Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Targeted protein degradation

F-boxing substrates away

A major bottleneck of targeted protein degradation (TPD) has been the discovery of E3 ligases that are amenable to this strategy. Two new studies highlight the potential of FBXO22 as a candidate for TPD, thus expanding the toolbox of hijackable ligases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of FBXO22 as a new ‘hijackable’ E3 ligase.

References

  1. Sasso, J. M. et al. Biochemistry 62, 601–623 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Lai, A. C. & Crews, C. M. Nat. Rev. Drug Discov. 16, 101–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Samarasinghe, K. T. G. & Crews, C. M. Cell Chem. Biol. 28, 934–951 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kostic, M. & Jones, L. H. Trends Pharmacol. Sci. 41, 305–317 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Girardini, M. et al. Bioorg. Med. Chem. 27, 2466–2479 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsai, J. M. et al. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-024-00729-9 (2024).

    Article  PubMed  Google Scholar 

  7. Basu, A. A. et al. Nat. Chem. Biol. https://doi.org/10.1038/s41589-024-01655-9 (2024).

    Article  Google Scholar 

  8. Nie, D. Y. et al. Nat. Chem. Biol. https://doi.org/10.1038/s41589-024-01660-y (2024).

    Article  PubMed  Google Scholar 

  9. Clark, T. et al. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2024.02.007 (2024).

    Article  PubMed  Google Scholar 

  10. Kampmann, M. ACS Chem. Biol. 13, 406–416 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. den Besten, W. et al. J. Am. Chem. Soc. 143, 10571–10575 (2021).

    Article  CAS  Google Scholar 

  12. Grimster, N. P. RSC Med. Chem. 12, 1452–1458 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yan, J. et al. J. Med. Chem. 65, 8798–8827 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Hartung, I. V. et al. J. Med. Chem. 66, 9297–9312 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.K.’s work is partly supported by the National Cancer Institute Grant Number T32CA236754.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cyrus Jin or Milka Kostic.

Ethics declarations

Competing interests

M.K. is a paid consultant for Life Science Editors. C.J. declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C., Kostic, M. F-boxing substrates away. Nat Chem Biol (2024). https://doi.org/10.1038/s41589-024-01666-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41589-024-01666-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research