Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Single-cell analysis in rheumatic and allergic diseases: insights for clinical practice

Abstract

Since the advent of single-cell RNA sequencing (scRNA-seq) methodology, single-cell analysis has become a powerful tool for exploration of cellular networks and dysregulated immune responses in disease pathogenesis. Advanced bioinformatics tools have enabled the combined analysis of scRNA-seq data and information on various cell properties, such as cell surface molecular profiles, chromatin accessibility and spatial information, leading to a deeper understanding of pathology. This Review provides an overview of the achievements in single-cell analysis applied to clinical samples of rheumatic and allergic diseases, including rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, allergic airway diseases and atopic dermatitis, with an expanded scope beyond peripheral blood cells to include local diseased tissues. Despite the valuable insights that single-cell analysis has provided into disease pathogenesis, challenges remain in translating single-cell findings into clinical practice and developing personalized treatment strategies. Beyond understanding the atlas of cellular diversity, we discuss the application of data obtained in each study to clinical practice, with a focus on identifying biomarkers and therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical implications of single-cell analysis in rheumatoid arthritis.
Fig. 2: Clinical implications of single-cell analysis in SLE and SSc.
Fig. 3: Clinical implications of single-cell analysis in allergic airway diseases.

Similar content being viewed by others

References

  1. Bianconi, E. et al. An estimation of the number of cells in the human body. Ann. Hum. Biol. 40, 463–471 (2013).

    Article  PubMed  Google Scholar 

  2. Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. A. The technology and biology of single-cell RNA sequencing. Mol. Cell 58, 610–620 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Lafzi, A., Moutinho, C., Picelli, S. & Heyn, H. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nat. Protoc. 13, 2742–2757 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Jovic, D. et al. Single-cell RNA sequencing technologies and applications: a brief overview. Clin. Transl. Med. 12, e694 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009). The first scRNA-seq study to sequence the transcriptomes of a single blastocyst and oocyte.

    Article  CAS  PubMed  Google Scholar 

  6. Baslan, T. & Hicks, J. Unravelling biology and shifting paradigms in cancer with single-cell sequencing. Nat. Rev. Cancer 17, 557–569 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Zhu, Y., Huang, Y., Tan, Y., Zhao, W. & Tian, Q. Single-cell RNA sequencing in hematological diseases. Proteomics 20, e1900228 (2020).

    Article  PubMed  Google Scholar 

  8. Jiang, M., Chen, H. & Guo, G. Studying kidney diseases at the single-cell level. Kidney Dis. 7, 335–342 (2021).

    Article  Google Scholar 

  9. Potter, S. S. Single-cell RNA sequencing for the study of development, physiology and disease. Nat. Rev. Nephrol. 14, 479–492 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. DeLaughter, D. M. The use of the fluidigm C1 for RNA expression analyses of single cells. Curr. Protoc. Mol. Biol. 122, e55 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xin, Y. et al. Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. Proc. Natl Acad. Sci. USA 113, 3293–3298 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goetz, J. J. & Trimarchi, J. M. Transcriptome sequencing of single cells with Smart-seq. Nat. Biotechnol. 30, 763–765 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Gierahn, T. M. et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat. Methods 14, 395–398 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-seq: single-cell RNA-seq by multiplexed linear amplification. Cell Rep. 2, 666–673 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sasagawa, Y. et al. Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol. 14, R31 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Yanai, I. & Hashimshony, T. CEL-Seq2-single-cell RNA sequencing by multiplexed linear amplification. Methods Mol. Biol. 1979, 45–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Keren-Shaul, H. et al. MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing. Nat. Protoc. 14, 1841–1862 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Sasagawa, Y. et al. Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads. Genome Biol. 19, 29 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Erickson, J. R. et al. AbSeq protocol using the nano-well cartridge-based Rhapsody platform to generate protein and transcript expression data on the single-cell level. STAR Protoc. 1, 100092 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salcher, S. et al. High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. Cancer Cell 40, 1503–1520 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wigerblad, G. et al. Single-cell analysis reveals the range of transcriptional states of circulating human neutrophils. J. Immunol. 209, 772–782 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gupta, S. et al. Sex differences in neutrophil biology modulate response to type I interferons and immunometabolism. Proc. Natl Acad. Sci. USA 117, 16481–16491 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang, J. et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity and functional multiplicity in the early stage of severe burn patients. Front. Immunol. 12, 792122 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Montaldo, E. et al. Cellular and transcriptional dynamics of human neutrophils at steady state and upon stress. Nat. Immunol. 23, 1470–1483 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mullan, K. A., de Vrij, N., Valkiers, S. & Meysman, P. Current annotation strategies for T cell phenotyping of single-cell RNA-seq data. Front. Immunol. 14, 1306169 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Nguyen, H., Tran, D., Tran, B., Pehlivan, B. & Nguyen, T. A comprehensive survey of regulatory network inference methods using single cell RNA sequencing data. Brief. Bioinform. 22, bbaa190 (2021).

    Article  PubMed  Google Scholar 

  32. Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu, C. et al. Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system. iScience 25, 105123 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. He, J. et al. Research progress on application of single-cell TCR/BCR sequencing technology to the tumor immune microenvironment, autoimmune diseases, and infectious diseases. Front. Immunol. 13, 969808 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Zeng, H. et al. Spatially resolved single-cell translatomics at molecular resolution. Science 380, eadd3067 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol. 18, 35–45 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Der, E. et al. Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. JCI Insight 2, e93009 (2017). The first scRNA-seq study in SLE, showing upregulation of ISGs in skin keratinocytes and renal tubules of patients.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9, 789 (2018). One of the first two scRNA-seq studies of synovial tissue in RA, showing that THY1+ SFs are pathogenic and cluster around blood vessels in the inflamed synovium.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Stephenson, W. et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat. Commun. 9, 791 (2018). One of the first two scRNA-seq studies of synovial tissue in RA, showing that THY1+ synovial fibroblasts are pathogenic and enriched for genes associated with ECM formation.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Apostolidis, S. A. et al. Single cell RNA sequencing identifies HSPG2 and APLNR as markers of endothelial cell injury in systemic sclerosis skin. Front. Immunol. 9, 2191 (2018). The first scRNA-seq study in SSc, showing detailed gene expression patterns in vascular endothelial cells in SSc skin pathology.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Smolen, J. S. et al. Rheumatoid arthritis. Nat. Rev. Dis. Prim. 4, 18001 (2018).

    Article  PubMed  Google Scholar 

  45. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kuo, D. et al. HBEGF+ macrophages in rheumatoid arthritis induce fibroblast invasiveness. Sci. Transl. Med. 11, eaau8587 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020). Discovery of activation of NOTCH signalling in synovial THY1+ fibroblasts by scRNA-seq, and experiments in animal models show NOTCH signalling as a novel therapeutic target for RA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Komatsu, N. & Takayanagi, H. Mechanisms of joint destruction in rheumatoid arthritis — immune cell-fibroblast-bone interactions. Nat. Rev. Rheumatol. 18, 415–429 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Meng, X. et al. Role and therapeutic potential for targeting fibroblast growth factor 10/FGFR1 in relapsed rheumatoid arthritis. Arthritis Rheumatol. 76, 32–47 (2024).

    Article  CAS  PubMed  Google Scholar 

  51. Hardt, U. et al. Integrated single cell and spatial transcriptomics reveal autoreactive differentiated B cells in joints of early rheumatoid arthritis. Sci. Rep. 12, 11876 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Smith, M. H. et al. Drivers of heterogeneity in synovial fibroblasts in rheumatoid arthritis. Nat. Immunol. 24, 1200–1210 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, F. et al. Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes. Nature 623, 616–624 (2023). This study shows pre- and post-treatment perturbations in RA synovial tissue and demonstrates the potential of scRNA-seq of biopsied tissue for optimal treatment selection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lu, D. R. et al. T cell-dependent affinity maturation and innate immune pathways differentially drive autoreactive B cell responses in rheumatoid arthritis. Arthritis Rheumatol. 70, 1732–1744 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu, X. et al. Single-cell sequencing of immune cells from anticitrullinated peptide antibody positive and negative rheumatoid arthritis. Nat. Commun. 12, 4977 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Argyriou, A. et al. Single cell sequencing identifies clonally expanded synovial CD4+ TPH cells expressing GPR56 in rheumatoid arthritis. Nat. Commun. 13, 4046 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaul, A. et al. Systemic lupus erythematosus. Nat. Rev. Dis. Prim. 2, 16039 (2016).

    Article  PubMed  Google Scholar 

  58. Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20, 915–927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fava, A. et al. Integrated urine proteomics and renal single-cell genomics identify an IFN-gamma response gradient in lupus nephritis. JCI Insight 5, e138345 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fava, A. et al. Urine proteomics and renal single-cell transcriptomics implicate interleukin-16 in lupus nephritis. Arthritis Rheumatol. 74, 829–839 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zheng, M. et al. Single-cell sequencing shows cellular heterogeneity of cutaneous lesions in lupus erythematosus. Nat. Commun. 13, 7489 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Billi, A. C. et al. Nonlesional lupus skin contributes to inflammatory education of myeloid cells and primes for cutaneous inflammation. Sci. Transl. Med. 14, eabn2263 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nehar-Belaid, D. et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat. Immunol. 21, 1094–1106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Perez, R. K. et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 376, eabf1970 (2022). The combination of scRNA-seq and GWAS information reveals genomic regions that are truly important in the development and pathogenesis of SLE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guo, C. et al. Single-cell transcriptome profiling and chromatin accessibility reveal an exhausted regulatory CD4+ T cell subset in systemic lupus erythematosus. Cell Rep. 41, 111606 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Banchereau, J. & Pascual, V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25, 383–392 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Wimmers, F. et al. Single-cell analysis reveals that stochasticity and paracrine signaling control interferon-alpha production by plasmacytoid dendritic cells. Nat. Commun. 9, 3317 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bibby, J. A. et al. Systematic single-cell pathway analysis to characterize early T cell activation. Cell Rep. 41, 111697 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Allanore, Y. et al. Systemic sclerosis. Nat. Rev. Dis. Prim. 1, 15002 (2015).

    Article  PubMed  Google Scholar 

  73. Volkmann, E. R., Andreasson, K. & Smith, V. Systemic sclerosis. Lancet 401, 304–318 (2023).

    Article  PubMed  Google Scholar 

  74. Tabib, T. et al. Myofibroblast transcriptome indicates SFRP2hi fibroblast progenitors in systemic sclerosis skin. Nat. Commun. 12, 4384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gaydosik, A. M. et al. Single-cell transcriptome analysis identifies skin-specific T-cell responses in systemic sclerosis. Ann. Rheum. Dis. 80, 1453–1460 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Xue, D. et al. Expansion of Fcgamma receptor IIIa-positive macrophages, ficolin 1-positive monocyte-derived dendritic cells, and plasmacytoid dendritic cells associated with severe skin disease in systemic sclerosis. Arthritis Rheumatol. 74, 329–341 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gur, C. et al. LGR5 expressing skin fibroblasts define a major cellular hub perturbed in scleroderma. Cell 185, 1373–1388 (2022). scRNA-seq led to the identification of a specific ScAF subpopulation in SSc skin pathology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Valenzi, E. et al. Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. Ann. Rheum. Dis. 78, 1379–1387 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Gao, X. et al. Osteopontin links myeloid activation and disease progression in systemic sclerosis. Cell Rep. Med. 1, 100140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tsukui, T. et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat. Commun. 11, 1920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Valenzi, E. et al. Disparate interferon signaling and shared aberrant basaloid cells in single-cell profiling of idiopathic pulmonary fibrosis and systemic sclerosis-associated interstitial lung disease. Front. Immunol. 12, 595811 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pope, J. E. et al. State-of-the-art evidence in the treatment of systemic sclerosis. Nat. Rev. Rheumatol. 19, 212–226 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tsoi, L. C. et al. IL18-containing 5-gene signature distinguishes histologically identical dermatomyositis and lupus erythematosus skin lesions. JCI Insight 5, e139558 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lu, X., Peng, Q. & Wang, G. Anti-MDA5 antibody-positive dermatomyositis: pathogenesis and clinical progress. Nat. Rev. Rheumatol. 20, 48–62 (2024).

    Article  CAS  PubMed  Google Scholar 

  85. Ye, Y. et al. Single-cell profiling reveals distinct adaptive immune hallmarks in MDA5+ dermatomyositis with therapeutic implications. Nat. Commun. 13, 6458 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. He, J. et al. Single-cell landscape of peripheral immune response in patients with anti-melanoma differentiation-associated gene 5 dermatomyositis. Rheumatology https://doi.org/10.1093/rheumatology/kead597 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hong, X. et al. Single-cell RNA sequencing reveals the expansion of cytotoxic CD4+ T lymphocytes and a landscape of immune cells in primary Sjogren’s syndrome. Front. Immunol. 11, 594658 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Arvidsson, G. et al. Multi-modal single cell sequencing of B cells in primary Sjogren’s syndrome. Arthritis Rheumatol. 76, 255–267 (2024).

    Article  CAS  PubMed  Google Scholar 

  89. Xiang, N. et al. Single-cell transcriptome profiling reveals immune and stromal cell heterogeneity in primary Sjogren’s syndrome. iScience 26, 107943 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Xu, T. et al. Single-cell profiling reveals pathogenic role and differentiation trajectory of granzyme K+CD8+ T cells in primary Sjogren’s syndrome. JCI Insight 8, e167490 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Li, Y. et al. Single-cell transcriptome analysis profiles cellular and molecular alterations in submandibular gland and blood in IgG4-related disease. Ann. Rheum. Dis. 82, 1348–1358 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Pugh, D. et al. Large-vessel vasculitis. Nat. Rev. Dis. Prim. 7, 93 (2022).

    Article  PubMed  Google Scholar 

  93. Sato, Y. et al. Stem-like CD4+ T cells in perivascular tertiary lymphoid structures sustain autoimmune vasculitis. Sci. Transl. Med. 15, eadh0380 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Falk, R. J. & Jennette, J. C. ANCA small-vessel vasculitis. J. Am. Soc. Nephrol. 8, 314–322 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Jennette, J. C. & Falk, R. J. Small-vessel vasculitis. N. Engl. J. Med. 337, 1512–1523 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Kitching, A. R. et al. ANCA-associated vasculitis. Nat. Rev. Dis. Prim. 6, 71 (2020).

    Article  PubMed  Google Scholar 

  97. Mueller, A. et al. Transcriptional and clonal characterization of cytotoxic T cells in crescentic glomerulonephritis. J. Am. Soc. Nephrol. 34, 1003–1018 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Nishide, M. et al. Single-cell multi-omics analysis identifies two distinct phenotypes of newly-onset microscopic polyangiitis. Nat. Commun. 14, 5789 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kostine, M. et al. Rheumatic disorders associated with immune checkpoint inhibitors in patients with cancer-clinical aspects and relationship with tumour response: a single-centre prospective cohort study. Ann. Rheum. Dis. 77, 393–398 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Wang, R. et al. Clonally expanded CD38hi cytotoxic CD8 T cells define the T cell infiltrate in checkpoint inhibitor-associated arthritis. Sci. Immunol. 8, eadd1591 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vieira Braga, F. A. et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 25, 1153–1163 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Li, H. et al. Single-cell transcriptomic analysis reveals key immune cell phenotypes in the lungs of patients with asthma exacerbation. J. Allergy Clin. Immunol. 147, 941–954 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Seumois, G. et al. Single-cell transcriptomic analysis of allergen-specific T cells in allergy and asthma. Sci. Immunol. 5, eaba6087 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Alladina, J. et al. A human model of asthma exacerbation reveals transcriptional programs and cell circuits specific to allergic asthma. Sci. Immunol. 8, eabq6352 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hoof, I. et al. Allergen-specific IgG+ memory B cells are temporally linked to IgE memory responses. J. Allergy Clin. Immunol. 146, 180–191 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Cox, L. S. Sublingual immunotherapy: historical perspective and practical guidance. J. Allergy Clin. Immunol. Pract. 5, 63–65 (2017).

    Article  PubMed  Google Scholar 

  107. Iinuma, T. et al. Single-cell immunoprofiling after immunotherapy for allergic rhinitis reveals functional suppression of pathogenic TH2 cells and clonal conversion. J. Allergy Clin. Immunol. 150, 850–860 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. McKenzie, C. I. et al. RNA sequencing of single allergen-specific memory B cells after grass pollen immunotherapy: two unique cell fates and CD29 as a biomarker for treatment effect. Allergy 78, 822–835 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Tokunaga, T. et al. Novel scoring system and algorithm for classifying chronic rhinosinusitis: the JESREC Study. Allergy 70, 995–1003 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Wang, W. et al. Single-cell profiling identifies mechanisms of inflammatory heterogeneity in chronic rhinosinusitis. Nat. Immunol. 23, 1484–1494 (2022). ALOX15+ macrophages are identified as key mediators of allergic rhinosinusitis, and an ALOX15 inhibitor is proposed as a therapeutic reagent.

    Article  CAS  PubMed  Google Scholar 

  111. Weidinger, S., Beck, L. A., Bieber, T., Kabashima, K. & Irvine, A. D. Atopic dermatitis. Nat. Rev. Dis. Prim. 4, 1 (2018).

    Article  PubMed  Google Scholar 

  112. He, H. et al. Single-cell transcriptome analysis of human skin identifies novel fibroblast subpopulation and enrichment of immune subsets in atopic dermatitis. J. Allergy Clin. Immunol. 145, 1615–1628 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Alkon, N. et al. Single-cell analysis reveals innate lymphoid cell lineage infidelity in atopic dermatitis. J. Allergy Clin. Immunol. 149, 624–639 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu, Y. et al. Classification of human chronic inflammatory skin disease based on single-cell immune profiling. Sci. Immunol. 7, eabl9165 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Alkon, N. et al. Single-cell RNA sequencing defines disease-specific differences between chronic nodular prurigo and atopic dermatitis. J. Allergy Clin. Immunol. 152, 420–435 (2023).

    Article  CAS  PubMed  Google Scholar 

  116. Zhang, B. et al. Single-cell profiles reveal distinctive immune response in atopic dermatitis in contrast to psoriasis. Allergy 78, 439–453 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Bangert, C. et al. Persistence of mature dendritic cells, TH2A, and Tc2 cells characterize clinically resolved atopic dermatitis under IL-4Rα blockade. Sci. Immunol. 6, eabe2749 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Chiang, D. et al. Single-cell profiling of peanut-responsive T cells in patients with peanut allergy reveals heterogeneous effector T(H)2 subsets. J. Allergy Clin. Immunol. 141, 2107–2120 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tu, A. A. et al. TCR sequencing paired with massively parallel 3′ RNA-seq reveals clonotypic T cell signatures. Nat. Immunol. 20, 1692–1699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hu, B. C. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature 574, 187–192 (2019).

    Article  Google Scholar 

  122. Dominguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dann, E. et al. Precise identification of cell states altered in disease using healthy single-cell references. Nat. Genet. 55, 1998–2008 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Eraslan, G. et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 376, eabl4290 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Maan, H. et al. Characterizing the impacts of dataset imbalance on single-cell data integration. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02097-9 (2024).

    Article  PubMed  Google Scholar 

  127. Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med 3, 481–518 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Zhang, F. et al. IFN-gamma and TNF-alpha drive a CXCL10+CCL2+ macrophage phenotype expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation. Genome Med. 13, 64 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Yasumizu, Y. et al. Single-cell transcriptome landscape of circulating CD4+ T cell populations in autoimmune diseases. Cell Genom. 4, 100473 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gupta, A. et al. Dynamic regulatory elements in single-cell multimodal data implicate key immune cell states enriched for autoimmune disease heritability. Nat. Genet. 55, 2200–2210 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nathan, A. et al. Single-cell eQTL models reveal dynamic T cell state dependence of disease loci. Nature 606, 120–128 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kumasaka, N. et al. Mapping interindividual dynamics of innate immune response at single-cell resolution. Nat. Genet. 55, 1066–1075 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kang, J. B. et al. Mapping the dynamic genetic regulatory architecture of HLA genes at single-cell resolution. Nat. Genet. 55, 2255–2268 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank N. Nakajima for advice on the historical overview of single-cell analysis. They also thank R. Edahiro, K. Nishimura, S. Metsugi, H. Matsushita and M. Narazaki for their excellent technical advice. They also thank K. Mogi for contributions to figure illustrations. They are deeply grateful to all the pioneers who have contributed to the development of this area and apologize to the researchers whose work was not cited in this Review owing to space limitations. This work was financially supported by research grants from the Japan Society for the Promotion of Science (JSPS) KAKENHI (JP22K16361 to M.N. and JP18H05282 to A.K.), UBE foundation (to M.N.), Takeda Science Foundation (to M.N.), Japan Agency for Medical Research and Development (AMED) (223fa627002h0001 to A.K.), JSPS Core-to-Core Program (JP223fa627002 to A.K.) and Japan Agency for Medical Research and Development — Core Research for Evolutional Science and Technology (AMED–CREST) (22gm1810003h0001 to A.K.). This research was conducted as part of the All-Osaka U Research in ‘The Nippon Foundation — Osaka University Project for Infectious Disease Prevention’.

Author information

Authors and Affiliations

Authors

Contributions

M.N. and A.K. designed the concept of this article. M.N. and H.S. wrote the manuscript. A.K. supervised the structure of this work. All authors contributed to the discussion of the content and approved the final version of the manuscript.

Corresponding authors

Correspondence to Masayuki Nishide or Atsushi Kumanogoh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Patrick Brunner, Adam Croft and the other anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishide, M., Shimagami, H. & Kumanogoh, A. Single-cell analysis in rheumatic and allergic diseases: insights for clinical practice. Nat Rev Immunol (2024). https://doi.org/10.1038/s41577-024-01043-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-024-01043-3

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research