor with ultra-high carrier mobility and excellent thermoelectric performance. Europhys. Lett. 143, 16002 (2023).

    Article  ADS  Google Scholar 

  69. Sun, X. et al. Performance limit of monolayer MoSi2N4 transistors. J. Mater. Chem. C 9, 14683–14698 (2021).

    Article  Google Scholar 

  70. Ghobadi, N., Hosseini, M. & Touski, S. B. Field-effect transistor based on MoSi2N4 and WSi2N4 monolayers under biaxial strain: a computational study of the electronic properties. IEEE Trans. Electron Devices 69, 863–869 (2022).

    Article  ADS  Google Scholar 

  71. Liu, H. et al. Giant tunnel magnetoresistance in two-dimensional van der Waals magnetic tunnel junctions: Ag/CrI3/MoSi2N4/CrI3/Ag. Phys. Rev. B 106, 104429 (2022).

    Article  ADS  Google Scholar 

  72. Shu, Y. et al. Efficient ohmic contact in monolayer CrX2N4 (X = C, Si) based field-effect transistors. Adv. Electron. Mater. 9, 2201056 (2023).

    Article  Google Scholar 

  73. Simmons Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963).

    Article  ADS  Google Scholar 

  74. Matthews, N., Hagmann, M. J. & Mayer, A. Comment: “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film” [J. Appl. Phys. 34, 1793 (1963)]. J. Appl. Phys. 123, 136101 (2018).

    Article  ADS  Google Scholar 

  75. Wang, Q. et al. Efficient ohmic contacts and built-in atomic sublayer protection in MoSi2N4 and WSi2N4 monolayers. npj 2D Mater. Appl. 5, 71 (2021).

    Article  Google Scholar 

  76. Meng, Y. et al. Theoretical study on the electronic and transport properties of top and edge contact MoSi2N4/Au heterostructure. Phys. Lett. A 456, 128535 (2022).

    Article  Google Scholar 

  77. Cao, L., Zhou, G., Wang, Q., Ang, L. K. & Ang, Y. S. Two-dimensional van der Waals electrical contact to monolayer MoSi2N4. Appl. Phys. Lett. 118, 013106 (2021).

    Article  ADS  Google Scholar 

  78. Binh, N. T. T., Nguyen, C. Q., Vu, T. V. & Nguyen, C. V. Interfacial electronic properties and tunable contact types in graphene/Janus MoGeSiN4 heterostructures. J. Phys. Chem. Lett. 12, 3934–3940 (2021).

    Article  Google Scholar 

  79. Ai, W., Shi, Y., Hu, X., Yang, J. & Sun, L. Tunable Schottky barrier and efficient ohmic contacts in MSi2N4 (M = Mo, W)/2D metal contacts. ACS Appl. Electron. Mater. 5, 5606–5613 (2023).

    Article  Google Scholar 

  80. Wang, L. et al. Two-dimensional obstructed atomic insulators with fractional corner charge in the MA2Z4 family. Phys. Rev. B 106, 155144 (2022).

    Article  ADS  Google Scholar 

  81. Xu, Y. et al. Filling-enforced obstructed atomic insulators. Phys. Rev. B 109, 165139 (2024).

    Article  ADS  Google Scholar 

  82. Gong, Y. et al. Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett. 14, 442–449 (2014).

    Article  ADS  Google Scholar 

  83. Sun, M., Re Fiorentin, M., Schwingenschlögl, U. & Palummo, M. Excitons and light-emission in semiconducting MoSi2X4 two-dimensional materials. npj 2D Mater. Appl. 6, 81 (2022).

    Article  Google Scholar 

  84. Yang, Y., Xie, L., Ma, Y. & Lu, H.-Y. Theoretical studies of valleytronic and optical properties in monolayer MoP2 X2Y2 (XY=BTe, AlS, and GaS). Phys. Rev. B 106, 085412 (2022).

    Article  ADS  Google Scholar 

  85. Li, Y. et al. The first-principle study on tuning optical properties of MA2Z4 by Cr replacement of Mo atoms in MoSi2N4. Nanomaterials 12, 2822 (2022).

    Article  Google Scholar 

  86. Zhang, Y. et al. Engineering electronic structures and optical properties of a MoSi2N4 monolayer via modulating surface hydrogen chemisorption. RSC Adv. 13, 26475–26483 (2023).

    Article  ADS  Google Scholar 

  87. Liu, M.-Y., He, Y., Li, X. & Xiong, K. Tuning of the electronic and photocatalytic properties of Janus WSiGeZ4 (Z = N, P, and As) monolayers via strain engineering. Phys. Chem. Chem. Phys. 25, 7278–7288 (2023).

    Article  Google Scholar 

  88. Selig, M. et al. Ultrafast dynamics in monolayer transition metal dichalcogenides: interplay of dark excitons, phonons, and intervalley exchange. Phys. Rev. Res. 1, 022007 (2019).

    Article  Google Scholar 

  89. Aleithan, S. H. et al. Broadband femtosecond transient absorption spectroscopy for a CVD MoS2 monolayer. Phys. Rev. B 94, 035445 (2016).

    Article  ADS  Google Scholar 

  90. Ai, H. et al. Theoretical evidence of the spin–valley coupling and valley polarization in two-dimensional MoSi2X4 (X = N, P, and As). Phys. Chem. Chem. Phys. 23, 3144–3151 (2021).

    Article  Google Scholar 

  91. Woźniak, T., Umm-e-hani, Faria Junior, P. E., Ramzan, M. S. & Kuc, A. B. Electronic and excitonic properties of MSi2Z4 monolayers. Small 19, 2206444 (2023).

    Article  Google Scholar 

  92. Palummo, M., Bernardi, M. & Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 15, 2794–2800 (2015).

    Article  ADS  Google Scholar 

  93. Chen, H.-Y., Palummo, M., Sangalli, D. & Bernardi, M. Theory and ab Initio computation of the anisotropic light emission in monolayer transition metal dichalcogenides. Nano Lett. 18, 3839–3843 (2018).

    Article  ADS  Google Scholar 

  94. Chen, H.-Y., Jhalani, V. A., Palummo, M. & Bernardi, M. Ab initio calculations of exciton radiative lifetimes in bulk crystals, nanostructures, and molecules. Phys. Rev. B 100, 075135 (2019).

    Article  ADS  Google Scholar 

  95. Zhong, H. et al. Exciton spectra and layer decomposition in MoSi2N4/WSi2N4 heterostructures. Phys. Rev. B 108, 205131 (2023).

    Article  ADS  Google Scholar 

  96. Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article  ADS  Google Scholar 

  97. Du, L. New excitons in multilayer 2D materials. Nat. Rev. Phys. 6, 157–159 (2024).

    Article  Google Scholar 

  98. Huang, D. et al. MoSi2N4: a 2D regime with strong exciton–phonon coupling. Adv. Opt. Mater. 10, 2102612 (2022).

    Article  Google Scholar 

  99. Huang, D. et al. Exciton self-trapping effect in MoSi2N4 for modulating nonlinear optical process. Adv. Opt. Mater. 11, 2202622 (2023).

    Article  Google Scholar 

  100. Liu, C., Wang, Z., Xiong, W., Zhong, H. & Yuan, S. Effect of vertical strain and in-plane biaxial strain on type-II MoSi2N4/Cs3Bi2I9 van der Waals heterostructure. J. Appl. Phys. 131, 163102 (2022).

    Article  ADS  Google Scholar 

  101. Fang, L. et al. First-principles insights of electronic properties of blue phosphorus/MoSi2N4 van der Waals heterostructure via vertical electric field and biaxial strain. Physica E Low Dimens. Syst. Nanostruct. 143, 115321 (2022).

    Article  Google Scholar 

  102. Nguyen, C. Q. et al. Tunable type-II band alignment and electronic structure of C3N4/MoSi2N4 heterostructure: interlayer coupling and electric field. Phys. Rev. B 105, 045303 (2022).

    Article  ADS  Google Scholar 

  103. Ng, J. Q., Wu, Q., Ang, L. K. & Ang, Y. S. Tunable electronic properties and band alignments of MoSi2N4/GaN and MoSi2N4/ZnO van der Waals heterostructures. Appl. Phys. Lett. 120, 103101 (2022).

    Article  ADS  Google Scholar 

  104. Xu, X. et al. Type-II MoSi2N4/MoS2 van der Waals heterostructure with excellent optoelectronic performance and tunable electronic properties. J. Phys. Chem. C 127, 7878–7886 (2023).

    Article  Google Scholar 

  105. Cai, X. et al. A two-dimensional MoSe2/MoSi2N4 van der Waals heterostructure with high carrier mobility and diversified regulation of its electronic properties. J. Mater. Chem. C 9, 10073–10083 (2021).

    Article  Google Scholar 

  106. Wu, Q., Cao, L., Ang, Y. S. & Ang, L. K. Semiconductor-to-metal transition in bilayer MoSi2N4 and WSi2N4 with strain and electric field. Appl. Phys. Lett. 118, 113102 (2021).

    Article  ADS  Google Scholar 

  107. Pei, M. et al. Tuning the band alignment and electronic properties of XSe2/WSi2N4 (X=Mo,W) van der Waals heterostructures with high carrier mobility. Physica E Low Dimens. Syst. Nanostruct. 149, 115656 (2023).

    Article  Google Scholar 

  108. Nguyen, C., Hoang, N. V., Phuc, H. V., Sin, A. Y. & Nguyen, C. V. Two-dimensional boron phosphide/MoGe2N4 van der Waals heterostructure: a promising tunable optoelectronic material. J. Phys. Chem. Lett. 12, 5076–5084 (2021).

    Article  Google Scholar 

  109. Wang, J., Zhao, X., Hu, G., Ren, J. & Yuan, X. Manipulable electronic and optical properties of two-dimensional MoSTe/MoGe2N4 van der Waals heterostructures. Nanomaterials 11, 3338 (2021).

    Article  Google Scholar 

  110. Zhang, Q.-K. et al. 2D Janus MoSSe/MoGeSiN4 vdW heterostructures for photovoltaic and photocatalysis applications. J. Alloys Compd. 938, 168708 (2023).

    Article  Google Scholar 

  111. Tho, C. C. et al. MA2Z4 family heterostructures: promises and prospects. Appl. Phys. Rev. 10, 041307 (2023).

    Article  ADS  Google Scholar 

  112. Bafekry, A. et al. A van der Waals heterostructure of MoS2/MoSi2N4: a first-principles study. N. J. Chem. 45, 8291–8296 (2021).

    Article  Google Scholar 

  113. Cai, X., Zhang, Z., Chen, G., Wang, Q. & Jia, Y. Tunable electronic property and robust type-II feature in blue phosphorene/MoSi2N4 bilayer heterostructure. Crystals 12, 1407 (2022).

    Article  Google Scholar 

  114. Guo, Y. et al. Two-dimensional type-II BP/MoSi2P4 vdW heterostructures for high-performance solar cells. J. Phys. Chem. C 126, 4677–4683 (2022).

    Article  Google Scholar 

  115. Deng, D. et al. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016).

    Article  ADS  Google Scholar 

  116. Deng, J. et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 8, 14430 (2017).

    Article  ADS  Google Scholar 

  117. Voiry, D., Yang, J. & Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 28, 6197–6206 (2016).

    Article  Google Scholar 

  118. Zhang, B., Zhou, J., Guo, Z., Peng, Q. & Sun, Z. Two-dimensional chromium boride MBenes with high HER catalytic activity. Appl. Surf. Sci. 500, 144248 (2020).

    Article  Google Scholar 

  119. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  Google Scholar 

  120. Peng, Q., Zhou, J., Chen, J., Zhang, T. & Sun, Z. Cu single atoms on Ti2CO2 as a highly efficient oxygen reduction catalyst in a proton exchange membrane fuel cell. J. Mater. Chem. A 7, 26062–26070 (2019).

    Article  Google Scholar 

  121. Yu, Y., Zhou, J. & Sun, Z. Novel 2D transition-metal carbides: ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction. Adv. Funct. Mater. 30, 2000570 (2020).

    Article  Google Scholar 

  122. Zhang, T., Zhang, B., Peng, Q., Zhou, J. & Sun, Z. Mo2B2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts. J. Mater. Chem. A 9, 433–441 (2021).

    Article  Google Scholar 

  123. Wang, E., Zhang, B., Zhou, J. & Sun, Z. High catalytic activity of MBenes-supported single atom catalysts for oxygen reduction and oxygen evolution reaction. Appl. Surf. Sci. 604, 154522 (2022).

    Article  Google Scholar 

  124. Liu, J. J., Fu, X. L., Chen, S. F. & Zhu, Y. F. Electronic structure and optical properties of Ag3PO4 photocatalyst calculated by hybrid density functional method. Appl. Phys. Lett. 99, 191903 (2011).

    Article  ADS  Google Scholar 

  125. Bartolotti, L. J., Gadre, S. R. & Parr, R. G. Electronegativities of the elements from simple Xa theory. J. Am. Chem. Soc. 102, 2945–2948 (1980).

    Article  Google Scholar 

  126. Nishioka, S., Osterloh, F. E., Wang, X., Mallouk, T. E. & Maeda, K. Photocatalytic water splitting. Nat. Rev. Methods Primers 3, 42 (2023).

    Article  Google Scholar 

  127. Latimer, W. M. Oxidation Potentials (Prentice Hall, 1952).

  128. Jian, C.-C., Ma, X., Zhang, J. & Yong, X. Strained MoSi2N4 monolayers with excellent solar energy absorption and carrier transport properties. J. Phys. Chem. C 125, 15185–15193 (2021).

    Article  Google Scholar 

  129. Xuefeng, C. et al. A direct Z-scheme MoSi2N4/BlueP vdW heterostructure for photocatalytic overall water splitting. J. Phys. D Appl. Phys. 55, 215502 (2022).

    Article  ADS  Google Scholar 

  130. Sun, X. et al. DFT investigation of single metal atom-doped 2D MA2Z4 materials for NO electrocatalytic reduction to NH3. J. Phys. Chem. C 126, 17598–17607 (2022).

    Article  Google Scholar 

  131. Lu, S., Zhang, Y., Lou, F., Guo, K. & Yu, Z. Non-precious metal activated MoSi2N4 monolayers for high-performance OER and ORR electrocatalysts: a first-principles study. Appl. Surf. Sci. 579, 152234 (2022).

    Article  Google Scholar 

  132. Xun, W. et al. Single-atom-anchored two-dimensional MoSi2N4 monolayers for efficient electroreduction of CO2 to formic acid and methane. ACS Appl. Energy Mater. 6, 3236–3243 (2023).

    Article  Google Scholar 

  133. Sun, Z. et al. Alkali-metal(Li, Na, and K)-adsorbed MoSi2N4 monolayer: an investigation of its outstanding electronic, optical, and photocatalytic properties. Commun. Theor. Phys. 74, 015503 (2022).

    Article  ADS  Google Scholar 

  134. Xu, J. et al. First-principles investigations of electronic, optical, and photocatalytic properties of Au-adsorbed MoSi2N4 monolayer. J. Phys. Chem. Solids 162, 110494 (2022).

    Article  Google Scholar 

  135. Zhao, J. et al. Stacking engineering: a boosting strategy for 2D photocatalysts. J. Phys. Chem. Lett. 12, 10190–10196 (2021).

    Article  Google Scholar 

  136. Mwankemwa, N. et al. First principles calculations investigation of optoelectronic properties and photocatalytic CO2 reduction of (MoSi2N4)5-n/(MoSiGeN4)n in-plane heterostructures. Results Phys. 37, 105549 (2022).

    Article  Google Scholar 

  137. Zeng, J. et al. Boosting the photocatalytic hydrogen evolution performance of monolayer C2N coupled with MoSi2N4: density-functional theory calculations. Phys. Chem. Chem. Phys. 23, 8318–8325 (2021).

    Article  Google Scholar 

  138. Li, R.-X. et al. MoSi2N4/CrS2 van der Waals heterostructure with high solar-to-hydrogen efficiency. Physica E Low Dimens. Syst. Nanostruct. 144, 115443 (2022).

    Article  Google Scholar 

  139. He, Y. et al. High hydrogen production in the InSe/MoSi2N4 van der Waals heterostructure for overall water splitting. Phys. Chem. Chem. Phys. 24, 2110���2117 (2022).

    Article  Google Scholar 

  140. Liu, Y., Jiang, Z., Jia, J., Robertson, J. & Guo, Y. 2D WSe2/MoSi2N4 type-II heterojunction with improved carrier separation and recombination for photocatalytic water splitting. Appl. Surf. Sci. 611, 155674 (2023).

    Article  Google Scholar 

  141. Zhang, W., Yang, W., Liu, Y., Liu, Z. & Zhang, F. Computational exploration and screening of novel Janus MA2Z4 (M = Sc-Zn, Y-Ag, Hf-Au; A=Si, Ge; Z=N, P) monolayers and potential application as a photocatalyst. Front. Phys. 17, 63509 (2022).

    Article  ADS  Google Scholar 

  142. Xiao, C. et al. Adsorption behavior of environmental gas molecules on pristine and defective MoSi2N4: possible application as highly sensitive and reusable gas sensors. ACS Omega 7, 8706–8716 (2022).

    Article  Google Scholar 

  143. Bafekry, A. et al. Adsorption of habitat and industry-relevant molecules on the MoSi2N4 monolayer. Appl. Surf. Sci. 564, 150326 (2021).

    Article  Google Scholar 

  144. Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).

    Article  ADS  Google Scholar 

  145. Hippalgaonkar, K. et al. Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics. Nat. Rev. Mater. 8, 241–260 (2023).

    Article  ADS  Google Scholar 

  146. Kazeev, N. et al. Sparse representation for machine learning the properties of defects in 2D materials. npj Comput. Mater. 9, 113 (2023).

    Article  ADS  Google Scholar 

  147. Huang, P. et al. Unveiling the complex structure-property correlation of defects in 2D materials based on high throughput datasets. npj 2D Mater. Appl. 7, 6 (2023).

    Article  Google Scholar 

  148. Sun, Y. et al. Accelerating the discovery of transition metal borides by machine learning on small data sets. ACS Appl. Mater. Interfaces 15, 29278–29286 (2023).

    Article  Google Scholar 

  149. Li, S., Wang, Q., Zhang, C., Guo, P. & Yang, S. A. Correlation-driven topological and valley states in monolayer VSi2P4. Phys. Rev. B 104, 085149 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

T.L. thanks Swiss National Foundation Research Grant 200021_197107. D.A.B. and K.S.N. acknowledge support from the Ministry of Education, Singapore (Research Centre of Excellence award to the Institute for Functional Intelligent Materials, I-FIM, project number EDUNC-33-18-279-V12). K.S.N. acknowledges support from the Royal Society (UK, grant number RSRP\R\190000) and the National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No: AISG3-RP-2022-028).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to D. A. Bandurin or K. S. Novoselov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latychevskaia, T., Bandurin, D.A. & Novoselov, K.S. A new family of septuple-layer 2D materials of MoSi2N4-like crystals. Nat Rev Phys 6, 426–438 (2024). https://doi.org/10.1038/s42254-024-00728-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-024-00728-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing