Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo AAV–SB-CRISPR screens of tumor-infiltrating primary NK cells identify genetic checkpoints of CAR-NK therapy

This article has been updated

Abstract

Natural killer (NK) cells have clinical potential against cancer; however, multiple limitations hinder the success of NK cell therapy. Here, we performed unbiased functional mapping of tumor-infiltrating NK (TINK) cells using in vivo adeno-associated virus (AAV)–SB (Sleeping Beauty)-CRISPR (clustered regularly interspaced short palindromic repeats) screens in four solid tumor mouse models. In parallel, we characterized single-cell transcriptomic landscapes of TINK cells, which identified previously unexplored subpopulations of NK cells and differentially expressed TINK genes. As a convergent hit, CALHM2-knockout (KO) NK cells showed enhanced cytotoxicity and tumor infiltration in mouse primary NK cells and human chimeric antigen receptor (CAR)-NK cells. CALHM2 mRNA reversed the CALHM2-KO phenotype. CALHM2 KO in human primary NK cells enhanced their cytotoxicity, degranulation and cytokine production. Transcriptomics profiling revealed CALHM2-KO-altered genes and pathways in both baseline and stimulated conditions. In a solid tumor model resistant to unmodified CAR-NK cells, CALHM2-KO CAR-NK cells showed potent in vivo antitumor efficacy. These data identify endogenous genetic checkpoints that naturally limit NK cell function and demonstrate the use of CALHM2 KO for engineering enhanced NK cell-based immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vivo AAV–SB-CRIPSR NK cell screen and scRNA-seq of TINK cells jointly identified Calhm2 as a convergent gene for NK cell engineering.
Fig. 2: CALHM2 KO in CAR-NK92 enhanced tumor infiltration and antitumor efficacy in vitro and in vivo.
Fig. 3: CALHM2 KO in human primary NK cells enhanced antitumor function.
Fig. 4: CALHM2 KO altered multiple pathways in human primary NK cells.

Similar content being viewed by others

Data availability

All generated data and analysis results for this study are included in this article and its supplementary information files. Specifically, source data and statistics for non-high-throughput experiments are provided in Supplementary Datasets and Source Data. Processed data and raw sequencing data are available from the GEO under accession numbers GSE262707, GSE262708 and GSE262760, all under the GSE262709 super-series (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE262709). Original cell lines are available from the commercial sources listed in the Supplementary Information. Source data are provided with this paper. Other relevant information or data are available from the corresponding authors upon reasonable request.

Code availability

The code used for data analysis and the generation of figures related to this study is available from the Supplementary Dataset 6 and GitHub (https://github.com/Prenauer/TumorInfiltrating_CAR-NK)59.

Change history

References

  1. Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nat. Immunol. 9, 503–510 (2008).

    CAS  PubMed  Google Scholar 

  2. Ben-Shmuel, A., Biber, G. & Barda-Saad, M. Unleashing natural killer cells in the tumor microenvironment-the next generation of immunotherapy? Front. Immunol. 11, 275 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hu, W., Wang, G., Huang, D., Sui, M. & Xu, Y. Cancer immunotherapy based on natural killer cells: current progress and new opportunities. Front. Immunol. 10, 1205 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Elahi, R., Heidary, A. H., Hadiloo, K. & Esmaeilzadeh, A. Chimeric antigen receptor-engineered natural killer (CAR NK) cells in cancer treatment; recent advances and future prospects. Stem Cell Rev. Rep. 17, 2081–2106 (2021).

    PubMed  PubMed Central  Google Scholar 

  5. Marofi, F. et al. CAR-NK cell: a new paradigm in tumor immunotherapy. Front. Oncol. 11, 673276 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Marofi, F. et al. Renaissance of armored immune effector cells, CAR-NK cells, brings the higher hope for successful cancer therapy. Stem Cell Res. Ther. 12, 200 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Albinger, N., Hartmann, J. & Ullrich, E. Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Ther. 28, 513–527 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rezvani, K. CD19 CAR NK-cell therapy in leukemia & lymphoma. Oncol. Times 42, 35 (2020).

    Google Scholar 

  9. Wrona, E., Borowiec, M. & Potemski, P. CAR-NK cells in the treatment of solid tumors. Int. J. Mol. Sci. 22, 5899 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Portillo, A. L. et al. Expanded human NK cells armed with CAR uncouple potent anti-tumor activity from off-tumor toxicity against solid tumors. iScience 24, 102619 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Marin, D. et al. Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19+ B cell tumors: a phase 1/2 trial. Nat. Med. 30, 772–784 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Abel, A. M., Yang, C., Thakar, M. S. & Malarkannan, S. Natural killer cells: development, maturation, and clinical utilization. Front. Immunol. 9, 1869 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Myers, J. A. & Miller, J. S. Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 85–100 (2021).

    PubMed  Google Scholar 

  14. Shimasaki, N., Jain, A. & Campana, D. NK cells for cancer immunotherapy. Nat. Rev. Drug Discov. 19, 200–218 (2020).

    CAS  PubMed  Google Scholar 

  15. Cózar, B. et al. Tumor-infiltrating natural killer cells. Cancer Discov. 11, 34–44 (2021).

    PubMed  Google Scholar 

  16. Ge, Z., Wu, S., Zhang, Z. & Ding, S. Mechanism of tumor cells escaping from immune surveillance of NK cells. Immunopharmacol. Immunotoxicol. 42, 187–198 (2020).

    CAS  PubMed  Google Scholar 

  17. Chu, J. et al. Natural killer cells: a promising immunotherapy for cancer. J. Transl. Med. 20, 240 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bernard, P. L. et al. Targeting CISH enhances natural cytotoxicity receptor signaling and reduces NK cell exhaustion to improve solid tumor immunity. J. Immunother. Cancer 10, e004244 (2022).

    PubMed  PubMed Central  Google Scholar 

  19. Pan, R., Ryan, J., Pan, D., Wucherpfennig, K. W. & Letai, A. Augmenting NK cell-based immunotherapy by targeting mitochondrial apoptosis. Cell 185, 1521–1538 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sheffer, M. et al. Genome-scale screens identify factors regulating tumor cell responses to natural killer cells. Nat. Genet. 53, 1196–1206 (2021).

    CAS  PubMed  Google Scholar 

  21. Chiba, M. et al. Genome-wide CRISPR screens identify CD48 defining susceptibility to NK cytotoxicity in peripheral T-cell lymphomas. Blood 140, 1951–1963 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ye, L. et al. In vivo CRISPR screening in CD8 T cells with AAV–Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nat. Biotechnol. 37, 1302–1313 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. ImmGen, C. Open-source ImmGen: mononuclear phagocytes. Nat. Immunol. 17, 741 (2016).

    Google Scholar 

  25. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).

    CAS  Google Scholar 

  27. Pfefferle, A. et al. Intra-lineage plasticity and functional reprogramming maintain natural killer cell repertoire diversity. Cell Rep. 29, 2284–2294 (2019).

    CAS  PubMed  Google Scholar 

  28. van Helden, M. J. et al. Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. J. Exp. Med. 212, 2015–2025 (2015).

    PubMed  PubMed Central  Google Scholar 

  29. Cheng, J. et al. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer’s disease pathology. Sci. Adv. 7, eabe3600 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi, W., Clemente, N., Sun, W. N., Du, J. & Lu, W. The structures and gating mechanism of human calcium homeostasis modulator 2. Nature 576, 163–167 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nowakowska, P. et al. Clinical grade manufacturing of genetically modified, CAR-expressing NK-92 cells for the treatment of ErbB2-positive malignancies. Cancer Immunol. Immunother. 67, 25–38 (2018).

    CAS  PubMed  Google Scholar 

  32. Boyiadzis, M. et al. Phase 1 clinical trial of adoptive immunotherapy using “off-the-shelf” activated natural killer cells in patients with refractory and relapsed acute myeloid leukemia. Cytotherapy 19, 1225–1232 (2017).

    CAS  PubMed  Google Scholar 

  33. Williams, B. A. et al. A phase I trial of NK-92 cells for refractory hematological malignancies relapsing after autologous hematopoietic cell transplantation shows safety and evidence of efficacy. Oncotarget 8, 89256–89268 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Tam, Y. K. et al. Characterization of genetically altered, interleukin 2-independent natural killer cell lines suitable for adoptive cellular immunotherapy. Hum. Gene Ther. 10, 1359–1373 (1999).

    CAS  PubMed  Google Scholar 

  35. Lun, A. T., Chen, Y. & Smyth, G. K. It’s DE-licious: a recipe for differential expression analyses of RNA-seq experiments using quasi-likelihood methods in edgeR. Methods Mol. Biol. 1418, 391–416 (2016).

    PubMed  Google Scholar 

  36. Vivier, E. et al. Natural killer cell therapies. Nature 626, 727–736 (2024).

    CAS  PubMed  Google Scholar 

  37. Dagher, O. K. & Posey, A. D. Jr. Forks in the road for CAR T and CAR NK cell cancer therapies. Nat. Immunol. 24, 1994–2007 (2023).

    CAS  PubMed  Google Scholar 

  38. Daher, M. et al. Targeting a cytokine checkpoint enhances the fitness of armored cord blood CAR-NK cells. Blood 137, 624–636 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bausch-Fluck, D. et al. The in silico human surfaceome. Proc. Natl Acad. Sci. USA 115, E10988–E10997 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. McKenna, A. & Shendure, J. FlashFry: a fast and flexible tool for large-scale CRISPR target design. BMC Biol. 16, 74 (2018).

    PubMed  PubMed Central  Google Scholar 

  41. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ye, L. et al. A genome-scale gain-of-function CRISPR screen in CD8 T cells identifies proline metabolism as a means to enhance CAR-T therapy. Cell Metab. 34, 595–614 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Google Scholar 

  44. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed  PubMed Central  Google Scholar 

  45. Aguilar, S. V. et al. ImmGen at 15. Nat. Immunol. 21, 700–703 (2020).

    CAS  Google Scholar 

  46. Gal-Oz, S. T. et al. ImmGen report: sexual dimorphism in the immune system transcriptome. Nat. Commun. 10, 4295 (2019).

    PubMed  PubMed Central  Google Scholar 

  47. Zemmour, D., Goldrath, A., Kronenberg, M., Kang, J. S. & Benoist, C. The ImmGen consortium OpenSource T cell project. Nat. Immunol. 23, 643–644 (2022).

    CAS  PubMed  Google Scholar 

  48. Bezman, N. A. et al. Molecular definition of the identity and activation of natural killer cells. Nat. Immunol. 13, 1000–1009 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jordão, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363, eaat7554 (2019).

    PubMed  Google Scholar 

  51. Liu, Y. et al. Single-cell profiling reveals divergent, globally patterned immune responses in murine skin inflammation. iScience 23, 101582 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Peng, L. et al. Variant-specific vaccination induces systems immune responses and potent in vivo protection against SARS-CoV-2. Cell Rep. Med. 3, 100634 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ahlmann-Eltze, C. & Huber, W. glmGamPoi: fitting gamma–Poisson generalized linear models on single cell count data. Bioinformatics 36, 5701–5702 (2020).

    CAS  PubMed Central  Google Scholar 

  54. Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell differential expression analysis. Nat. Methods 15, 255–261 (2018).

    CAS  PubMed  Google Scholar 

  55. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    CAS  PubMed  Google Scholar 

  56. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. Kolberg, L., Kerimov, N., Peterson, H. & Alasoo, K. Co-expression analysis reveals interpretable gene modules controlled by trans-acting genetic variants. eLife 9, e58705 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Peng, L. et al. In vivo AAV–SB-CRISPR screens of tumor-infiltrating primary NK cells identify genetic checkpoints of CAR-NK therapy. GitHub https://github.com/Prenauer/TumorInfiltrating_CAR-NK (2024).

Download references

Acknowledgements

We thank all members of the Chen laboratory, as well as our colleagues in the Department of Genetics, Systems Biology Institute, Cancer Systems Biology Center, MCGD Program, Immunobiology Program, BBS Program, Yale Cancer Center (YCC), Yale Stem Cell Center, RNA Center and Center for Biomedical Data Sciences at Yale for assistance and/or discussion. We thank the YCGA, Yale Center for Molecular Discovery, High-Performance Computing Center, West Campus Analytical Chemistry Core, West Campus Mass Spec Core and Keck Biotechnology Resource Laboratory at Yale for technical support. S.C. is supported by a Yale SBI/Genetics Startup Fund, a Cancer Research Institute Lloyd J. Old STAR Award (CRI4964), the National Institutes of Health (NIH) National Cancer Institute (NCI) (DP2CA238295, R01CA231112 and 1R33CA281702), the Department of Defense (W81XWH-20-1-0072, W81XWH-21-1-0514, HT9425-23-1-0472 and HT9425-23-1-0860), the Alliance for Cancer Gene Therapy (ACGT), the Pershing Square Sohn Cancer Research Alliance, the Sontag Foundation, Dexter Lu, the Ludwig Family Foundation, the Blavatnik Family Foundation and the Chenevert Family Foundation. P.A.R. is supported by a Yale PhD training grant from NIH (T32GM007499), the Lo Fellowship of Excellence of Stem Cell Research, the NCI diversity supplement and the YCC T32 fellowship program. G.S. is supported by a Vita-Salute San Raffaele University fellowship. J.J.P. is supported by an NIH Medical Scientist Training Program (MSTP) training grant (T32GM007205). R.D.C. is supported by an NIH MSTP training grant (T32GM007205) and National Research Service Award fellowship (F30CA250249).

Author information

Authors and Affiliations

Authors

Contributions

S.C. conceptualized the study and designed it with L.P., P.A.R. and L. Ye. L.P. performed most experiments. P.A.R. performed most NGS analyses. L. Ye coperformed the screen and single-cell experiments and supported or supervised certain validation experiments. G.S., L. Yang, Y. Zou, Z.F., Q.L., M.B., A.S., Yueqi Zhang and S.Z.L. assisted with experiments. J.J.P. and Yongzhan Zhang performed certain NGS analyses. R.D.C. designed the Surf-v2 library. L.P., P.A.R. and S.C. prepared the manuscript with input from all authors. S.C. secured funding and supervised the work.

Corresponding authors

Correspondence to Lupeng Ye or Sidi Chen.

Ethics declarations

Competing interests

A patent was filed by Yale University regarding the data in this study, which was licensed to Cellinfinity Bio, a Yale biotech startup founded by S.C. S.C. is also a founder or cofounder of EvolveImmune, NumericGlobal, MagicTime Med and Chen Consulting, all unrelated to this study. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, methods, datasets, figures, legends and references.

Reporting Summary

Supplementary Dataset 1

Screen analysis.

Supplementary Dataset 2

Single-cell analysis.

Supplementary Dataset 3

Single-cell DE analysis.

Supplementary Dataset 4

Single-cell pathway analysis.

Supplementary Dataset 5

mRNA-seq analysis.

Supplementary Dataset 6

Analytic codes.

Source data

Source Data Figs. 2–4 and Supplementary Figs. 9–12

Source data, statistical details and reagent info for non-NGS experiments.

Source Data Figs. 2–4 and Supplementary Fig. 9

Uncropped gel files.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Renauer, P.A., Sferruzza, G. et al. In vivo AAV–SB-CRISPR screens of tumor-infiltrating primary NK cells identify genetic checkpoints of CAR-NK therapy. Nat Biotechnol (2024). https://doi.org/10.1038/s41587-024-02282-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-024-02282-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research