Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment of chronic kidney disease in older populations

Abstract

As the world population ages, an expected increase in the prevalence of chronic kidney disease (CKD) among older individuals will pose a considerable challenge for health care systems in terms of resource allocation for disease management. Treatment strategies for older patients with CKD should ideally align with those applied to the general population, focusing on minimizing cardiovascular events and reducing the risk of progression to kidney failure. Emerging therapies, such as SGLT-2 inhibitors and GLP-1 receptor agonists, hold promise for the effective management of CKD in older individuals. In addition, non-pharmacological interventions such as nutritional and exercise therapies have a crucial role. These interventions enhance the effects of pharmacotherapy and, importantly, contribute to the maintenance of cognitive function and overall quality of life. Various factors beyond age and cognitive function must be taken into account when considering kidney replacement therapy for patients with kidney failure. Importantly, all treatment options, including dialysis, transplantation and conservative management approaches, should be tailored to the individual through patient-centred decision-making. The dynamic integration of digital technologies into medical practice has the potential to transform the management of CKD in the aging population.

Key points

  • Aging is an important risk factor for chronic kidney disease (CKD); the expected increase in CKD prevalence with the aging population will likely pose a challenge to health care systems in terms of resource allocation and strategies for effective disease management.

  • Structural and functional changes that occur in the kidney with aging are associated with a decline in kidney function from around 40 years of age; although these changes vary considerably between individuals, diseases such as hypertension and diabetes accelerate this decline.

  • Older patients with CKD should be treated the same way as other members of the general population, with the goal of minimizing cardiovascular events and slowing progression to kidney failure; available evidence suggests that SGLT-2 inhibitors and GLP-1 receptor agonists may be effective in older populations and associated with a low risk of adverse events.

  • Nutritional and exercise therapies are essential non-pharmacological treatments for older patients with CKD; these therapies not only enhance the effects of pharmacotherapies but may also help to maintain cognitive function and quality of life.

  • Choice of kidney replacement therapy for patients with kidney failure should not solely depend on age or cognitive function; alongside dialysis and transplantation, conservative treatment options, including conservative kidney management, should be considered through patient-centred decision making.

  • Digital technologies using wearable devices and virtual reality systems are expected to facilitate the treatment of CKD in older populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural and morphological changes that occur in the kidney with aging.
Fig. 2: Molecular changes in the aging kidney.
Fig. 3: Effectiveness and safety of SGLT2 inhibitors and GLP-1RAs in older adults with type 2 diabetes.
Fig. 4: Conservative kidney management CKD treatment.

Similar content being viewed by others

References

  1. Ageing and health. The World Health Organization (WHO). https://www.who.int/news-room/fact-sheets/detail/ageing-and-health.

  2. Understanding the dynamics of the aging process. National Institute on Aging (NIA). https://www.nia.nih.gov/about/aging-strategic-directions-research/understanding-dynamics-aging).

  3. Epidemiology of kidney disease in the United States. https://adr.usrds.org/. US Renal Data System.

  4. Merchant, A. A. & Ling, E. An approach to treating older adults with chronic kidney disease. CMAJ 195, E612–E618 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020).

  6. Alfano, G. et al. Rethinking chronic kidney disease in the aging population. Life 12, 1724 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moist, L. M. et al. Canadian Organ Replacement Register (CORR): reflecting the past and embracing the future. Can. J. Kidney Health Dis. 1, 26 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pecoits-Filho, R. et al. Capturing and monitoring global differences in untreated and treated end-stage kidney disease, kidney replacement therapy modality, and outcomes. Kidney Int. Suppl. 10, e3–e9 (2020).

    Article  Google Scholar 

  9. Liyanage, T. et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet 385, 1975–1982 (2015).

    Article  PubMed  Google Scholar 

  10. Thurlow, J. S. et al. Global epidemiology of end-stage kidney disease and disparities in kidney replacement therapy. Am. J. Nephrol. 52, 98–107 (2021).

    Article  PubMed  Google Scholar 

  11. Denic, A. et al. Single-nephron glomerular filtration rate in healthy adults. N. Engl. J. Med. 376, 2349–2357 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Denic, A. et al. The substantial loss of nephrons in healthy human kidneys with aging. J. Am. Soc. Nephrol. 28, 313��320 (2017).

    Article  PubMed  Google Scholar 

  13. Denic, A., Glassock, R. J. & Rule, A. D. The kidney in normal aging: a comparison with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 17, 137–139 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Epstein, M. Aging and the kidney. J. Am. Soc. Nephrol. 7, 1106–1122 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, X. J. et al. The aging kidney. Kidney Int. 74, 710–720 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Weinstein, J. R. & Anderson, S. The aging kidney: physiological changes. Adv. Chronic Kidney Dis. 17, 302–307 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang, X. et al. Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int. 85, 677–685 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Denic, A., Glassock, R. J. & Rule, A. D. Structural and functional changes with the aging kidney. Adv. Chronic Kidney Dis. 23, 19–28 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nitta, K., Okada, K., Yanai, M. & Takahashi, S. Aging and chronic kidney disease. Kidney Blood Press. Res. 38, 109–120 (2013).

    Article  PubMed  Google Scholar 

  20. Satoh, M. et al. Mitochondrial damage-induced impairment of angiogenesis in the aging rat kidney. Lab. Invest. 91, 190–202 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Lindeman, R. D., Tobin, J. & Shock, N. W. Longitudinal studies on the rate of decline in renal function with age. J. Am. Geriatr. Soc. 33, 278–285 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Davies, D. F. & Shock, N. W. Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. J. Clin. Invest. 29, 496–507 (1950).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Poggio, E. D. et al. Demographic and clinical characteristics associated with glomerular filtration rates in living kidney donors. Kidney Int. 75, 1079–1087 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Berg, U. B. Differences in decline in GFR with age between males and females. Reference data on clearances of inulin and PAH in potential kidney donors. Nephrol. Dial. Transpl. 21, 2577–2582 (2006).

    Article  CAS  Google Scholar 

  25. Messerli, F. H. et al. Essential hypertension in the elderly: haemodynamics, intravascular volume, plasma renin activity, and circulating catecholamine levels. Lancet 2, 983–986 (1983).

    Article  CAS  PubMed  Google Scholar 

  26. Luft, F. C., Grim, C. E., Fineberg, N. & Weinberger, M. C. Effects of volume expansion and contraction in normotensive whites, blacks, and subjects of different ages. Circulation 59, 643–650 (1979).

    Article  CAS  PubMed  Google Scholar 

  27. Schmitt, R. & Melk, A. Molecular mechanisms of renal aging. Kidney Int. 92, 569–579 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Franzin, R. et al. Targeting premature renal aging: from molecular mechanisms of cellular senescence to senolytic trials. Front. Pharmacol. 12, 630419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lorenz, E. C. et al. Frailty in CKD and transplantation. Kidney Int. Rep. 6, 2270–2280 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Buta, B. J. et al. Frailty assessment instruments: systematic characterization of the uses and contexts of highly-cited instruments. Ageing Res. Rev. 26, 53–61 (2016).

    Article  PubMed  Google Scholar 

  31. Fried, L. P. et al. Frailty in older adults: evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 56, M146–156, (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Shlipak, M. G. et al. The presence of frailty in elderly persons with chronic renal insufficiency. Am. J. Kidney Dis. 43, 861–867 (2004).

    Article  PubMed  Google Scholar 

  33. Ballew, S. H. et al. Frailty, kidney function, and polypharmacy: the atherosclerosis risk in communities (ARIC) study. Am. J. Kidney Dis. 69, 228–236 (2017).

    Article  PubMed  Google Scholar 

  34. Wilhelm-Leen, E. R., Hall, Y. N., M, K. T. & Chertow, G. M. Frailty and chronic kidney disease: the Third National Health and Nutrition Evaluation Survey. Am. J. Med. 122, 664–671.e662 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Roshanravan, B. et al. A prospective study of frailty in nephrology-referred patients with CKD. Am. J. Kidney Dis. 60, 912–921 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. McAdams-DeMarco, M. A. et al. Frailty as a novel predictor of mortality and hospitalization in individuals of all ages undergoing hemodialysis. J. Am. Geriatr. Soc. 61, 896–901 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chu, N. M. et al. Frailty prevalence in younger end-stage kidney disease patients undergoing dialysis and transplantation. Am. J. Nephrol. 51, 501–510 (2020).

    Article  PubMed  Google Scholar 

  38. McAdams-DeMarco, M. A. et al. Individual frailty components and mortality in kidney transplant recipients. Transplantation 101, 2126–2132 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wenger, U. et al. The relationship between preoperative creatinine clearance and outcomes for patients undergoing liver transplantation: a retrospective observational study. BMC Nephrol. 14, 37 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pugh, J. et al. Frailty and comorbidity are independent predictors of outcome in patients referred for pre-dialysis education. Clin. Kidney J. 9, 324–329 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. McAdams-DeMarco, M. A. et al. Frailty and cognitive function in incident hemodialysis patients. Clin. J. Am. Soc. Nephrol. 10, 2181–2189 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. McAdams-DeMarco, M. A. et al. Frailty and falls among adult patients undergoing chronic hemodialysis: a prospective cohort study. BMC Nephrol. 14, 224 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. McAdams-DeMarco, M. A. et al. Frailty and health-related quality of life in end stage renal disease patients of all ages. J. Frailty Aging 5, 174–179 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, S. Y. et al. The prevalence, association, and clinical outcomes of frailty in maintenance dialysis patients. J. Ren. Nutr. 27, 106–112 (2017).

    Article  PubMed  Google Scholar 

  45. Hickson, L. J. et al. Hospital readmission among new dialysis patients associated with young age and poor functional status. Nephron 139, 1–12 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Alfaadhel, T. A. et al. Frailty and mortality in dialysis: evaluation of a clinical frailty scale. Clin. J. Am. Soc. Nephrol. 10, 832–840 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Johansen, K. L. et al. Association of performance-based and self-reported function-based definitions of frailty with mortality among patients receiving hemodialysis. Clin. J. Am. Soc. Nephrol. 11, 626–632 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Haugen, C. E. et al. Physical impairment and access to kidney transplantation. Transplantation 104, 367–373 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lorenz, E. C. et al. The relationship between frailty and decreased physical performance with death on the kidney transplant waiting list. Prog. Transpl. 29, 108–114 (2019).

    Article  Google Scholar 

  50. Cheng, X. S. et al. Physical performance testing in kidney transplant candidates at the top of the waitlist. Am. J. Kidney Dis. 76, 815–825 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lorenz, E. C. et al. Relationship between pre-transplant physical function and outcomes after kidney transplant. Clin. Transplant 31, e12952 (2017).

    Article  Google Scholar 

  52. Watford, D. J. et al. Toward telemedicine-compatible physical functioning assessments in kidney transplant candidates. Clin. Transpl. 35, e14173 (2021).

    Article  Google Scholar 

  53. Garonzik-Wang, J. M. et al. Frailty and delayed graft function in kidney transplant recipients. Arch. Surg. 147, 190–193, (2012).

    Article  PubMed  Google Scholar 

  54. Kutner, N. G., Zhang, R., Bowles, T. & Painter, P. Pretransplant physical functioning and kidney patients’ risk for posttransplantation hospitalization/death: evidence from a national cohort. Clin. J. Am. Soc. Nephrol. 1, 837–843 (2006).

    Article  PubMed  Google Scholar 

  55. McAdams-DeMarco, M. A. et al. Frailty, length of stay, and mortality in kidney transplant recipients: a National Registry and Prospective Cohort Study. Ann. Surg. 266, 1084–1090 (2017).

    Article  PubMed  Google Scholar 

  56. McAdams-DeMarco, M. A. et al. Frailty and mortality in kidney transplant recipients. Am. J. Transpl. 15, 149–154 (2015).

    Article  CAS  Google Scholar 

  57. McAdams-DeMarco, M. A. et al. Frailty and early hospital readmission after kidney transplantation. Am. J. Transpl. 13, 2091–2095 (2013).

    Article  CAS  Google Scholar 

  58. McAdams-DeMarco, M. A. et al. Frailty, mycophenolate reduction, and graft loss in kidney transplant recipients. Transplantation 99, 805–810 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reese, P. P. et al. Functional status and survival after kidney transplantation. Transplantation 97, 189–195 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Vondracek, S. F., Teitelbaum, I. & Kiser, T. H. Principles of kidney pharmacotherapy for the nephrologist: core curriculum 2021. Am. J. Kidney Dis. 78, 442–458 (2021).

    Article  PubMed  Google Scholar 

  61. KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int 105, S117–S314 (2024).

  62. Delanaye, P. et al. CKD: a call for an age-adapted definition. J. Am. Soc. Nephrol. 30, 1785–1805 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Levey, A. S. et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO controversies conference report. Kidney Int. 80, 17–28 (2011).

    Article  PubMed  Google Scholar 

  64. Hallan, S. I. et al. Age and association of kidney measures with mortality and end-stage renal disease. JAMA 308, 2349–2360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wing, L. M. et al. A comparison of outcomes with angiotensin-converting-enzyme inhibitors and diuretics for hypertension in the elderly. N. Engl. J. Med. 348, 583–592 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Beckett, N. S. et al. Treatment of hypertension in patients 80 years of age or older. N. Engl. J. Med. 358, 1887–1898 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Lithell, H. et al. The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. J. Hypertens. 21, 875–886 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Granger, C. B. et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial. Lancet 362, 772–776 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Heagerty, A. M. & Mallion, J. M. Olmesartan medoxomil in elderly patients with essential or isolated systolic hypertension : efficacy and safety data from clinical trials. Drugs Aging 26, 61–76 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Turgut, F., Balogun, R. A. & Abdel-Rahman, E. M. Renin-angiotensin-aldosterone system blockade effects on the kidney in the elderly: benefits and limitations. Clin. J. Am. Soc. Nephrol. 5, 1330–1339 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Strippoli, G. F., Craig, M., Deeks, J. J., Schena, F. P. & Craig, J. C. Effects of angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists on mortality and renal outcomes in diabetic nephropathy: systematic review. BMJ 329, 828 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ruggenenti, P., Perna, A. & Remuzzi, G. ACE inhibitors to prevent end-stage renal disease: when to start and why possibly never to stop: a post hoc analysis of the REIN trial results. Ramipril Efficacy in Nephropathy. J. Am. Soc. Nephrol. 12, 2832–2837 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Hemmelgarn, B. R. et al. Progression of kidney dysfunction in the community-dwelling elderly. Kidney Int. 69, 2155–2161 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Bhandari, S. et al. Renin-angiotensin system inhibition in advanced chronic kidney disease. N. Engl. J. Med. 387, 2021–2032 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Ahmed, A. K., Kamath, N. S., El Kossi, M. & El Nahas, A. M. The impact of stopping inhibitors of the renin-angiotensin system in patients with advanced chronic kidney disease. Nephrol. Dial. Transpl. 25, 3977–3982 (2010).

    Article  CAS  Google Scholar 

  78. Fu, E. L. et al. Stopping renin-angiotensin system inhibitors in patients with advanced CKD and risk of adverse outcomes: a nationwide study. J. Am. Soc. Nephrol. 32, 424–435 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Samiy, A. H. Renal disease in the elderly. Med. Clin. North. Am. 67, 463–480 (1983).

    Article  CAS  PubMed  Google Scholar 

  80. Chaumont, M. et al. Acute kidney injury in elderly patients with chronic kidney disease: do angiotensin-converting enzyme inhibitors carry a risk? J. Clin. Hypertens. 18, 514–521 (2016).

    Article  CAS  Google Scholar 

  81. Lapi, F., Azoulay, L., Yin, H., Nessim, S. J. & Suissa, S. Concurrent use of diuretics, angiotensin converting enzyme inhibitors, and angiotensin receptor blockers with non-steroidal anti-inflammatory drugs and risk of acute kidney injury: nested case-control study. BMJ 346, e8525 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Siew, E. D. et al. Renin-angiotensin aldosterone inhibitor use at hospital discharge among patients with moderate to severe acute kidney injury and its association with recurrent acute kidney injury and mortality. Kidney Int. 99, 1202–1212 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Raebel, M. A. et al. Diabetes and drug-associated hyperkalemia: effect of potassium monitoring. J. Gen. Intern. Med. 25, 326–333 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kanda, E. et al. Clinical impact of suboptimal RAASi therapy following an episode of hyperkalemia. BMC Nephrol. 24, 18 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2021. Diabetes Care 44, S111–S124 (2021).

  91. Monteiro, P. et al. Efficacy and safety of empagliflozin in older patients in the EMPA-REG OUTCOME® trial. Age Ageing 48, 859–866 (2019).

    Article  PubMed�� PubMed Central  Google Scholar 

  92. Cahn, A. et al. Efficacy and safety of dapagliflozin in the elderly: analysis from the DECLARE-TIMI 58 study. Diabetes Care 43, 468–475 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Giugliano, D. et al. Efficacy of SGLT-2 inhibitors in older adults with diabetes: systematic review with meta-analysis of cardiovascular outcome trials. Diabetes Res. Clin. Pract. 162, 108114 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Vart, P. et al. Efficacy and safety of dapagliflozin in patients with chronic kidney disease across the spectrum of frailty. J. Gerontol. A Biol. Sci. Med. Sci. 79, glad181 (2024).

    Article  PubMed  Google Scholar 

  95. Pratley, R. E. et al. Cardiorenal outcomes, kidney function, and other safety outcomes with ertugliflozin in older adults with type 2 diabetes (VERTIS CV): secondary analyses from a randomised, double-blind trial. Lancet Healthy Longev. 4, e143–e154 (2023).

    Article  PubMed  Google Scholar 

  96. Yen, F. S. et al. Sodium-glucose cotransporter-2 inhibitors and the risk for dialysis and cardiovascular disease in patients with stage 5 chronic kidney disease. Ann. Intern. Med. https://doi.org/10.7326/m23-1874 (2024).

  97. Takahashi, Y., Seino, Y. & Yabe, D. Long-term safety and efficacy of SGLT2 inhibitor use in older east Asians with type 2 diabetes. J. Diabetes Investig. 15, 63–66 (2024).

    Article  CAS  PubMed  Google Scholar 

  98. Op den Kamp, Y. J. M. et al. Effects of the SGLT2 inhibitor dapagliflozin on energy metabolism in patients with type 2 diabetes: a randomized, double-blind crossover trial. Diabetes Care 44, 1334–1343 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kamei, S. et al. Effect of tofogliflozin on body composition and glycemic control in Japanese subjects with type 2 diabetes mellitus. J. Diabetes Res. 2018, 6470137 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zhang, S., Qi, Z., Wang, Y., Song, D. & Zhu, D. Effect of sodium-glucose transporter 2 inhibitors on sarcopenia in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Front. Endocrinol. 14, 1203666 (2023).

    Article  Google Scholar 

  101. Yabe, D. et al. Efficacy and safety of the sodium-glucose co-transporter-2 inhibitor empagliflozin in elderly Japanese adults (≥65 years) with type 2 diabetes: a randomized, double-blind, placebo-controlled, 52-week clinical trial (EMPA-ELDERLY). Diabetes Obes. Metab. 25, 3538–3548 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Mone, P. et al. Empagliflozin improves cognitive impairment in frail older adults with type 2 diabetes and heart failure with preserved ejection fraction. Diabetes Care 45, 1247–1251 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Marx, N., Husain, M., Lehrke, M., Verma, S. & Sattar, N. GLP-1 receptor agonists for the reduction of atherosclerotic cardiovascular risk in patients with type 2 diabetes. Circulation 146, 1882–1894 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Sattar, N. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 9, 653–662 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Perkovic, V. et al. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2403347 (2024).

  106. Gilbert, M. P. et al. Effect of liraglutide on cardiovascular outcomes in elderly patients: a post hoc analysis of a randomized controlled trial. Ann. Intern. Med. 170, 423–426 (2019).

    Article  PubMed  Google Scholar 

  107. Leiter, L. A. et al. Cardiovascular risk reduction with once-weekly semaglutide in subjects with type 2 diabetes: a post hoc analysis of gender, age, and baseline CV risk profile in the SUSTAIN 6 trial. Cardiovasc. Diabetol. 18, 73 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Abdelhafiz, A. H. & Sinclair, A. J. Cardio-renal protection in older people with diabetes with frailty and medical comorbidities — a focus on the new hypoglycaemic therapy. J. Diabetes Complications 34, 107639 (2020).

    Article  PubMed  Google Scholar 

  109. Patorno, E. et al. Comparative effectiveness and safety of sodium-glucose cotransporter 2 inhibitors versus glucagon-like peptide 1 receptor agonists in older adults. Diabetes Care 44, 826–835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kutz, A. et al. Comparative cardiovascular effectiveness and safety of SGLT-2 inhibitors, GLP-1 receptor agonists, and DPP-4 inhibitors according to frailty in type 2 diabetes. Diabetes Care 46, 2004–2014 (2023).

    Article  PubMed  Google Scholar 

  111. Simms-Williams, N. et al. Effect of combination treatment with glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors on incidence of cardiovascular and serious renal events: population based cohort study. BMJ 385, e078242 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Bach, V., Schruckmayer, G., Sam, I., Kemmler, G. & Stauder, R. Prevalence and possible causes of anemia in the elderly: a cross-sectional analysis of a large European university hospital cohort. Clin. Interv. Aging 9, 1187–1196 (2014).

    PubMed  PubMed Central  Google Scholar 

  113. Stauffer, M. E. & Fan, T. Prevalence of anemia in chronic kidney disease in the United States. PLoS One 9, e84943 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Locatelli, F. et al. Anaemia in haemodialysis patients of five European countries: association with morbidity and mortality in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrol. Dial. Transpl. 19, 121–132 (2004).

    Article  Google Scholar 

  115. Hoshino, J. et al. Associations of hemoglobin levels with health-related quality of life, physical activity, and clinical outcomes in persons with stage 3-5 nondialysis CKD. J. Ren. Nutr. 30, 404–414 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Ku, E. et al. Novel anemia therapies in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 104, 655–680 (2023).

    Article  PubMed  Google Scholar 

  117. Farag, Y. M. K. et al. Effect of anemia on physical function and physical activity in CKD: the National Health and Nutrition Examination Survey, 1999–2016. Kidney360 4, e1212–e1222 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Haase, V. H. Hypoxia-inducible factor-prolyl hydroxylase inhibitors in the treatment of anemia of chronic kidney disease. Kidney Int. Suppl. 11, 8–25 (2021).

    Article  Google Scholar 

  119. Chappell, J. C., Payne, L. B. & Rathmell, W. K. Hypoxia, angiogenesis, and metabolism in the hereditary kidney cancers. J. Clin. Invest. 129, 442–451 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Benfante, R. & Reed, D. Is elevated serum cholesterol level a risk factor for coronary heart disease in the elderly? JAMA 263, 393–396 (1990).

    Article  CAS  PubMed  Google Scholar 

  121. Lewington, S. et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 370, 1829–1839, (2007).

    Article  PubMed  Google Scholar 

  122. Shepherd, J. et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 360, 1623–1630 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Vidt, D. G. et al. Effect of short-term rosuvastatin treatment on estimated glomerular filtration rate. Am. J. Cardiol. 97, 1602–1606 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Masnoon, N., Shakib, S., Kalisch-Ellett, L. & Caughey, G. E. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 17, 230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Onor, I. O. et al. Polypharmacy in chronic kidney disease: health outcomes & pharmacy-based strategies to mitigate inappropriate polypharmacy. Am. J. Med. Sci. 367, 4–13 (2024).

    Article  PubMed  Google Scholar 

  126. Gnjidic, D. et al. High-risk prescribing and incidence of frailty among older community-dwelling men. Clin. Pharmacol. Ther. 91, 521–528 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Jamsen, K. M. et al. Effects of changes in number of medications and drug burden index exposure on transitions between frailty states and death: the concord health and ageing in men project cohort study. J. Am. Geriatr. Soc. 64, 89–95 (2016).

    Article  PubMed  Google Scholar 

  128. Saum, K. U. et al. Is polypharmacy associated with frailty in older people? Results from the ESTHER cohort study. J. Am. Geriatr. Soc. 65, e27–e32 (2017).

    Article  PubMed  Google Scholar 

  129. Trevisan, C. et al. Factors influencing transitions between frailty states in elderly adults: the Progetto Veneto Anziani Longitudinal Study. J. Am. Geriatr. Soc. 65, 179–184 (2017).

    Article  PubMed  Google Scholar 

  130. Bonaga, B. et al. Frailty, polypharmacy, and health outcomes in older adults: the frailty and dependence in albacete study. J. Am. Med. Dir. Assoc. 19, 46–52 (2018).

    Article  PubMed  Google Scholar 

  131. Moulis, F. et al. Searching for a polypharmacy threshold associated with frailty. J. Am. Med. Dir. Assoc. 16, 259–261 (2015).

    Article  PubMed  Google Scholar 

  132. Gnjidic, D. et al. Polypharmacy cutoff and outcomes: five or more medicines were used to identify community-dwelling older men at risk of different adverse outcomes. J. Clin. Epidemiol. 65, 989–995 (2012).

    Article  PubMed  Google Scholar 

  133. Scott, I. A. et al. Reducing inappropriate polypharmacy: the process of deprescribing. JAMA Intern. Med. 175, 827–834, (2015).

    Article  PubMed  Google Scholar 

  134. McIntyre, C., McQuillan, R., Bell, C. & Battistella, M. Targeted deprescribing in an outpatient hemodialysis unit: a quality improvement study to decrease polypharmacy. Am. J. Kidney Dis. 70, 611–618 (2017).

    Article  PubMed  Google Scholar 

  135. Thomas, M. C. Diuretics, ACE inhibitors and NSAIDs — the triple whammy. Med. J. Aust. 172, 184–185 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Dahmke, H. et al. Evaluation of triple whammy prescriptions after the implementation of a drug safety algorithm. Drugs Real. World Outcomes 11, 125–135 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Seiberth, S., Berner, J., Hug, M. J. & Strobach, D. Double Whamm’ and ‘Triple Whamm’ combinations in hospitalized surgical patients — real life data from a tertiary teaching hospital. Pharmazie 77, 38–43 (2022).

    CAS  PubMed  Google Scholar 

  138. Camin, R. M. et al. Acute kidney injury secondary to a combination of renin-angiotensin system inhibitors, diuretics and NSAIDS: “The Triple Whammy”. Nefrologia 35, 197–206 (2015).

    Article  PubMed  Google Scholar 

  139. Nochaiwong, S. et al. The association between proton pump inhibitor use and the risk of adverse kidney outcomes: a systematic review and meta-analysis. Nephrol. Dial. Transpl. 33, 331–342 (2018).

    Article  CAS  Google Scholar 

  140. Geevasinga, N., Coleman, P. L., Webster, A. C. & Roger, S. D. Proton pump inhibitors and acute interstitial nephritis. Clin. Gastroenterol. Hepatol. 4, 597–604 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Simpson, I. J. et al. Proton pump inhibitors and acute interstitial nephritis: report and analysis of 15 cases. Nephrology 11, 381–385 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Roshanravan, B. et al. Association between physical performance and all-cause mortality in CKD. J. Am. Soc. Nephrol. 24, 822–830 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Doyle, E. M. et al. Association between kidney function, rehabilitation outcome, and survival in older patients discharged from inpatient rehabilitation. Am. J. Kidney Dis. 66, 768–774 (2015).

    Article  PubMed  Google Scholar 

  144. Heiwe, S. & Jacobson, S. H. Exercise training in adults with CKD: a systematic review and meta-analysis. Am. J. Kidney Dis. 64, 383–393 (2014).

    Article  PubMed  Google Scholar 

  145. Castaneda, C. et al. Resistance training to counteract the catabolism of a low-protein diet in patients with chronic renal insufficiency. A randomized, controlled trial. Ann. Intern. Med. 135, 965–976 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Castaneda, C. et al. Resistance training to reduce the malnutrition-inflammation complex syndrome of chronic kidney disease. Am. J. Kidney Dis. 43, 607–616 (2004).

    Article  PubMed  Google Scholar 

  147. Watson, E. L. et al. Progressive resistance exercise training in CKD: a feasibility study. Am. J. Kidney Dis. 66, 249–257 (2015).

    Article  PubMed  Google Scholar 

  148. Balakrishnan, V. S. et al. Resistance training increases muscle mitochondrial biogenesis in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 5, 996–1002 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gregory, S. M. et al. Lack of circulating bioactive and immunoreactive IGF-I changes despite improved fitness in chronic kidney disease patients following 48 weeks of physical training. Growth Horm. IGF Res. 21, 51–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Headley, S. et al. Exercise training improves HR responses and V˙O2peak in predialysis kidney patients. Med. Sci. Sports Exerc. 44, 2392–2399 (2012).

    Article  PubMed  Google Scholar 

  151. Howden, E. J. et al. Effects of exercise and lifestyle intervention on cardiovascular function in CKD. Clin. J. Am. Soc. Nephrol. 8, 1494–1501 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Howden, E. J. et al. Exercise training in CKD: efficacy, adherence, and safety. Am. J. Kidney Dis. 65, 583–591 (2015).

    Article  PubMed  Google Scholar 

  153. Greenwood, S. A. et al. Effect of exercise training on estimated GFR, vascular health, and cardiorespiratory fitness in patients with CKD: a pilot randomized controlled trial. Am. J. Kidney Dis. 65, 425–434 (2015).

    Article  PubMed  Google Scholar 

  154. Leehey, D. J. et al. Structured exercise in obese diabetic patients with chronic kidney disease: a randomized controlled trial. Am. J. Nephrol. 44, 54–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Chen, I. R. et al. Association of walking with survival and RRT among patients with CKD stages 3–5. Clin. J. Am. Soc. Nephrol. 9, 1183–1189 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Shlipak, M. G. et al. Effect of structured, moderate exercise on kidney function decline in sedentary older adults: an ancillary analysis of the LIFE study randomized clinical trial. JAMA Intern. Med. 182, 650–659, (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Deutz, N. E. et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin. Nutr. 33, 929–936 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bauer, J. et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 14, 542–559 (2013).

    Article  PubMed  Google Scholar 

  159. Deer, R. R. & Volpi, E. Protein intake and muscle function in older adults. Curr. Opin. Clin. Nutr. Metab. Care 18, 248–253 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Klahr, S. et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N. Engl. J. Med. 330, 877–884 (1994).

    Article  CAS  PubMed  Google Scholar 

  161. Levey, A. S. et al. Effects of dietary protein restriction on the progression of advanced renal disease in the Modification of Diet in Renal Disease Study. Am. J. Kidney Dis. 27, 652–663 (1996).

    Article  CAS  PubMed  Google Scholar 

  162. Yan, B., Su, X., Xu, B., Qiao, X. & Wang, L. Effect of diet protein restriction on progression of chronic kidney disease: a systematic review and meta-analysis. PLoS One 13, e0206134 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Moore, L. W. et al. The mean dietary protein intake at different stages of chronic kidney disease is higher than current guidelines. Kidney Int. 83, 724–732 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Koppe, L. & Fouque, D. The role for protein restriction in addition to renin-angiotensin-aldosterone system inhibitors in the management of CKD. Am. J. Kidney Dis. 73, 248–257 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Narasaki, Y., Rhee, C. M., Kramer, H. & Kalantar-Zadeh, K. Protein intake and renal function in older patients. Curr. Opin. Clin. Nutr. Metab. Care 24, 10–17 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. Lee, S. W. et al. Dietary protein intake, protein energy wasting, and the progression of chronic kidney disease: analysis from the KNOW-CKD study. Nutrients 11, 121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Phillips, S. M., Paddon-Jones, D. & Layman, D. K. Optimizing adult protein intake during catabolic health conditions. Adv. Nutr. 11, S1058–s1069 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Krok-Schoen, J. L., Archdeacon Price, A., Luo, M., Kelly, O. J. & Taylor, C. A. Low dietary protein intakes and associated dietary patterns and functional limitations in an aging population: a NHANES analysis. J. Nutr. Health Aging 23, 338–347 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. O’Hare, A. M. et al. Age affects outcomes in chronic kidney disease. J. Am. Soc. Nephrol. 18, 2758–2765 (2007).

    Article  PubMed  Google Scholar 

  170. Obi, Y. et al. Impact of age and overt proteinuria on outcomes of stage 3 to 5 chronic kidney disease in a referred cohort. Clin. J. Am. Soc. Nephrol. 5, 1558–1565 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Koppe, L., Cassani de Oliveira, M. & Fouque, D. Ketoacid analogues supplementation in chronic kidney disease and future perspectives. Nutrients 11, 2071 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li, A., Lee, H. Y. & Lin, Y. C. The effect of ketoanalogues on chronic kidney disease deterioration: a meta-analysis. Nutrients 11, 957 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Liu, D. et al. Low-protein diet supplemented with ketoacids delays the progression of diabetic nephropathy by inhibiting oxidative stress in the KKAy mice model. Br. J. Nutr. 119, 22–29 (2018).

    Article  CAS  PubMed  Google Scholar 

  174. Di Iorio, B. R. et al. Nutritional therapy reduces protein carbamylation through urea lowering in chronic kidney disease. Nephrol. Dial. Transpl. 33, 804–813 (2018).

    Article  Google Scholar 

  175. Milovanova, L. et al. Effect of essential amino acid кetoanalogues and protein restriction diet on morphogenetic proteins (FGF-23 and Кlotho) in 3b-4 stages chronic кidney disease patients: a randomized pilot study. Clin. Exp. Nephrol. 22, 1351–1359 (2018).

    Article  CAS  PubMed  Google Scholar 

  176. Wang, M. et al. Compound α-keto acid tablet supplementation alleviates chronic kidney disease progression via inhibition of the NF-kB and MAPK pathways. J. Transl. Med. 17, 122 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Garibotto, G. et al. Effects of low-protein, and supplemented very low-protein diets, on muscle protein turnover in patients with CKD. Kidney Int. Rep. 3, 701–710 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Bellizzi, V. et al. Safety and effectiveness of low-protein diet supplemented with ketoacids in diabetic patients with chronic kidney disease. BMC Nephrol. 19, 110 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Brunori, G. et al. Efficacy and safety of a very-low-protein diet when postponing dialysis in the elderly: a prospective randomized multicenter controlled study. Am. J. Kidney Dis. 49, 569–580 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Chewcharat, A. et al. The effects of restricted protein diet supplemented with ketoanalogue on renal function, blood pressure, nutritional status, and chronic kidney disease — mineral and bone disorder in chronic kidney disease patients: a systematic review and meta-analysis. J. Ren. Nutr. 30, 189–199 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Stremke, E. R., Biruete, A. & Hill Gallant, K. M. Dietary protein intake and bone across stages of chronic kidney disease. Curr. Osteoporos. Rep. 18, 247–253 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Kamper, A. L. & Strandgaard, S. Long-term effects of high-protein diets on renal function. Annu. Rev. Nutr. 37, 347–369 (2017).

    Article  CAS  PubMed  Google Scholar 

  183. Mafra, D. et al. Food as medicine: targeting the uraemic phenotype in chronic kidney disease. Nat. Rev. Nephrol. 17, 153–171 (2021).

    Article  PubMed  Google Scholar 

  184. Mirmiran, P. et al. A prospective study of dietary meat intake and risk of incident chronic kidney disease. J. Ren. Nutr. 30, 111–118 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Heo, G. Y. et al. Association of plant protein intake with risk of incident CKD: a UK Biobank Study. Am. J. Kidney Dis. 82, 687–697.e1 (2023).

    Article  CAS  PubMed  Google Scholar 

  186. NIDDK, National Institutes of Health. 2023 USRDS annual data report: epidemiology of kidney disease in the United States. https://usrds-adr.niddk.nih.gov/2023 (2023).

  187. Japanese Society for Dialysis Therapy. Current status of dialysis therapy in Japan [in Japanese]. https://docs.jsdt.or.jp/overview/ (2022).

  188. Sparke, C. et al. Estimating the total incidence of kidney failure in Australia including individuals who are not treated by dialysis or transplantation. Am. J. Kidney Dis. 61, 413–419 (2013).

    Article  PubMed  Google Scholar 

  189. Wakasugi, M. & Narita, I. Estimating the rate of withholding dialysis from elderly people aged ≥85 years in Japan (Japanese). Jpn. J. Nephrol. 61, 91–97 (2019).

    Google Scholar 

  190. Wachterman, M. W. et al. End-of-life experience of older adults dying of end-stage renal disease: a comparison with cancer. J. Pain. Symptom Manag. 54, 789–797 (2017).

    Article  Google Scholar 

  191. Abdel-Kader, K., Unruh, M. L. & Weisbord, S. D. Symptom burden, depression, and quality of life in chronic and end-stage kidney disease. Clin. J. Am. Soc. Nephrol. 4, 1057–1064 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Schaeffner, E. Smoothing transition to dialysis to improve early outcomes after dialysis initiation among old and frail adults — a narrative review. Nephrol. Dial. Transpl. 37, 2307–2313 (2022).

    Article  Google Scholar 

  193. Hansen, M. S. et al. Psychosocial factors affecting patients with end-stage kidney disease and the impact of the social worker. J. Nephrol. 35, 43–58 (2022).

    Article  PubMed  Google Scholar 

  194. Jassal, S. V., Chiu, E. & Hladunewich, M. Loss of independence in patients starting dialysis at 80 years of age or older. N. Engl. J. Med. 361, 1612–1613 (2009).

    Article  CAS  PubMed  Google Scholar 

  195. Saran, R. et al. US renal data system 2018 annual data report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 73, A7–a8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Murphy, E., Germain, M. J., Cairns, H., Higginson, I. J. & Murtagh, F. E. International variation in classification of dialysis withdrawal: a systematic review. Nephrol. Dial. Transpl. 29, 625–635 (2014).

    Article  Google Scholar 

  197. Buemi, M. et al. Dialysis and the elderly: an underestimated problem. Kidney Blood Press. Res. 31, 330–336 (2008).

    Article  PubMed  Google Scholar 

  198. Kurella Tamura, M. Incidence, management, and outcomes of end-stage renal disease in the elderly. Curr. Opin. Nephrol. Hypertens. 18, 252–257 (2009).

    Article  PubMed  Google Scholar 

  199. Robinson, B. M. et al. Worldwide, mortality risk is high soon after initiation of hemodialysis. Kidney Int. 85, 158–165 (2014).

    Article  PubMed  Google Scholar 

  200. Saran, R. et al. US renal data system 2017 annual data report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 71, A7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Wachterman, M. W. et al. One-year mortality after dialysis initiation among older adults. JAMA Intern. Med. 179, 987–990, (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Wong, S. P., Kreuter, W. & O’Hare, A. M. Treatment intensity at the end of life in older adults receiving long-term dialysis. Arch. Intern. Med. 172, 661–663 (2012). discussion 663–664.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Thapa, S., Jardine, T., Davids, T., Caskey, F. J. & Davids, M. R. Incidence and 1-year survival of elderly South Africans starting kidney replacement therapy. Kidney Int. Rep. 7, 2071–2075 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Himmelfarb, J., Vanholder, R., Mehrotra, R. & Tonelli, M. The current and future landscape of dialysis. Nat. Rev. Nephrol. 16, 573–585 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  205. International Society of Nephrology. ISN-global kidney health atlas 2023. https://www.theisn.org/initiatives/global-kidney-health-atlas/ (2023).

  206. Marrón, B., Remón, C., Pérez-Fontán, M., Quirós, P. & Ortíz, A. Benefits of preserving residual renal function in peritoneal dialysis. Kidney Int. Suppl. 108, S42–S51 (2008).

    Article  Google Scholar 

  207. Brown, E. A. et al. Burden of kidney disease, health-related quality of life, and employment among patients receiving peritoneal dialysis and in-center hemodialysis: findings from the DOPPS program. Am. J. Kidney Dis. 78, 489–500.e1 (2021).

    Article  PubMed  Google Scholar 

  208. Brown, E. A. et al. Broadening options for long-term dialysis in the elderly (BOLDE): differences in quality of life on peritoneal dialysis compared to haemodialysis for older patients. Nephrol. Dial. Transpl. 25, 3755–3763 (2010).

    Article  Google Scholar 

  209. Iyasere, O. U. et al. Quality of life and physical function in older patients on dialysis: a comparison of assisted peritoneal dialysis with hemodialysis. Clin. J. Am. Soc. Nephrol. 11, 423–430 (2016).

    Article  CAS  PubMed  Google Scholar 

  210. Harris, S. A., Lamping, D. L., Brown, E. A. & Constantinovici, N. Clinical outcomes and quality of life in elderly patients on peritoneal dialysis versus hemodialysis. Perit. Dial. Int. 22, 463–470 (2002).

    Article  PubMed  Google Scholar 

  211. Iyasere, O. et al. Longitudinal trends in quality of life and physical function in frail older dialysis patients: a comparison of assisted peritoneal dialysis and in-center hemodialysis. Perit. Dial. Int. 39, 112–118 (2019).

    Article  PubMed  Google Scholar 

  212. Han, S. S. et al. Dialysis modality and mortality in the elderly: a meta-analysis. Clin. J. Am. Soc. Nephrol. 10, 983–993 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Cheng, L., Hu, N., Song, D. & Chen, Y. Mortality of peritoneal dialysis versus hemodialysis in older adults: an updated systematic review and meta-analysis. Gerontology 70, 461–478 (2024).

    Article  PubMed  Google Scholar 

  214. Heaf, J. et al. First-year mortality in incident dialysis patients: results of the Peridialysis study. BMC Nephrol. 23, 229 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Etgen, T., Chonchol, M., Förstl, H. & Sander, D. Chronic kidney disease and cognitive impairment: a systematic review and meta-analysis. Am. J. Nephrol. 35, 474–482 (2012).

    Article  PubMed  Google Scholar 

  216. Foster, R. et al. Cognitive impairment in advanced chronic kidney disease: the Canadian frailty observation and interventions trial. Am. J. Nephrol. 44, 473–480 (2016).

    Article  PubMed  Google Scholar 

  217. Lambie, M. et al. Starting and withdrawing haemodialysis-associations between nephrologists’ opinions, patient characteristics and practice patterns (data from the Dialysis Outcomes and Practice Patterns Study). Nephrol. Dial. Transpl. 21, 2814–2820 (2006).

    Article  Google Scholar 

  218. Ngandu, T. et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385, 2255–2263 (2015).

    Article  PubMed  Google Scholar 

  219. Livingston, G. et al. Dementia prevention, intervention, and care. Lancet 390, 2673–2734 (2017).

    Article  PubMed  Google Scholar 

  220. Sprick, J. D. et al. Cerebral blood flow regulation in end-stage kidney disease. Am. J. Physiol. Renal Physiol. 319, F782–F791 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wolfgram, D. F., Szabo, A., Murray, A. M. & Whittle, J. Risk of dementia in peritoneal dialysis patients compared with hemodialysis patients. Perit. Dial. Int. 35, 189–198 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Neumann, D., Mau, W., Wienke, A. & Girndt, M. Peritoneal dialysis is associated with better cognitive function than hemodialysis over a one-year course. Kidney Int. 93, 430–438 (2018).

    Article  PubMed  Google Scholar 

  223. Tian, X. et al. The comparison of cognitive function and risk of dementia in CKD patients under peritoneal dialysis and hemodialysis: a PRISMA-compliant systematic review and meta-analysis. Medicine 98, e14390 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Ali, H. et al. The effects of dialysis modality choice on cognitive functions in patients with end-stage renal failure: a systematic review and meta-analysis. Int. Urol. Nephrol. 53, 155–163 (2021).

    Article  PubMed  Google Scholar 

  225. Kielstein, J. T. et al. ADMA increases arterial stiffness and decreases cerebral blood flow in humans. Stroke 37, 2024–2029 (2006).

    Article  PubMed  Google Scholar 

  226. Fleetwood, V. A., Caliskan, Y., Rub, F. A. A., Axelrod, D. & Lentine, K. L. Maximizing opportunities for kidney transplantation in older adults. Curr. Opin. Nephrol. Hypertens. 32, 204–211 (2023).

    Article  PubMed  Google Scholar 

  227. Wolfe, R. A. et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N. Engl. J. Med. 341, 1725–1730 (1999).

    Article  CAS  PubMed  Google Scholar 

  228. Oniscu, G. C., Brown, H. & Forsythe, J. L. How great is the survival advantage of transplantation over dialysis in elderly patients? Nephrol. Dial. Transpl. 19, 945–951 (2004).

    Article  Google Scholar 

  229. U.S. Organ Procurement and Transplantation Network: 2014 Annual Report of Department of Health and Human Services, Health Resources and Services Administration. (2014).

  230. Serrano, O. K. et al. Age alone is not a contraindication to kidney donation: outcomes of donor nephrectomy in the elderly. Clin. Transpl. 32, e13287 (2018).

    Article  Google Scholar 

  231. Bae, S. et al. Who can tolerate a marginal kidney? Predicting survival after deceased donor kidney transplant by donor-recipient combination. Am. J. Transpl. 19, 425–433 (2019).

    Article  Google Scholar 

  232. McAdams-DeMarco, M. A. et al. Changes in frailty after kidney transplantation. J. Am. Geriatr. Soc. 63, 2152–2157 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Farrington, K. et al. Clinical practice guideline on management of older patients with chronic kidney disease stage 3b or higher (eGFR<45 mL/min/1.73 m2): a summary document from the European Renal Best Practice Group. Nephrol. Dial. Transpl. 32, 9–16 (2017).

    Article  Google Scholar 

  234. Buur, L. E. et al. Does conservative kidney management offer a quantity or quality of life benefit compared to dialysis? A systematic review. BMC Nephrol. 22, 307 (2021).

    Article  PubMed  Google Scholar 

  235. Unit, O. K. A Guide to Conservative Kidney Management. Oxford Kidney Unit. (2018).

  236. Davison, S. N. et al. Recommendations for the care of patients receiving conservative kidney management: focus on management of CKD and symptoms. Clin. J. Am. Soc. Nephrol. 14, 626–634 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Wong, S. P. Y. et al. Long-term outcomes among patients with advanced kidney disease who forgo maintenance dialysis: a systematic review. JAMA Netw. Open. 5, e222255 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Liu, C. K. & Kurella Tamura, M. Conservative care for kidney failure-the other side of the coin. JAMA Netw. Open. 5, e222252 (2022).

    Article  PubMed  Google Scholar 

  239. Murakami, N., Reich, A. J., Pavlakis, M. & Lakin, J. R. Conservative kidney management in kidney transplant populations. Semin. Nephrol. 43, 151401 (2023).

    Article  PubMed  Google Scholar 

  240. Lai, C. F. et al. Withdrawal from long-term hemodialysis in patients with end-stage renal disease in Taiwan. J. Formos. Med. Assoc. 112, 589–599 (2013).

    Article  PubMed  Google Scholar 

  241. Japan Agency for Medical Research and Development (AMED) Longevity Science Research Project. Conservative Kidney Management (CKM) — concepts and practice for elderly patients with kidney failure. (2022).

  242. Chen, C., Ding, S. & Wang, J. Digital health for aging populations. Nat. Med. 29, 1623–1630 (2023).

    Article  CAS  PubMed  Google Scholar 

  243. Jinagal, J. & Dhiman, P. Retraction: retinal hemorrhage from blunt ocular trauma. N. Engl. J. Med. 382, 490 (2019).

    Article  PubMed  Google Scholar 

  244. Gurz, D. et al. The impact of virtual reality (VR) gaming and casual/social gaming on the quality of life, depression, and dialysis tolerance in patients with chronic kidney disease: a narrative review. Cureus 15, e44904 (2023).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors used ChatGPT-4 from OpenAI for English language editing of the initial draft manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.K. and N.K. developed the scope of the article, and S.K. drafted it. H.K. specifically supported the description of items related to CKM. All authors contributed to researching data for the article, participated in discussions of the content, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Naoki Kashihara.

Ethics declarations

Competing interests

S.K. has received research funding from Boehringer Ingelheim. N.K. has received lecture fees from Astellas, AstraZeneca, Kyowa-Kirin, Novartis and Otsuka; research funding from AstraZeneca, Daiichi Sankyo, Kyowa-Kirin, Novartis and Otsuka; and has served as an adviser for Kyowa-Kirin and Novartis. H.K. declares no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Barnaby Hole, Flory Muanda and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishi, S., Kadoya, H. & Kashihara, N. Treatment of chronic kidney disease in older populations. Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00854-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-024-00854-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing