Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Identification of RNA structures and their roles in RNA functions

Abstract

The development of high-throughput RNA structure profiling methods in the past decade has greatly facilitated our ability to map and characterize different aspects of RNA structures transcriptome-wide in cell populations, single cells and single molecules. The resulting high-resolution data have provided insights into the static and dynamic nature of RNA structures, revealing their complexity as they perform their respective functions in the cell. In this Review, we discuss recent technical advances in the determination of RNA structures, and the roles of RNA structures in RNA biogenesis and functions, including in transcription, processing, translation, degradation, localization and RNA structure-dependent condensates. We also discuss the current understanding of how RNA structures could guide drug design for treating genetic diseases and battling pathogenic viruses, and highlight existing challenges and future directions in RNA structure research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RNA structures regulate transcription and RNA processing.
Fig. 2: RNA structures regulate translation.
Fig. 3: RNA structures regulate RNA decay.
Fig. 4: RNA structures regulate RNA localization and biomolecular condensates.
Fig. 5: Drugging RNA structures.

Similar content being viewed by others

References

  1. Hingerty, B., Brown, R. S. & Jack, A. Further refinement of the structure of yeast tRNAPhe. J. Mol. Biol. 124, 523–534 (1978).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, Y. & Pollack, L. SAXS studies of RNA: structures, dynamics, and interactions with partners. Wiley Interdiscip. Rev. RNA 7, 512–526 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dagenais, P., Desjardins, G. & Legault, P. An integrative NMR–SAXS approach for structural determination of large RNAs defines the substrate-free state of a trans-cleaving Neurospora Varkud Satellite ribozyme. Nucleic Acids Res. 49, 11959–11973 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cheong, C. & Moore, P. B. Solution structure of an unusually stable RNA tetraplex containing G- and U-quartet structures. Biochemistry 31, 8406–8414 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Barnwal, R. P., Yang, F. & Varani, G. Applications of NMR to structure determination of RNAs large and small. Arch. Biochem. Biophys. 628, 42–56 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gabashvili, I. S. et al. Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell 100, 537–549 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Wrede, P., Wurst, R., Vournakis, J. & Rich, A. Conformational changes of yeast tRNAPhe and E. coli tRNA2Glu as indicated by different nuclease digestion patterns. J. Biol. Chem. 254, 9608–9616 (1979).

    Article  CAS  PubMed  Google Scholar 

  8. Wurst, R. M., Vournakis, J. N. & Maxam, A. M. Structure mapping of 5′-32P-labeled RNA with S1 nuclease. Biochemistry 17, 4493–4499 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. Lockard, R. E. & Kumar, A. Mapping tRNA structure in solution using double-strand-specific ribonuclease V1 from cobra venom. Nucleic Acids Res. 9, 5125–5140 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lempereur, L. et al. Conformation of yeast 18S rRNA. Direct chemical probing of the 5′ domain in ribosomal subunits and in deproteinized RNA by reverse transcriptase mapping of dimethyl sulfate-accessible. Nucleic Acids Res. 13, 8339–8357 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Merino, E. J., Wilkinson, K. A., Coughlan, J. L. & Weeks, K. M. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 127, 4223–4231 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Wan, Y., Kertesz, M., Spitale, R. C., Segal, E. & Chang, H. Y. Understanding the transcriptome through RNA structure. Nat. Rev. Genet. 12, 641–655 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Kertesz, M. et al. Genome-wide measurement of RNA secondary structure in yeast. Nature 467, 103–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Underwood, J. G. et al. FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat. Methods 7, 995–1001 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505, 696–700 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Wan, Y. et al. Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505, 706–709 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Homan, P. J. et al. Single-molecule correlated chemical probing of RNA. Proc. Natl Acad. Sci. USA 111, 13858–13863 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Spitale, R. C. & Incarnato, D. Probing the dynamic RNA structurome and its functions. Nat. Rev. Genet. 24, 178–196 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Strobel, E. J., Yu, A. M. & Lucks, J. B. High-throughput determination of RNA structures. Nat. Rev. Genet. 19, 615–634 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Corley, M. et al. Footprinting SHAPE-eCLIP reveals transcriptome-wide hydrogen bonds at RNA–protein interfaces. Mol. Cell 80, 903–914.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, B. et al. Comparison of SHAPE reagents for mapping RNA structures inside living cells. RNA 23, 169–174 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Spitale, R. C. et al. RNA SHAPE analysis in living cells. Nat. Chem. Biol. 9, 18–20 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Marinus, T., Fessler, A. B., Ogle, C. A. & Incarnato, D. A novel SHAPE reagent enables the analysis of RNA structure in living cells with unprecedented accuracy. Nucleic Acids Res. 49, e34 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. & Weeks, K. M. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 11, 959–965 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zubradt, M. et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods 14, 75–82 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Aviran, S. & Incarnato, D. Computational approaches for RNA structure ensemble deconvolution from structure probing data. J. Mol. Biol. 434, 167635 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Busan, S., Weidmann, C. A., Sengupta, A. & Weeks, K. M. Guidelines for SHAPE reagent choice and detection strategy for RNA structure probing studies. Biochemistry 58, 2655–2664 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Guo, L. T. et al. Sequencing and structure probing of long RNAs using MarathonRT: a next-generation reverse transcriptase. J. Mol. Biol. 432, 3338–3352 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mitchell, D., Cotter, J., Saleem, I. & Mustoe, A. M. Mutation signature filtering enables high-fidelity RNA structure probing at all four nucleobases with DMS. Nucleic Acids Res. 51, 8744–8757 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smola, M. J., Rice, G. M., Busan, S., Siegfried, N. A. & Weeks, K. M. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat. Protoc. 10, 1643–1669 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, Z. et al. In vivo nuclear RNA structurome reveals RNA-structure regulation of mRNA processing in plants. Genome Biol. 22, 11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun, L. et al. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26, 322–330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamagami, R., Sieg, J. P., Assmann, S. M. & Bevilacqua, P. C. Genome-wide analysis of the in vivo tRNA structurome reveals RNA structural and modification dynamics under heat stress. Proc. Natl Acad. Sci. USA 119, e2201237119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, M. et al. Intact RNA structurome reveals mRNA structure-mediated regulation of miRNA cleavage in vivo. Nucleic Acids Res. 48, 8767–8781 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Watters, K. E., Strobel, E. J., Yu, A. M., Lis, J. T. & Lucks, J. B. Cotranscriptional folding of a riboswitch at nucleotide resolution. Nat. Struct. Mol. Biol. 23, 1124–1131 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Incarnato, D. et al. In vivo probing of nascent RNA structures reveals principles of cotranscriptional folding. Nucleic Acids Res. 45, 9716–9725 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saldi, T., Riemondy, K., Erickson, B. & Bentley, D. L. Alternative RNA structures formed during transcription depend on elongation rate and modify RNA processing. Mol. Cell 81, 1789–1801.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu, G. et al. Genome-wide probing of eukaryotic nascent RNA structure elucidates cotranscriptional folding and its antimutagenic effect. Nat. Commun. 14, 5853 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang, M. et al. In vivo single-molecule analysis reveals COOLAIR RNA structural diversity. Nature 609, 394–399 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bohn, P., Gribling-Burrer, A. S., Ambi, U. B. & Smyth, R. P. Nano-DMS-MaP allows isoform-specific RNA structure determination. Nat. Methods 20, 849–859 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aw, J. G. A. et al. Determination of isoform-specific RNA structure with nanopore long reads. Nat. Biotechnol. 39, 336–346 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Bevilacqua, P. C., Ritchey, L. E., Su, Z. & Assmann, S. M. Genome-wide analysis of RNA secondary structure. Annu. Rev. Genet. 50, 235–266 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Wan, Y., Qu, K., Ouyang, Z. & Chang, H. Y. Genome-wide mapping of RNA structure using nuclease digestion and high-throughput sequencing. Nat. Protoc. 8, 849–869 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Mortimer, S. A. & Weeks, K. M. Time-resolved RNA SHAPE chemistry: quantitative RNA structure analysis in one-second snapshots and at single-nucleotide resolution. Nat. Protoc. 4, 1413–1421 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rabin, D. & Crothers, D. M. Analysis of RNA secondary structure by photochemical reversal of psoralen crosslinks. Nucleic Acids Res. 7, 689–703 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cordero, P., Kladwang, W., VanLang, C. C. & Das, R. The mutate-and-map protocol for inferring base pairs in structured RNA. Methods Mol. Biol. 1086, 53–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aw, J. G. A. et al. In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell 62, 603–617 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Sharma, E., Sterne-Weiler, T., O’Hanlon, D. & Blencowe, B. J. Global mapping of human RNA–RNA interactions. Mol. Cell 62, 618–626 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Ziv, O. et al. COMRADES determines in vivo RNA structures and interactions. Nat. Methods 15, 785–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kudla, G., Granneman, S., Hahn, D., Beggs, J. D. & Tollervey, D. Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast. Proc. Natl Acad. Sci. USA 108, 10010–10015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sugimoto, Y. et al. hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 519, 491–494 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ye, R. et al. Capture RIC-seq reveals positional rules of PTBP1-associated RNA loops in splicing regulation. Mol. Cell 83, 1311–1327.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Cao, C. et al. Global in situ profiling of RNA–RNA spatial interactions with RIC-seq. Nat. Protoc. 16, 2916–2946 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Christy, T. W. et al. Direct mapping of higher-order RNA interactions by SHAPE-JuMP. Biochemistry 60, 1971–1982 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Van Damme, R. et al. Chemical reversible crosslinking enables measurement of RNA 3D distances and alternative conformations in cells. Nat. Commun. 13, 911 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Xu, B. et al. Recent advances in RNA structurome. Sci. China Life Sci. 65, 1285–1324 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gabryelska, M. M. et al. Global mapping of RNA homodimers in living cells. Genome Res. 32, 956–967 (2022).

    PubMed  PubMed Central  Google Scholar 

  60. Zhang, M. et al. Classification and clustering of RNA crosslink-ligation data reveal complex structures and homodimers. Genome Res. 32, 968–985 (2022).

    PubMed  PubMed Central  Google Scholar 

  61. Tants, J.-N. & Schlundt, A. Advances, applications, and perspectives in small-angle X-ray scattering of RNA. ChemBioChem 24, e202300110 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, K. et al. Cryo-EM structure of a 40 kDa SAM-IV riboswitch RNA at 3.7 Å resolution. Nat. Commun. 10, 5511 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kappel, K. et al. Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nat. Methods 17, 699–707 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Langeberg, C. J. & Kieft, J. S. A generalizable scaffold-based approach for structure determination of RNAs by cryo-EM. Nucleic Acids Res. 51, e100 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reuter, J. S. & Mathews, D. H. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinforma. 11, 129 (2010).

    Article  Google Scholar 

  66. Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hofacker, I. L. et al. Fast folding and comparison of RNA secondary structures. Monatshefte fur Chem. 125, 167–188 (1994).

    Article  CAS  Google Scholar 

  68. Hofacker, I. L., Fekete, M. & Stadler, P. F. Secondary structure prediction for aligned RNA sequences. J. Mol. Biol. 319, 1059–1066 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Washietl, S., Hofacker, I. L. & Stadler, P. F. Fast and reliable prediction of noncoding RNAs. Proc. Natl Acad. Sci. USA 102, 2454–2459 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rivas, E., Clements, J. & Eddy, S. R. A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs. Nat. Methods 14, 45–48 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Tavares, R. C. A., Pyle, A. M. & Somarowthu, S. Phylogenetic analysis with improved parameters reveals conservation in lncRNA structures. J. Mol. Biol. 431, 1592–1603 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yu, H., Qi, Y. & Ding, Y. Deep learning in RNA structure studies. Front. Mol. Biosci. 9, 869601 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sato, K. & Hamada, M. Recent trends in RNA informatics: a review of machine learning and deep learning for RNA secondary structure prediction and RNA drug discovery. Brief. Bioinform 24, bbad186 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang, J., Fei, Y., Sun, L. & Zhang, Q. C. Advances and opportunities in RNA structure experimental determination and computational modeling. Nat. Methods 19, 1193–1207 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Aviran, S. et al. Modeling and automation of sequencing-based characterization of RNA structure. Proc. Natl Acad. Sci. USA 108, 11069–11074 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Selega, A., Sirocchi, C., Iosub, I., Granneman, S. & Sanguinetti, G. Robust statistical modeling improves sensitivity of high-throughput RNA structure probing experiments. Nat. Methods 14, 83–89 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Choudhary, K., Lai, Y. H., Tran, E. J. & Aviran, S. dStruct: identifying differentially reactive regions from RNA structurome profiling data. Genome Biol. 20, 40 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Marangio, P., Law, K. Y. T., Sanguinetti, G. & Granneman, S. diffBUM-HMM: a robust statistical modeling approach for detecting RNA flexibility changes in high-throughput structure probing data. Genome Biol. 22, 165 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu, B., Li, P., Zhang, Q. C. & Hou, L. Differential analysis of RNA structure probing experiments at nucleotide resolution: uncovering regulatory functions of RNA structure. Nat. Commun. 13, 4227 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gong, J., Xu, K., Ma, Z., Lu, Z. J. & Zhang, Q. C. A deep learning method for recovering missing signals in transcriptome-wide RNA structure profiles from probing experiments. Nat. Mach. Intell. 3, 995–1006 (2021).

    Article  Google Scholar 

  81. Low, J. T. & Weeks, K. M. SHAPE-directed RNA secondary structure prediction. Methods 52, 150–158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tomezsko, P. J. et al. Determination of RNA structural diversity and its role in HIV-1 RNA splicing. Nature 582, 438–442 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Olson, S. W. et al. Discovery of a large-scale, cell-state-responsive allosteric switch in the 7SK RNA using DANCE-MaP. Mol. Cell 82, 1708–1723.e10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Morandi, E. et al. Genome-scale deconvolution of RNA structure ensembles. Nat. Methods 18, 249–252 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Goodarzi, H. et al. Systematic discovery of structural elements governing stability of mammalian messenger RNAs. Nature 485, 264–268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fish, L. et al. A prometastatic splicing program regulated by SNRPA1 interactions with structured RNA elements. Science 372, eabc7531 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Morandi, E., van Hemert, M. J. & Incarnato, D. SHAPE-guided RNA structure homology search and motif discovery. Nat. Commun. 13, 1722 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang, Z., Zeng, X., Zhao, Y. & Chen, R. AlphaFold2 and its applications in the fields of biology and medicine. Signal. Transduct. Target. Ther. 8, 115 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Westhof, E. & Leontis, N. B. An RNA-centric historical narrative around the Protein Data Bank. J. Biol. Chem. 296, 100555 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Singh, J., Hanson, J., Paliwal, K. & Zhou, Y. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat. Commun. 10, 5407 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Danaee, P. et al. bpRNA: large-scale automated annotation and analysis of RNA secondary structure. Nucleic Acids Res. 46, 5381–5394 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sato, K., Akiyama, M. & Sakakibara, Y. RNA secondary structure prediction using deep learning with thermodynamic integration. Nat. Commun. 12, 941 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fu, L. et al. UFold: fast and accurate RNA secondary structure prediction with deep learning. Nucleic Acids Res. 50, e14 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Yang, E. et al. GCNfold: a novel lightweight model with valid extractors for RNA secondary structure prediction. Comput. Biol. Med. 164, 107246 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Li, Y. et al. Integrating end-to-end learning with deep geometrical potentials for ab initio RNA structure prediction. Nat. Commun. 14, 5745 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, W. et al. trRosettaRNA: automated prediction of RNA 3D structure with transformer network. Nat. Commun. 14, 7266 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Das, R. & Baker, D. Automated de novo prediction of native-like RNA tertiary structures. Proc. Natl Acad. Sci. USA 104, 14664–14669 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Townshend, R. J. et al. Geometric deep learning of RNA structure. Science 373, 1047–1051 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Watkins, A. M., Rangan, R. & Das, R. FARFAR2: improved de novo rosetta prediction of complex global RNA folds. Structure 28, 963–976.e966 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pan, X., Rijnbeek, P., Yan, J. & Shen, H.-B. Prediction of RNA–protein sequence and structure binding preferences using deep convolutional and recurrent neural networks. BMC Genomics 19, 511 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sun, L. et al. Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures. Cell Res. 31, 495–516 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xu, Y. et al. PrismNet: predicting protein–RNA interaction using in vivo RNA structural information. Nucleic Acids Res. 51, W468–W477 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Baek, M. et al. Accurate prediction of protein–nucleic acid complexes using RoseTTAFoldNA. Nat. Methods 21, 117–121 (2024).

    Article  CAS  PubMed  Google Scholar 

  105. Sun, W., Ding, L. & Zhang, H. The potential role of RNA structure in crop molecular breeding. Front. Plant. Sci. 13, 868771 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Xiang, Y. et al. Pervasive downstream RNA hairpins dynamically dictate start-codon selection. Nature 621, 423–430 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Flamm, C. et al. Caveats to deep learning approaches to RNA secondary structure prediction. Front. Bioinform. 2, 835422 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Szikszai, M., Wise, M., Datta, A., Ward, M. & Mathews, D. H. Deep learning models for RNA secondary structure prediction (probably) do not generalize across families. Bioinformatics 38, 3892–3899 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wayment-Steele, H. K. et al. RNA secondary structure packages evaluated and improved by high-throughput experiments. Nat. Methods 19, 1234–1242 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gusarov, I. & Nudler, E. The mechanism of intrinsic transcription termination. Mol. Cell 3, 495–504 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Zhang, J. & Landick, R. A two-way street: regulatory interplay between RNA polymerase and nascent RNA structure. Trends Biochem. Sci. 41, 293–310 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Perdrizet, G. A. et al. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch. Proc. Natl Acad. Sci. USA 109, 3323–3328 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Steinert, H. et al. Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation. eLife 6, e21297 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Turowski, T. W. et al. Nascent transcript folding plays a major role in determining RNA polymerase elongation rates. Mol. Cell 79, 488–503.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Long, Y., Wang, X., Youmans, D. T. & Cech, T. R. How do lncRNAs regulate transcription? Sci. Adv. 3, eaao2110 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Yang, F. et al. Shape of promoter antisense RNAs regulates ligand-induced transcription activation. Nature 595, 444–449 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liang, L. et al. Complementary Alu sequences mediate enhancer–promoter selectivity. Nature 619, 868–875 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Peterlin, B. M., Brogie, J. E. & Price, D. H. 7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription. Wiley Interdiscip. Rev. RNA 3, 92–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. AJ, C. Q., Bugai, A. & Barboric, M. Cracking the control of RNA polymerase II elongation by 7SK snRNP and P-TEFb. Nucleic Acids Res. 44, 7527–7539 (2016).

    Article  Google Scholar 

  120. Whittaker, C. & Dean, C. The FLC locus: a platform for discoveries in epigenetics and adaptation. Annu. Rev. Cell Dev. Biol. 33, 555–575 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Roca, X., Krainer, A. R. & Eperon, I. C. Pick one, but be quick: 5′ splice sites and the problems of too many choices. Genes Dev. 27, 129–144 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Watakabe, A., Inoue, K., Sakamoto, H. & Shimura, Y. A secondary structure at the 3′ splice site affects the in vitro splicing reaction of mouse immunoglobulin mu chain pre-mRNAs. Nucleic Acids Res. 17, 8159–8169 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Varani, L. et al. Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17. Proc. Natl Acad. Sci. USA 96, 8229–8234 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Singh, N. N., Singh, R. N. & Androphy, E. J. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res. 35, 371–389 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Warf, M. B. & Berglund, J. A. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem. Sci. 35, 169–178 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Rubtsov, P. Role of pre-mRNA secondary structures in the regulation of alternative splicing. Mol. Biol. 50, 823–830 (2016).

    Article  CAS  Google Scholar 

  127. Kubodera, T. et al. Thiamine‐regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch‐like domain in the 5′‐UTR. FEBS Lett. 555, 516–520 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Cheah, M. T., Wachter, A., Sudarsan, N. & Breaker, R. R. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447, 497–500 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Wachter, A. et al. Riboswitch control of gene expression in plants by splicing and alternative 3′ end processing of mRNAs. Plant. Cell 19, 3437–3450 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Warf, M. B., Diegel, J. V., von Hippel, P. H. & Berglund, J. A. The protein factors MBNL1 and U2AF65 bind alternative RNA structures to regulate splicing. Proc. Natl Acad. Sci. USA 106, 9203–9208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Muro, A. F. et al. Regulation of fibronectin EDA exon alternative splicing: possible role of RNA secondary structure for enhancer display. Mol. Cell. Biol. 19, 2657–2671 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Buratti, E. et al. RNA folding affects the recruitment of SR proteins by mouse and human polypurinic enhancer elements in the fibronectin EDA exon. Mol. Cell. Biol. 24, 1387–1400 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. McManus, C. J. & Graveley, B. R. RNA structure and the mechanisms of alternative splicing. Curr. Opin. Genet. Dev. 21, 373–379 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lin, C. L., Taggart, A. J. & Fairbrother, W. G. RNA structure in splicing: an evolutionary perspective. RNA Biol. 13, 766–771 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Graveley, B. R. Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. Cell 123, 65–73 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Anastassiou, D., Liu, H. & Varadan, V. Variable window binding for mutually exclusive alternative splicing. Genome Biol. 7, 1–12 (2006).

    Article  Google Scholar 

  137. Xu, B., Meng, Y. & Jin, Y. RNA structures in alternative splicing and back-splicing. Wiley Interdiscip. Rev. RNA 12, e1626 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Lovci, M. T. et al. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat. Struct. Mol. Biol. 20, 1434–1442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Woodson, S. A., Panja, S. & Santiago-Frangos, A. Proteins that chaperone RNA regulation. Microbiol. Spectr. 6 https://doi.org/10.1128/microbiolspec.RWR-0026-2018 (2018).

  140. Wu, J. Y. & Maniatis, T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75, 1061–1070 (1993).

    Article  CAS  PubMed  Google Scholar 

  141. Kalmykova, S. et al. Conserved long-range base pairings are associated with pre-mRNA processing of human genes. Nat. Commun. 12, 2300 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhang, Y. et al. The biogenesis of nascent circular RNAs. Cell Rep. 15, 611–624 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Zhang, X. O. et al. Complementary sequence-mediated exon circularization. Cell 159, 134–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Johansson, J. et al. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110, 551–561 (2002).

    Article  PubMed  Google Scholar 

  145. Brito Querido, J., Diaz-Lopez, I. & Ramakrishnan, V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat. Rev. Mol. Cell Biol. 25, 168–186 (2024).

    Article  CAS  PubMed  Google Scholar 

  146. Leppek, K., Das, R. & Barna, M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19, 158–174 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Spitale, R. C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Waldron, J. A. et al. mRNA structural elements immediately upstream of the start codon dictate dependence upon eIF4A helicase activity. Genome Biol. 20, 300 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang, J. et al. Rapid 40S scanning and its regulation by mRNA structure during eukaryotic translation initiation. Cell 185, 4474–4487.e17 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhang, H., Wang, Y. & Lu, J. Function and evolution of upstream ORFs in eukaryotes. Trends Biochem. Sci. 44, 782–794 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Corley, M. et al. An RNA structure-mediated, posttranscriptional model of human ɑ-1-antitrypsin expression. Proc. Natl Acad. Sci. USA 114, E10244–E10253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Jankowsky, E. & Guenther, U. P. A helicase links upstream ORFs and RNA structure. Curr. Genet. 65, 453–456 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Lyu, K. et al. An RNA G-quadruplex structure within the ADAR 5′UTR interacts with DHX36 helicase to regulate translation. Angew. Chem. Int. Ed. Engl. 61, e202203553 (2022).

    Article  CAS  PubMed  Google Scholar 

  154. Kwok, C. K., Ding, Y., Shahid, S., Assmann, S. M. & Bevilacqua, P. C. A stable RNA G-quadruplex within the 5′-UTR of Arabidopsis thaliana ATR mRNA inhibits translation. Biochem. J. 467, 91–102 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Cho, H. et al. Translational control of phloem development by RNA G-quadruplex-JULGI determines plant sink strength. Nat. Plants 4, 376–390 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Kikinis, Z., Eisenstein, R. S., Bettany, A. J. & Munro, H. N. Role of RNA secondary structure of the iron-responsive element in translational regulation of ferritin synthesis. Nucleic Acids Res. 23, 4190–4195 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhou, Z. D. & Tan, E. K. Iron regulatory protein (IRP)–iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol. Neurodegener. 12, 75 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J. & Hellen, C. U. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev. 12, 67–83 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kieft, J. S., Zhou, K., Jubin, R. & Doudna, J. A. Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7, 194–206 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Otto, G. A. & Puglisi, J. D. The pathway of HCV IRES-mediated translation initiation. Cell 119, 369–380 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Weingarten-Gabbay, S. et al. Comparative genetics. Systematic discovery of cap-independent translation sequences in human and viral genomes. Science 351, aad4939 (2016).

    Article  PubMed  Google Scholar 

  162. Beaudoin, J. D. et al. Analyses of mRNA structure dynamics identify embryonic gene regulatory programs. Nat. Struct. Mol. Biol. 25, 677–686 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mustoe, A. M. et al. Pervasive regulatory functions of mRNA structure revealed by high-resolution SHAPE probing. Cell 173, 181–195.e18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Farabaugh, P. J. Programmed translational frameshifting. Microbiol. Rev. 60, 103–134 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kudla, G., Murray, A. W., Tollervey, D. & Plotkin, J. B. Coding-sequence determinants of gene expression in Escherichia coli. Science 324, 255–258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Goodman, D. B., Church, G. M. & Kosuri, S. Causes and effects of N-terminal codon bias in bacterial genes. Science 342, 475–479 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Caliskan, N., Katunin, V. I., Belardinelli, R., Peske, F. & Rodnina, M. V. Programmed –1 frameshifting by kinetic partitioning during impeded translocation. Cell 157, 1619–1631 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Caliskan, N., Peske, F. & Rodnina, M. V. Changed in translation: mRNA recoding by −1 programmed ribosomal frameshifting. Trends Biochem. Sci. 40, 265–274 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jungfleisch, J. et al. A novel translational control mechanism involving RNA structures within coding sequences. Genome Res. 27, 95–106 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Mao, Y. et al. m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nat. Commun. 10, 5332 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Yang, X. et al. RNA G-quadruplex structures exist and function in vivo in plants. Genome Biol. 21, 226 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Arif, A. et al. The GAIT translational control system. WIREs RNA 9, e1441 (2018).

    Article  PubMed  Google Scholar 

  173. Chaudhury, A. et al. TGF-β-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nat. Cell Biol. 12, 286–293 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hussey, GeorgeS. et al. Identification of an mRNP complex regulating tumorigenesis at the translational elongation step. Mol. Cell 41, 419–431 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Brown, J. A. et al. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat. Struct. Mol. Biol. 21, 633–640 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Brown, J. A. Unraveling the structure and biological functions of RNA triple helices. Wiley Interdiscip. Rev. RNA 11, e1598 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wan, Y. et al. Genome-wide measurement of RNA folding energies. Mol. Cell 48, 169–181 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Yang, X. et al. RNA G-quadruplex structure contributes to cold adaptation in plants. Nat. Commun. 13, 6224 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kharel, P. et al. Stress promotes RNA G-quadruplex folding in human cells. Nat. Commun. 14, 205 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Marzluff, W. F., Wagner, E. J. & Duronio, R. J. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat. Rev. Genet. 9, 843–854 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Fischer, J. W., Busa, V. F., Shao, Y. & Leung, A. K. L. Structure-mediated RNA decay by UPF1 and G3BP1. Mol. Cell 78, 70–84.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Meisner, N.-C. et al. mRNA openers and closers: modulating AU-rich element-controlled mRNA stability by a molecular switch in mRNA secondary structure. ChemBioChem 5, 1432–1447 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yadav, D. K. et al. Staufen1 reads out structure and sequence features in ARF1 dsRNA for target recognition. Nucleic Acids Res. 48, 2091–2106 (2019).

    Article  PubMed Central  Google Scholar 

  185. Mino, T. et al. Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161, 1058–1073 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Leppek, K. et al. Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs. Cell 153, 869–881 (2013).

    Article  CAS  PubMed  Google Scholar 

  187. Binas, O. et al. Structural basis for the recognition of transiently structured AU-rich elements by Roquin. Nucleic Acids Res. 48, 7385–7403 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Shi, B. et al. RNA structural dynamics regulate early embryogenesis through controlling transcriptome fate and function. Genome Biol. 21, 120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Mauger, D. M. et al. mRNA structure regulates protein expression through changes in functional half-life. Proc. Natl Acad. Sci. USA 116, 24075–24083 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gonzalez, I., Buonomo, S. B., Nasmyth, K. & von Ahsen, U. ASH1 mRNA localization in yeast involves multiple secondary structural elements and Ash1 protein translation. Curr. Biol. 9, 337–340 (1999).

    Article  CAS  PubMed  Google Scholar 

  191. Macdonald, P. M., Kerr, K., Smith, J. L. & Leask, A. RNA regulatory element BLE1 directs the early steps of bicoid mRNA localization. Development 118, 1233–1243 (1993).

    Article  CAS  PubMed  Google Scholar 

  192. St Johnston, D., Beuchle, D. & Nusslein-Volhard, C. Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66, 51–63 (1991).

    Article  Google Scholar 

  193. Ferrandon, D., Elphick, L., Nusslein-Volhard, C. & St Johnston, D. Staufen protein associates with the 3′UTR of bicoid mRNA to form particles that move in a microtubule-dependent manner. Cell 79, 1221–1232 (1994).

    Article  CAS  PubMed  Google Scholar 

  194. Bergsten, S. E., Huang, T., Chatterjee, S. & Gavis, E. R. Recognition and long-range interactions of a minimal nanos RNA localization signal element. Development 128, 427–435 (2001).

    Article  CAS  PubMed  Google Scholar 

  195. Kim-Ha, J., Webster, P. J., Smith, J. L. & Macdonald, P. M. Multiple RNA regulatory elements mediate distinct steps in localization of oskar mRNA. Development 119, 169–178 (1993).

    Article  CAS  PubMed  Google Scholar 

  196. Van De Bor, V., Hartswood, E., Jones, C., Finnegan, D. & Davis, I. gurken and the I factor retrotransposon RNAs share common localization signals and machinery. Dev. Cell 9, 51–62 (2005).

    Article  PubMed  Google Scholar 

  197. Bullock, S. L., Ringel, I., Ish-Horowicz, D. & Lukavsky, P. J. A′-form RNA helices are required for cytoplasmic mRNA transport in Drosophila. Nat. Struct. Mol. Biol. 17, 703–709 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Chao, J. A. et al. ZBP1 recognition of β-actin zipcode induces RNA looping. Genes Dev. 24, 148–158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Patel, V. L. et al. Spatial arrangement of an RNA zipcode identifies mRNAs under post-transcriptional control. Genes Dev. 26, 43–53 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Fernandez-Moya, S. M. et al. RGS4 RNA secondary structure mediates Staufen2 RNP assembly in neurons. Int. J. Mol. Sci. 22, 13021 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wang, T. et al. RNA motifs and modification involve in RNA long-distance transport in plants. Front. Cell Dev. Biol. 9, 651278 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Zhang, W. et al. tRNA-related sequences trigger systemic mRNA transport in plants. Plant Cell 28, 1237–1249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Fernandes, J., Jayaraman, B. & Frankel, A. The HIV-1 Rev response element: an RNA scaffold that directs the cooperative assembly of a homo-oligomeric ribonucleoprotein complex. RNA Biol. 9, 6–11 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Malim, M. H., Hauber, J., Le, S. Y., Maizel, J. V. & Cullen, B. R. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338, 254–257 (1989).

    Article  CAS  PubMed  Google Scholar 

  205. Pasquinelli, A. E. et al. The constitutive transport element (CTE) of Mason–Pfizer monkey virus (MPMV) accesses a cellular mRNA export pathway. EMBO J. 16, 7500–7510 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Gruter, P. et al. TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol. Cell 1, 649–659 (1998).

    Article  CAS  PubMed  Google Scholar 

  207. Aibara, S., Katahira, J., Valkov, E. & Stewart, M. The principal mRNA nuclear export factor NXF1:NXT1 forms a symmetric binding platform that facilitates export of retroviral CTE-RNA. Nucleic Acids Res. 43, 1883–1893 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Van Treeck, B. et al. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc. Natl Acad. Sci. USA 115, 2734–2739 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Poudyal, R. R., Sieg, J. P., Portz, B., Keating, C. D. & Bevilacqua, P. C. RNA sequence and structure control assembly and function of RNA condensates. RNA 27, 1589–1601 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Zhang, Y. et al. G-quadruplex structures trigger RNA phase separation. Nucleic Acids Res. 47, 11746–11754 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Langdon, E. M. & Gladfelter, A. S. A new lens for RNA localization: liquid–liquid phase separation. Annu. Rev. Microbiol. 72, 255–271 (2018).

    Article  CAS  PubMed  Google Scholar 

  213. Roden, ChristineA. et al. Double-stranded RNA drives SARS-CoV-2 nucleocapsid protein to undergo phase separation at specific temperatures. Nucleic Acids Res. 50, 8168–8192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Clemson, C. M. et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell 33, 717–726 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Yamazaki, T. et al. Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell 70, 1038–1053.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. Asamitsu, S. et al. RNA G-quadruplex organizes stress granule assembly through DNAPTP6 in neurons. Sci. Adv. 9, eade2035 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Mimura, M. et al. Quadruplex folding promotes the condensation of linker histones and DNAs via liquid–liquid phase separation. J. Am. Chem. Soc. 143, 9849–9857 (2021).

    Article  CAS  PubMed  Google Scholar 

  218. Warner, K. D., Hajdin, C. E. & Weeks, K. M. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov. 17, 547–558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Childs-Disney, J. L. et al. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov. 21, 736–762 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Abulwerdi, F. A. et al. Development of small molecules with a noncanonical binding mode to HIV-1 trans activation response (TAR) RNA. J. Med. Chem. 59, 11148–11160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Prado, S. et al. A small-molecule inhibitor of HIV-1 Rev function detected by a diversity screen based on RRE–Rev interference. Biochem. Pharmacol. 156, 68–77 (2018).

    Article  CAS  PubMed  Google Scholar 

  222. Howe, J. A. et al. Selective small-molecule inhibition of an RNA structural element. Nature 526, 672–677 (2015).

    Article  CAS  PubMed  Google Scholar 

  223. Blount Kenneth, F. et al. Novel riboswitch-binding flavin analog that protects mice against Clostridium difficile infection without inhibiting cecal flora. Antimicrob. Agents Chemother. 59, 5736–5746 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Balaratnam, S. et al. Investigating the NRAS 5′ UTR as a target for small molecules. Cell Chem. Biol. 30, 643–657.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  225. Aguilar, R. et al. Targeting Xist with compounds that disrupt RNA structure and X inactivation. Nature 604, 160–166 (2022).

    Article  CAS  PubMed  Google Scholar 

  226. Dhillon, S. Risdiplam: first approval. Drugs 80, 1853–1858 (2020).

    Article  CAS  PubMed  Google Scholar 

  227. Naryshkin, N. A. et al. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345, 688–693 (2014).

    Article  CAS  PubMed  Google Scholar 

  228. Ratni, H. et al. Discovery of risdiplam, a selective survival of motor neuron-2 (SMN2) gene splicing modifier for the treatment of spinal muscular atrophy (SMA). J. Med. Chem. 61, 6501–6517 (2018).

    Article  CAS  PubMed  Google Scholar 

  229. Sivaramakrishnan, M. et al. Binding to SMN2 pre-mRNA–protein complex elicits specificity for small molecule splicing modifiers. Nat. Commun. 8, 1476 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Campagne, S. et al. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat. Chem. Biol. 15, 1191–1198 (2019).

    Article  CAS  PubMed  Google Scholar 

  231. Wang, J., Schultz, P. G. & Johnson, K. A. Mechanistic studies of a small-molecule modulator of SMN2 splicing. Proc. Natl Acad. Sci. USA 115, E4604–E4612 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Velagapudi, S. P., Gallo, S. M. & Disney, M. D. Sequence-based design of bioactive small molecules that target precursor microRNAs. Nat. Chem. Biol. 10, 291–297 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Costales, M. G. et al. A designed small molecule inhibitor of a non-coding RNA sensitizes HER2 negative cancers to herceptin. J. Am. Chem. Soc. 141, 2960–2974 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Fang, L. et al. Pervasive transcriptome interactions of protein-targeted drugs. Nat. Chem. 15, 1374–1383 (2023).

    Article  CAS  PubMed  Google Scholar 

  235. Costales, M. G., Matsumoto, Y., Velagapudi, S. P. & Disney, M. D. Small molecule targeted recruitment of a nuclease to RNA. J. Am. Chem. Soc. 140, 6741–6744 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Costales, M. G. et al. Small-molecule targeted recruitment of a nuclease to cleave an oncogenic RNA in a mouse model of metastatic cancer. Proc. Natl Acad. Sci. USA 117, 2406–2411 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Tong, Y. et al. Programming inactive RNA-binding small molecules into bioactive degraders. Nature 618, 169–179 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. McCown, P. J., Corbino, K. A., Stav, S., Sherlock, M. E. & Breaker, R. R. Riboswitch diversity and distribution. RNA 23, 995–1011 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK Biotechnology and Biological Sciences Research Council (BBSRC) (BB/X01102X/1) and European Research Council (ERC) (selected by the ERC, funded by BBSRC Horizon Europe Guarantee (EP/Y009886/1)) (Y.D. and Y.Z.). Y.W. and X.C. are supported by funding from A*STAR, the National Research Foundation of Singapore, the EMBO Young Investigator Programme and a CIFAR Azrieli global scholar fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Yiliang Ding or Yue Wan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Tetsuro Hirose, Yuanchao Xue and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Aptamer domain

An RNA structure in a riboswitch that binds to small molecules.

Enzymatic structure probing

Refers to the use of nucleases that cleave RNA selectively at single-stranded or double-stranded regions (for example, RNase T1 and RNase V1, respectively); the resulting digestion footprints of the RNA can chart its structure.

i-Motifs

Cytosine-rich DNAs that form quadruplex structures; also known as intercalated-motif DNAs.

Riboswitches

Highly folded segments of (mostly bacterial) mRNAs that, when bound by environmental small molecules, induce structure changes that regulate the transcription or translation of the mRNA.

R-loop structure

A three-stranded nucleic acid structure composed of a DNA–RNA hybrid and a displaced single strand of DNA.

Small nucleolar RNAs

A class of small non-coding RNAs (ncRNAs) that mostly reside in nucleoli, which guide chemical modifications of other RNA species such as ribosomal RNAs.

Stress granules

Dynamic cytoplasmic bodies formed in response to cellular stress, comprising RNA molecules and various proteins; they have a role in RNA metabolism and are associated with responses to environmental stresses.

Upstream open reading frames

(uORFs). Open reading frames (ORFs) located upstream of a main open reading frame, that is, within the 5′ untranslated region (UTR) of the mRNA. uORFs can encode small peptides, and can regulate the translation of the main ORF by competing for the translation machinery.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Zhang, Y., Ding, Y. et al. Identification of RNA structures and their roles in RNA functions. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00748-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-024-00748-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing