Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The potential and translational application of infant genetic research

Abstract

In the current genomic revolution, the infancy life stage is the most neglected. Although clinical genetics recognizes the value of early identification in infancy of rare genetic causes of disorders and delay, common genetic variation is almost completely ignored in research on infant behavioral and neurodevelopmental traits. In this Perspective, we argue for a much-needed surge in research on common genetic variation influencing infant neurodevelopment and behavior, findings that would be relevant for all children. We now see convincing evidence from different research designs to suggest that developmental milestones, skills and behaviors of infants are heritable and thus are suitable candidates for gene-discovery research. We highlight the resources available to the field, including genotyped infant cohorts, and we outline, with recommendations, special considerations needed for infant data. Therefore, infant genetic research has the potential to impact basic science and to affect educational policy, public health and clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Infant phenotypes listed in the ICF.

Similar content being viewed by others

References

  1. Infancy. In Oxford English Dictionary www.oed.com/dictionary/infancy_n?tab=factsheet#570891 (2023).

  2. WHO Multicentre Growth Reference Study Group. WHO Motor Development Study: windows of achievement for six gross motor development milestones. Acta Paediatr. 95, 86–95 (2006).

  3. Knickmeyer, R. C. et al. A structural MRI study of human brain development from birth to 2 years. J. Neurosci. 28, 12176–12182 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bethlehem, R. A. I. et al. Brain charts for the human lifespan. Nature 604, 525–533 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hagenbeek, F. A. et al. Maximizing the value of twin studies in health and behaviour. Nat. Hum. Behav. 7, 849–860 (2023).

    PubMed  Google Scholar 

  6. Polderman, T. J. C. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 47, 702–709 (2015).

    CAS  PubMed  Google Scholar 

  7. World Health Organization. International Classification of Functioning, Disability and Health: ICF. https://www.who.int/standards/classifications/international-classification-of-functioning-disability-and-health (2001).

  8. Austerberry, C., Mateen, M., Fearon, P. & Ronald, A. Heritability of psychological traits and developmental milestones in infancy. JAMA Netw. Open 5, e2227887 (2022).

    PubMed  PubMed Central  Google Scholar 

  9. Leve, L. D. et al. The Early Growth and Development Study: a dual-family adoption study from birth through adolescence. Twin Res. Hum. Genet. 22, 716–727 (2019).

    Google Scholar 

  10. Plomin, R. & DeFries, J. C. The Colorado Adoption Project. Child Dev. 54, 276–289 (1983).

    CAS  PubMed  Google Scholar 

  11. Rhea, S.-A., Bricker, J. B., Wadsworth, S. J. & Corley, R. P. The Colorado Adoption Project. Twin Res. Hum. Genet. 16, 358–365 (2013).

    Google Scholar 

  12. Leve, L. D. et al. The Early Growth and Development Study: a prospective adoption study from birth through middle childhood. Twin Res. Hum. Genet. 16, 412–423 (2013).

    PubMed  Google Scholar 

  13. Wray, N. R. et al. Research review: polygenic methods and their application to psychiatric traits. J. Child Psychol. Psychiatry 55, 1068–1087 (2014).

    PubMed  Google Scholar 

  14. Serdarevic, F. et al. Polygenic risk scores for developmental disorders, neuromotor functioning during infancy, and autistic traits in childhood. Biol. Psychiatry 87, 132–138 (2020).

    CAS  PubMed  Google Scholar 

  15. Hannigan, L. J. et al. Developmental milestones in early childhood and genetic liability to neurodevelopmental disorders. Psychol. Med. 53, 1750–1758 (2021).

    PubMed  PubMed Central  Google Scholar 

  16. Askeland, R. B. et al. Early manifestations of genetic risk for neurodevelopmental disorders. J. Child Psychol. Psychiatry 63, 810–819 (2022).

    PubMed  Google Scholar 

  17. Gui, A. et al. Look duration at the face as a developmental endophenotype: elucidating pathways to autism and ADHD. Dev. Psychopathol. 32, 1303–1322 (2020).

    PubMed  Google Scholar 

  18. Portugal, A. M. et al. Pupil size and pupillary light reflex in early infancy: heritability and link to genetic liability to schizophrenia. J. Child Psychol. Psychiatry 63, 1068–1077 (2021).

  19. Gui, A. et al. Association of polygenic liability for autism with face-sensitive cortical responses from infancy. JAMA Pediatr. 175, 968–970 (2021).

    PubMed  PubMed Central  Google Scholar 

  20. Fish, L. A. et al. Development of the pupillary light reflex from 9 to 24 months: association with common ASD genetic liability and 3-year ASD diagnosis. J. Child Psychol. Psychiatry 62, 1308–1319 (2021).

  21. Tucker-Drob, E. M. & Briley, D. A. Continuity of genetic and environmental influences on cognition across the life span: a meta-analysis of longitudinal twin and adoption studies. Psychol. Bull. 140, 949–979 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Papageorgiou, K. A. & Ronald, A. in the Wiley Handbook of Developmental Psychopathology (eds Centifanti, L. C. & Williams, D. M.) 233–258 (Wiley Blackwell, 2017).

  23. Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, n71 (2021).

  24. Middeldorp, C. M. et al. A genome-wide association meta-analysis of attention-deficit/hyperactivity disorder symptoms in population-based pediatric cohorts. J. Am. Acad. Child Adolesc. Psychiatry 55, 896–905 (2016).

    PubMed  PubMed Central  Google Scholar 

  25. Jami, E. S. et al. Genome-wide association meta-analysis of childhood and adolescent internalizing symptoms. J. Am. Acad. Child Adolesc. Psychiatry 61, 934–945 (2022).

    PubMed  PubMed Central  Google Scholar 

  26. Ip, H. F. et al. Genetic association study of childhood aggression across raters, instruments, and age. Transl. Psychiatry 11, 413 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pappa, I. et al. A genome-wide approach to children’s aggressive behavior: the EAGLE consortium. Am. J. Med. Genet. B Neuropsychiatr. Genet. 171B, 562–572 (2016).

    Google Scholar 

  28. Verhoef, E. et al. Genome-wide analyses of vocabulary size in infancy and toddlerhood: associations with attention-deficit/hyperactivity disorder, literacy, and cognition-related traits. Biol. Psychiatry 95, 859–869 (2023).

    PubMed  Google Scholar 

  29. St Pourcain, B. et al. Common variation near ROBO2 is associated with expressive vocabulary in infancy. Nat. Commun. 5, 4831 (2014).

    Google Scholar 

  30. Benke, K. S. et al. A genome-wide association meta-analysis of preschool internalizing problems. J. Am. Acad. Child Adolesc. Psychiatry 53, 667–676 (2014).

  31. Koracin, V. et al. Current status of newborn screening in southeastern Europe. Front. Pediatr. 9, 648939 (2021).

    PubMed  PubMed Central  Google Scholar 

  32. Jansen, M. E., Metternick-Jones, S. C. & Lister, K. J. International differences in the evaluation of conditions for newborn bloodspot screening: a review of scientific literature and policy documents. Eur. J. Hum. Genet. 25, 10–16 (2016).

  33. Therrell, B. L. & Padilla, C. D. Newborn screening in the developing countries. Curr. Opin. Pediatr. 30, 734–739 (2018).

    PubMed  Google Scholar 

  34. Borrajo, G. J. C. Newborn screening in Latin America: a brief overview of the state of the art. Am. J. Med. Genet. C Semin. Med. Genet. 187, 322–328 (2021).

    PubMed  Google Scholar 

  35. The Global Research on Developmental Disabilities Collaborators. Accelerating progress on early childhood development for children under 5 years with disabilities by 2030. Lancet Glob. Health 10, e438–e444 (2022).

  36. Niemi, M. E. K. et al. Common genetic variants contribute to risk of rare severe neurodevelopmental disorders. Nature 562, 268–271 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Patel, A. P. & Khera, A. V. Advances and applications of polygenic scores for coronary artery disease. Annu. Rev. Med. 74, 141–154 (2023).

    CAS  PubMed  Google Scholar 

  38. de Hemptinne, M. C. & Posthuma, D. Addressing the ethical and societal challenges posed by genome-wide association studies of behavioral and brain-related traits. Nat. Neurosci. 26, 932–941 (2023).

    PubMed  Google Scholar 

  39. England’s Department for Education. Statutory Framework for the Early Years Foundation Stage. https://www.gov.uk/government/publications/early-years-foundation-stage-framework--2 (2021).

  40. European Commission ET2020 Working Group. Early Childhood Education and Care (European Commission, 2020).

  41. Evans, D. M., Moen, G.-H., Hwang, L.-D., Lawlor, D. A. & Warrington, N. M. Elucidating the role of maternal environmental exposures on offspring health and disease using two-sample Mendelian randomization. Int. J. Epidemiol. 48, 861–875 (2019).

    PubMed  PubMed Central  Google Scholar 

  42. Yan, S. et al. Mendelian randomization analysis identified causal association of childhood obesity with adult major depressive disorder. Pediatr. Obes. 17, e12960 (2022).

    PubMed  Google Scholar 

  43. Kong, A. et al. The nature of nurture: effects of parental genotypes. Science 359, 424–428 (2018).

    CAS  PubMed  Google Scholar 

  44. Chen, C. et al. Associations between psychiatric polygenic risk scores and general and specific psychopathology symptoms in childhood and adolescence between and within dizygotic twin pairs. J. Child Psychol. Psychiatry 63, 1513–1522 (2022).

    PubMed  PubMed Central  Google Scholar 

  45. Selzam, S. et al. Comparing within- and between-family polygenic score prediction. Am. J. Hum. Genet. 105, 351–363 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pingault, J. B. et al. Genetic sensitivity analysis: adjusting for genetic confounding in epidemiological associations. PLoS Genet. 17, e1009590 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ronald, A. Editorial: polygenic scores in child and adolescent psychiatry — strengths, weaknesses, opportunities and threats. J. Child Psychol. Psychiatry 61, 519–521 (2020).

    PubMed  Google Scholar 

  48. Middeldorp, C. M., Felix, J. F., Mahajan, A. & McCarthy, M. I. The Early Growth Genetics (EGG) and Early Genetics and Lifecourse Epidemiology (EAGLE) consortia: design, results and future prospects. Eur. J. Epidemiol. 34, 279–300 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Magnus, P. et al. Cohort profile update: the Norwegian Mother and Child Cohort Study (MoBa). Int. J. Epidemiol. 45, 382–388 (2016).

    PubMed  Google Scholar 

  50. Kuriyama, S. et al. Cohort profile: Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study (TMM BirThree Cohort Study): rationale, progress and perspective. Int. J. Epidemiol. 49, 18–19m (2020).

    PubMed  Google Scholar 

  51. Edwards, A. D. et al. The Developing Human Connectome Project neonatal data release. Front. Neurosci. 16, 886772 (2022).

    PubMed  PubMed Central  Google Scholar 

  52. Bartels, M., Boomsma, D. I., Hudziak, J. J., van Beijsterveldt, T. C. E. M. & van den Oord, E. J. C. G. Twins and the study of rater (dis)agreement. Psychol. Methods 12, 451–466 (2007).

    PubMed  Google Scholar 

  53. Ronald, A., Edelson, L. R., Asherson, P. & Saudino, K. J. Exploring the relationship between autistic-like traits and ADHD behaviors in early childhood: findings from a community twin study of 2-year-olds. J. Abnorm. Child Psychol. 38, 185–196 (2010).

    PubMed  PubMed Central  Google Scholar 

  54. Achenbach, T. M., McConaughy, S. H. & Howell, C. T. Child/adolescent behavioral and emotional problems: implications of cross-informant correlations for situational specificity. Psychol. Bull. 101, 213–232 (1987).

    CAS  PubMed  Google Scholar 

  55. Diamond, K. E. & Squires, J. The role of parental report in the screening and assessment of young children. J. Early Interv. 17, 107–115 (1993).

    Google Scholar 

  56. Dotti Sani, G. M. & Treas, J. Educational gradients in parents’ child-care time across countries, 1965–2012. J. Marriage Fam. 78, 1083–1096 (2016).

    Google Scholar 

  57. Drago, R. The parenting of infants: a time-use study. Mon. Labor Rev. 132, 33–43 (2009).

    Google Scholar 

  58. Langendonk, J. M. et al. Assessment of motor milestones in twins. Twin Res. Hum. Genet. 10, 835–839 (2007).

    Google Scholar 

  59. Daum, M. M. et al. The kleineWeltentdecker app — a smartphone-based developmental diary. Behav. Res. Methods 54, 2522–2544 (2022).

    PubMed  PubMed Central  Google Scholar 

  60. Squires, J. & Bricker, D. Ages and Stages Questionnaire (ASQ): A Parent Completed Child Monitoring System (Brookes Publishing, 2009).

  61. Filgueiras, A., Pires, P. & Landeira-Fernandez, J. Screening measures used in child daycare centers: a 15-years systematic review. Psychology 05, 2109–2119 (2014).

    Google Scholar 

  62. Luningham, J. M. et al. Harmonizing behavioral outcomes across studies, raters, and countries: application to the genetic analysis of aggression in the ACTION Consortium. J. Child Psychol. Psychiatry 61, 807–817 (2020).

    PubMed  PubMed Central  Google Scholar 

  63. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Harel-Gadassi, A. et al. Developmental assessment of preterm infants: chronological or corrected age? Res. Dev. Disabil. 80, 35–43 (2018).

    PubMed  Google Scholar 

  65. Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. Howe, L. D., Tilling, K., Galobardes, B. & Lawlor, D. A. Loss to follow-up in cohort studies. Epidemiology 24, 1–9 (2013).

    PubMed  PubMed Central  Google Scholar 

  67. Young, A. F., Powers, J. R. & Bell, S. L. Attrition in longitudinal studies: who do you lose? Aust. N. Z. J. Public Health 30, 353–361 (2006).

    PubMed  Google Scholar 

  68. Schoeler, T. et al. Participation bias in the UK Biobank distorts genetic associations and downstream analyses. Nat. Hum. Behav. 7, 1216–1227 (2023).

    PubMed  PubMed Central  Google Scholar 

  69. Vejrup, K., Magnus, P. & Magnus, M. Lost to follow‐up in the Norwegian Mother, Father and Child Cohort Study. Paediatr. Perinat. Epidemiol. 36, 300–309 (2022).

    PubMed  Google Scholar 

  70. Biele, G. et al. Bias from self selection and loss to follow-up in prospective cohort studies. Eur. J. Epidemiol. 34, 927–938 (2019).

    CAS  PubMed  Google Scholar 

  71. Martin, J. et al. Association of genetic risk for schizophrenia with nonparticipation over time in a population-based cohort study. Am. J. Epidemiol. 183, 1149–1158 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Simons Foundation to A.R. (award ID 724306).

Author information

Authors and Affiliations

Authors

Contributions

A.R. conceived and designed the experiments and wrote the paper. A.G. conceived and designed the experiments, analyzed data and wrote the paper.

Corresponding author

Correspondence to Angelica Ronald.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Henning Tiemeier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note, Tables 1–3 and Fig. 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronald, A., Gui, A. The potential and translational application of infant genetic research. Nat Genet 56, 1346–1354 (2024). https://doi.org/10.1038/s41588-024-01822-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-024-01822-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing