Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Navigating the complexities of drug development for inflammatory bowel disease

Abstract

Inflammatory bowel disease (IBD) — consisting of ulcerative colitis and Crohn’s disease — is a complex, heterogeneous, immune-mediated inflammatory condition with a multifactorial aetiopathogenesis. Despite therapeutic advances in this arena, a ceiling effect has been reached with both single-agent monoclonal antibodies and advanced small molecules. Therefore, there is a need to identify novel targets, and the development of companion biomarkers to select responders is vital. In this Perspective, we examine how advances in machine learning and tissue engineering could be used at the preclinical stage where attrition rates are high. For novel agents reaching clinical trials, we explore factors decelerating progression, particularly the decline in IBD trial recruitment, and assess how innovative approaches such as reconfiguring trial designs, harmonizing end points and incorporating digital technologies into clinical trials can address this. Harnessing opportunities at each stage of the drug development process may allow for incremental gains towards more effective therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Challenges and opportunities for IBD drug development.
Fig. 2: Innovative study designs to improve efficiency for IBD drug development.

Similar content being viewed by others

References

  1. Ng, S. C. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390, 2769–2778 (2017).

    PubMed  Google Scholar 

  2. Kaplan, G. G. & Windsor, J. W. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 18, 56–66 (2021).

    PubMed  Google Scholar 

  3. Alatab, S. et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 5, 17–30 (2020).

    Google Scholar 

  4. Berre, C. L., Honap, S. & Peyrin-Biroulet, L. Ulcerative colitis. Lancet 402, 571–584 (2023).

    PubMed  Google Scholar 

  5. Torres, J., Mehandru, S., Colombel, J. F. & Peyrin-Biroulet, L. Crohn’s disease. Lancet 389, 1741–1755 (2017).

    PubMed  Google Scholar 

  6. Gower-Rousseau, C. et al. Validation of the inflammatory bowel disease disability index in a population-based cohort. Gut 66, 588–596 (2017).

    PubMed  Google Scholar 

  7. Mulder, D. J., Noble, A. J., Justinich, C. J. & Duffin, J. M. A tale of two diseases: the history of inflammatory bowel disease. J. Crohns Colitis 8, 341–348 (2014).

    PubMed  Google Scholar 

  8. Svartz, M. The treatment of 124 cases of ulcerative colitis with salazopyrine and attempts of desensibilization in cases of hypersensitiveness to sulfa. Acta Med. Scand. 131, 465–472 (1948).

    CAS  PubMed  Google Scholar 

  9. Wong, C. H., Siah, K. W. & Lo, A. W. Estimation of clinical trial success rates and related parameters. Biostatistics 20, 273–286 (2019).

    PubMed  Google Scholar 

  10. Wouters, O. J., McKee, M. & Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA 323, 844–853 (2020).

    PubMed  PubMed Central  Google Scholar 

  11. DiMasi, J. A., Grabowski, H. G. & Hansen, R. W. Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47, 20–33 (2016).

    PubMed  Google Scholar 

  12. Dowden, H. & Munro, J. Trends in clinical success rates and therapeutic focus. Nat. Rev. Drug Discov. 18, 495–496 (2019).

    CAS  PubMed  Google Scholar 

  13. Sands, B. E. et al. Mongersen (GED-0301) for active Crohn’s disease: results of a phase 3 study. Am. J. Gastroenterol. 115, 738–745 (2020).

    PubMed  Google Scholar 

  14. Peyrin-Biroulet, L. et al. Etrolizumab as induction and maintenance therapy for ulcerative colitis in patients previously treated with tumour necrosis factor inhibitors (HICKORY): a phase 3, randomised, controlled trial. Lancet Gastroenterol. Hepatol. 7, 128–140 (2022).

    PubMed  Google Scholar 

  15. Rubin, D. T. et al. Etrolizumab versus adalimumab or placebo as induction therapy for moderately to severely active ulcerative colitis (HIBISCUS): two phase 3 randomised, controlled trials. Lancet Gastroenterol. Hepatol. 7, 17–27 (2022).

    PubMed  Google Scholar 

  16. Harris, M. S., Wichary, J., Zadnik, M. & Reinisch, W. Competition for clinical trials in inflammatory bowel diseases. Gastroenterology 157, 1457–1461.e2 (2019).

    PubMed  Google Scholar 

  17. AbbVie’s revenue from top product Humira from 2011 to 2023. Statista https://www.statista.com/statistics/318206/revenue-of-humira/ (2024).

  18. Projected leading 10 pharmaceutical products worldwide based on lifetime sales as of 2028. Statista https://www.statista.com/statistics/1089322/top-drugs-by-lifetime-sales-globally/ (2024).

  19. Wingrove P. Stelara patent deal puts J&J back on path to $57 billion 2025 revenue forecast. Reuters https://www.reuters.com/business/healthcare-pharmaceuticals/stelara-patent-deal-puts-jj-back-path-57-bln-2025-revenue-forecast-2023-06-05/ (2023).

  20. Uzzan, M. et al. Declining enrolment and other challenges in IBD clinical trials: causes and potential solutions. J. Crohns Colitis 17, 1066–1078 (2023).

    PubMed  Google Scholar 

  21. Alsoud, D., Verstockt, B., Fiocchi, C. & Vermeire, S. Breaking the therapeutic ceiling in drug development in ulcerative colitis. Lancet Gastroenterol. Hepatol. 6, 589–595 (2021).

    PubMed  Google Scholar 

  22. Magro, F. et al. Has the therapeutical ceiling been reached in Crohn’s disease randomized controlled trials? A systematic review and meta‐analysis. U. Eur. Gastroenterol. J. 11, 202–217 (2023).

    Google Scholar 

  23. Schett, G., McInnes, I. B. & Neurath, M. F. Reframing immune-mediated inflammatory diseases through signature cytokine hubs. N. Engl. J. Med. 385, 628–639 (2021).

    CAS  PubMed  Google Scholar 

  24. Jostins, L. & Barrett, J. C. Genetic risk prediction in complex disease. Hum. Mol. Genet. 20, R182–R188 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, J. C. et al. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn’s disease. Nat. Genet. 49, 262–268 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nishida, A. et al. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin. J. Gastroenterol. 11, 1–10 (2018).

    PubMed  Google Scholar 

  30. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–715 (2004).

    CAS  PubMed  Google Scholar 

  31. Hay, M., Thomas, D. W., Craighead, J. L., Economides, C. & Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 32, 40–51 (2014).

    CAS  PubMed  Google Scholar 

  32. Lu, R. M. et al. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 27, 1 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Scannell, J. W. et al. Predictive validity in drug discovery: what it is, why it matters and how to improve it. Nat. Rev. Drug Discov. 21, 915–931 (2022).

    CAS  PubMed  Google Scholar 

  34. Ferreira, B. et al. Trends in 3D models of inflammatory bowel disease. Biochim. Biophys. Acta Mol. Basis Dis. 1870, 167042 (2024).

    CAS  PubMed  Google Scholar 

  35. Lea T. in The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models (eds Verhoeckx, K. et al.) 103–124 (Springer, 2015).

  36. Okayasu, I. et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98, 694–702 (1990).

    CAS  PubMed  Google Scholar 

  37. Powrie, F., Leach, M. W., Mauze, S., Caddle, L. B. & Coffman, R. L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int. Immunol. 5, 1461–1471 (1993).

    CAS  PubMed  Google Scholar 

  38. Kühn, R., Löhler, J., Rennick, D., Rajewsky, K. & Müller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    PubMed  Google Scholar 

  39. Neurath, M. F., Fuss, I., Kelsall, B. L., Stüber, E. & Strober, W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J. Exp. Med. 182, 1281–1290 (1995).

    CAS  PubMed  Google Scholar 

  40. Boirivant, M., Fuss, I. J., Chu, A. & Strober, W. Oxazolone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J. Exp. Med. 188, 1929–1939 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557–561 (2007).

    CAS  PubMed  Google Scholar 

  42. Mestas, J. & Hughes, C. C. W. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    CAS  PubMed  Google Scholar 

  43. Parikh, K. et al. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature 567, 49–55 (2019).

    CAS  PubMed  Google Scholar 

  44. Almutary, A. G., Alnuqaydan, A. M., Almatroodi, S. A. & Tambuwala, M. M. Comparative analysis of the effect of different concentrations of dextran sodium sulfate on the severity and extent of inflammation in experimental ulcerative colitis. Appl. Sci. 13, 3233 (2023).

    CAS  Google Scholar 

  45. Yang, C. & Merlin, D. Unveiling colitis: a journey through the dextran sodium sulfate-induced model. Inflamm. Bowel Dis. https://doi.org/10.1093/ibd/izad312 (2024).

  46. Baydi, Z. et al. An update of research animal models of inflammatory bowel disease. ScientificWorldJournal 2021, 7479540 (2021).

    PubMed  PubMed Central  Google Scholar 

  47. Chassaing, B., Aitken, J. D., Malleshappa, M. & Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 104, 15.25.1–15.25.14 (2014).

    PubMed  Google Scholar 

  48. Strober, W., Nakamura, K. & Kitani, A. The SAMP1/Yit mouse: another step closer to modeling human inflammatory bowel disease. J. Clin. Invest. 107, 667–670 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Outtier, A. et al. Screening failure in a large clinical trial centre for inflammatory bowel diseases: rates, causes, and outcomes. Inflamm. Bowel Dis. 29, 1440–1445 (2023).

    PubMed  Google Scholar 

  50. Vieujean, S. et al. Analysis of clinical trial screen failures in inflammatory bowel diseases (IBD): real world results from the international organization for the study of IBD. J. Crohn’s Colitis. https://doi.org/10.1093/ecco-jcc/jjad180 (2023).

  51. Noor, N. M. & Raine, T. Innovations to improve the efficiency of phase II IBD clinical trials. Nat. Rev. Gastroenterol. Hepatol. 20, 555–556 (2023).

    PubMed  Google Scholar 

  52. Bahnam, P. et al. Most placebo-controlled trials in inflammatory bowel disease were underpowered because of overestimated drug efficacy rates: results from a systematic review of induction studies. J. Crohns Colitis 17, 404–417 (2023).

    PubMed  Google Scholar 

  53. Gordon, M., Lakunina, S., Sinopoulou, V. & Akobeng, A. Minimum sample size estimates for trials in inflammatory bowel disease: a systematic review of a support resource. World J. Gastroenterol. 27, 7572 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Iheozor‐Ejiofor, Z. et al. Sample‐size estimation is not reported in 24% of randomised controlled trials of inflammatory bowel disease: a systematic review. U. Eur. Gastroenterol. J. 9, 47–53 (2021).

    Google Scholar 

  55. De Cruz, P., Kamm, M. A., Prideaux, L., Allen, P. B. & Moore, G. Mucosal healing in Crohn’s disease: a systematic review. Inflamm. Bowel Dis. 19, 429–444 (2013).

    PubMed  Google Scholar 

  56. Yoon, H. et al. Incremental benefit of achieving endoscopic and histologic remission in patients with ulcerative colitis: a systematic review and meta-analysis. Gastroenterology 159, 1262–1275 (2020).

    PubMed  Google Scholar 

  57. Lahiff, C. et al. The Crohn’s Disease Activity Index (CDAI) is similarly elevated in patients with Crohn’s disease and in patients with irritable bowel syndrome. Aliment. Pharmacol. Ther. 37, 786–794 (2013).

    CAS  PubMed  Google Scholar 

  58. Dubinsky, M. C. et al. Challenges and opportunities in IBD clinical trial design. Gastroenterology 161, 400–404 (2021).

    PubMed  Google Scholar 

  59. Wils, P. et al. Comparison of treatment effect between phase 2 and phase 3 trials in patients with inflammatory bowel disease. U. Eur. Gastroenterol. J. 11, 797–806 (2023).

    Google Scholar 

  60. Kerschbaumer, A. et al. Efficacy outcomes in phase 2 and phase 3 randomized controlled trials in rheumatology. Nat. Med. 26, 974–980 (2020).

    CAS  PubMed  Google Scholar 

  61. Sandborn, W. J. et al. Natalizumab induction and maintenance therapy for Crohn’s disease. N. Engl. J. Med. 353, 1912–1925 (2005).

    CAS  PubMed  Google Scholar 

  62. Sandborn, W. J. et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N. Engl. J. Med. 369, 711–721 (2013).

    CAS  PubMed  Google Scholar 

  63. Motoya, S. et al. Vedolizumab in Japanese patients with ulcerative colitis: a phase 3, randomized, double-blind, placebo-controlled study. PLoS ONE 14, e0212989 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Monteleone, G. et al. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease. N. Engl. J. Med. 372, 1104–1113 (2015).

    CAS  PubMed  Google Scholar 

  65. Strand, V. Minimizing efficacy differences between phase II and III RCTs. Nat. Rev. Rheumatol. 16, 359–360 (2020).

    PubMed  Google Scholar 

  66. Truelove, S. C. & Witts, L. J. Cortisone in ulcerative colitis; final report on a therapeutic trial. Br. Med. J. 2, 1041–1048 (1955).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lightner, A. L. et al. Results at up to 30 years after ileal pouch-anal anastomosis for chronic ulcerative colitis. Inflamm. Bowel Dis. 23, 781–790 (2017).

    PubMed  Google Scholar 

  68. Khoudari, G. et al. Rates of intestinal resection and colectomy in inflammatory bowel disease patients after initiation of biologics: a cohort study. Clin. Gastroenterol. Hepatol. 20, e974–e983 (2022).

    PubMed  Google Scholar 

  69. Bernstein, C. N. et al. Hospitalisations and surgery in Crohn’s disease. Gut 61, 622–629 (2012).

    PubMed  Google Scholar 

  70. Atia, O. et al. Perianal Crohn’s disease is associated with poor disease outcome: a nationwide study from the epiIIRN cohort. Clin. Gastroenterol. Hepatol. 20, e484–e495 (2022).

    PubMed  Google Scholar 

  71. Chin, Y. H. et al. Systematic review with meta-analysis: the prevalence, risk factors and outcomes of upper gastrointestinal tract Crohn’s disease. Dig. Liver Dis. 53, 1548–1558 (2021).

    CAS  PubMed  Google Scholar 

  72. Vuyyuru, S. K. et al. Patients with Crohn’s disease and permanent ileostomy are universally excluded from clinical trials: a systematic review. Am. J. Gastroenterol. 118, 1285–1288 (2023).

    PubMed  Google Scholar 

  73. Hanzel, J., Ma, C., Jairath, V. & IBD Trial Design Group Design of clinical trials for mild to moderate Crohn’s disease. Gastroenterology 162, 1800–1814 (2022).

    PubMed  Google Scholar 

  74. Sedano, R. et al. Underrepresentation of minorities and lack of race reporting in ulcerative colitis drug development clinical trials. Inflamm. Bowel Dis. 28, 1293–1295 (2022).

    PubMed  Google Scholar 

  75. Sedano, R. et al. Underrepresentation of minorities and underreporting of race and ethnicity in Crohn’s disease clinical trials. Gastroenterology 162, 338–340 (2022).

    PubMed  Google Scholar 

  76. Cohen, N. A., Silfen, A. & Rubin, D. T. Inclusion of under-represented racial and ethnic minorities in randomized clinical trials for inflammatory bowel disease. Gastroenterology 162, 17 (2022).

    PubMed  Google Scholar 

  77. Vieujean, S. et al. Is it time to include older adults in inflammatory bowel disease trials? A call for action. Lancet Healthy Longev. 3, e356–e366 (2022).

    PubMed  Google Scholar 

  78. van Rheenen, P. F. et al. The medical management of paediatric Crohn’s disease: an ECCO-ESPGHAN guideline update. J. Crohns Colitis 15, 171–194 (2021).

    Google Scholar 

  79. Van Limbergen, J. et al. Definition of phenotypic characteristics of childhood-onset inflammatory bowel disease. Gastroenterology 135, 1114–1122 (2008).

    PubMed  Google Scholar 

  80. Croft, N. M. et al. Paediatric inflammatory bowel disease: a multi-stakeholder perspective to improve development of drugs for children and adolescents. J. Crohns Colitis 17, 249–258 (2022).

    PubMed Central  Google Scholar 

  81. Crowley, E. et al. Impact of drug approval pathways for paediatric inflammatory bowel disease. J. Crohns Colitis 16, 331–335 (2022).

    PubMed  Google Scholar 

  82. Thornton, H. Patient and public involvement in clinical trials. BMJ 336, 903–904 (2008).

    PubMed  PubMed Central  Google Scholar 

  83. Honap, S., Buisson, A., Danese, S., Beaugerie, L. & Peyrin-Biroulet, L. Patient and public involvement in research: lessons for inflammatory bowel disease. J. Crohns Colitis 17, 1882–1891 (2023).

    PubMed  PubMed Central  Google Scholar 

  84. Noor, N. M., Parkes, M. & Raine, T. Moving towards more patient-centred clinical trials in IBD. Nat. Rev. Gastroenterol. Hepatol. 18, 673–674 (2021).

    PubMed  PubMed Central  Google Scholar 

  85. US Food and Drug Administration. Considerations for the design and conduct of externally controlled trials for drug and biological products. FDA https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-design-and-conduct-externally-controlled-trials-drug-and-biological-products (2023).

  86. European Medicines Agency. ICH E10 choice of control group in clinical trials—scientific guideline. EMA https://www.ema.europa.eu/en/ich-e10-choice-control-group-clinical-trials-scientific-guideline (2001).

  87. Ravikoff, J. E., Cole, E. B. & Korzenik, J. R. Barriers to enrollment in inflammatory bowel disease randomized controlled trials: an investigation of patient perspectives. Inflamm. Bowel Dis. 18, 2092–2098 (2012).

    PubMed  Google Scholar 

  88. Rubin, D. T. et al. Inflammatory bowel disease patients’ perspectives of clinical trials: a global quantitative and qualitative analysis. Crohns Colitis 360 3, otab079 (2021).

    PubMed  PubMed Central  Google Scholar 

  89. Inan, O. T. et al. Digitizing clinical trials. npj Digit. Med. 3, 1–7 (2020).

    Google Scholar 

  90. Rubin, D. T. et al. International perspectives on management of inflammatory bowel disease: opinion differences and similarities between patients and physicians from the IBD GAPPS survey. Inflamm. Bowel Dis. 27, 1942–1953 (2021).

    PubMed  PubMed Central  Google Scholar 

  91. Vamathevan, J. et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 18, 463–477 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Jayatunga, M. K. P., Xie, W., Ruder, L., Schulze, U. & Meier, C. AI in small-molecule drug discovery: a coming wave? Nat. Rev. Drug Discov. 21, 175–176 (2022).

    CAS  PubMed  Google Scholar 

  93. Bravo, À., Piñero, J., Queralt-Rosinach, N., Rautschka, M. & Furlong, L. I. Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research. BMC Bioinforma. 16, 55 (2015).

    Google Scholar 

  94. Nayal, M. & Honig, B. On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins 63, 892–906 (2006).

    CAS  PubMed  Google Scholar 

  95. Costa, P. R., Acencio, M. L. & Lemke, N. A machine learning approach for genome-wide prediction of morbid and druggable human genes based on systems-level data. BMC Genomics 11, S9 (2010).

    PubMed  PubMed Central  Google Scholar 

  96. Rouillard, A. D., Hurle, M. R. & Agarwal, P. Systematic interrogation of diverse omic data reveals interpretable, robust, and generalizable transcriptomic features of clinically successful therapeutic targets. PLoS Comput. Biol. 14, e1006142 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. Tropsha, A., Isayev, O., Varnek, A., Schneider, G. & Cherkasov, A. Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR. Nat. Rev. Drug Discov. 23, 141–155 (2023).

    PubMed  Google Scholar 

  98. Li, X. et al. Development and validation of a novel computed-tomography enterography radiomic approach for characterization of intestinal fibrosis in Crohn’s disease. Gastroenterology 160, 2303–2316 (2021).

    PubMed  Google Scholar 

  99. Stidham, R. W. et al. Assessing small bowel stricturing and morphology in Crohn’s disease using semi-automated image analysis. Inflamm. Bowel Dis. 26, 734–742 (2020).

    PubMed  Google Scholar 

  100. Stidham, R. W. et al. Performance of a deep learning model vs human reviewers in grading endoscopic disease severity of patients with ulcerative colitis. JAMA Netw. Open. 2, e193963 (2019).

    PubMed  PubMed Central  Google Scholar 

  101. Bossuyt, P. et al. Automatic, computer-aided determination of endoscopic and histological inflammation in patients with mild to moderate ulcerative colitis based on red density. Gut 69, 1778–1786 (2020).

    CAS  PubMed  Google Scholar 

  102. Gottlieb, K. et al. Central reading of ulcerative colitis clinical trial videos using neural networks. Gastroenterology 160, 710–719 (2021).

    PubMed  Google Scholar 

  103. Yao, H. et al. Fully automated endoscopic disease activity assessment in ulcerative colitis. Gastrointest. Endosc. 93, 728–736 (2021).

    PubMed  Google Scholar 

  104. Gui, X. et al. PICaSSO Histologic Remission Index (PHRI) in ulcerative colitis: development of a novel simplified histological score for monitoring mucosal healing and predicting clinical outcomes and its applicability in an artificial intelligence system. Gut 71, 889–898 (2022).

    PubMed  Google Scholar 

  105. Peyrin-Biroulet, L., Adsul, S., Dehmeshki, J. & Kubassova, O. DOP58 An artificial intelligence-driven scoring system to measure histological disease activity in ulcerative colitis. J. Crohns Colitis 16, i105 (2022).

    Google Scholar 

  106. Iacucci, M. et al. Artificial intelligence enabled histological prediction of remission or activity and clinical outcomes in ulcerative colitis. Gastroenterology 164, 1180–1188 (2023).

    PubMed  Google Scholar 

  107. Arnold, C. Inside the nascent industry of AI-designed drugs. Nat. Med. 29, 1292–1295 (2023).

    CAS  PubMed  Google Scholar 

  108. Exscientia. DSP-1181 https://www.exscientia.ai/dsp-1181 (2020).

  109. Burki, T. A new paradigm for drug development. Lancet Digital Health 2, e226–e227 (2020).

    PubMed  Google Scholar 

  110. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05130866 (2024).

  111. Businesswire. BenevolentAI announces positive topline safety and pharmacokinetic data from the phase Ia clinical study of BEN-8744 in healthy volunteers. businesswire.com https://www.businesswire.com/news/home/20240324322513/en/BenevolentAI-Announces-Positive-Topline-Safety-and-Pharmacokinetic-Data-from-the-Phase-Ia-Clinical-Study-of-BEN-8744-in-Healthy-Volunteers (2024).

  112. Zilbauer, M. et al. A roadmap for the human gut cell atlas. Nat. Rev. Gastroenterol. Hepatol. 20, 597–614 (2023).

    PubMed  PubMed Central  Google Scholar 

  113. Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).

    CAS  PubMed  Google Scholar 

  114. Fiocchi, C. Inflammatory bowel disease: complexity and variability need integration. Front. Med. 5, 75 (2018).

    Google Scholar 

  115. Fiocchi, C. & Iliopoulos, D. IBD systems biology is here to stay. Inflamm. Bowel Dis. 27, 760–770 (2021).

    PubMed  Google Scholar 

  116. Cusick, M. E., Klitgord, N., Vidal, M. & Hill, D. E. Interactome: gateway into systems biology. Hum. Mol. Genet. 14, R171–R181 (2005).

    CAS  PubMed  Google Scholar 

  117. de Souza, H. S. P., Fiocchi, C. & Iliopoulos, D. The IBD interactome: an integrated view of aetiology, pathogenesis and therapy. Nat. Rev. Gastroenterol. Hepatol. 14, 739–749 (2017).

    PubMed  Google Scholar 

  118. Subramanian, I., Verma, S., Kumar, S., Jere, A. & Anamika, K. Multi-omics data integration, interpretation, and its application. Bioinform Biol. Insights 14, 1177932219899051 (2020).

    PubMed  PubMed Central  Google Scholar 

  119. Peyvandipour, A., Saberian, N., Shafi, A., Donato, M. & Draghici, S. A novel computational approach for drug repurposing using systems biology. Bioinformatics 34, 2817–2825 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lamb, J. et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    CAS  PubMed  Google Scholar 

  121. Sirota, M. et al. Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci. Transl Med. 3, 96ra77 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Subramanian, A. et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Clark, P. M. et al. Bioinformatics analysis reveals transcriptome and microRNA signatures and drug repositioning targets for IBD and other autoimmune diseases. Inflamm. Bowel Dis. 18, 2315–2333 (2012).

    PubMed  Google Scholar 

  124. Collij, V., Festen, E. A. M., Alberts, R. & Weersma, R. K. Drug repositioning in inflammatory bowel disease based on genetic information. Inflamm. Bowel Dis. 22, 2562–2570 (2016).

    PubMed  Google Scholar 

  125. Cai, X., Chen, Y., Gao, Z. & Xu, R. Explore small molecule-induced genome-wide transcriptional profiles for novel inflammatory bowel disease drug. AMIA Jt. Summits Transl Sci. Proc. 2016, 22–31 (2016).

    PubMed  PubMed Central  Google Scholar 

  126. Grenier, L. & Hu, P. Computational drug repurposing for inflammatory bowel disease using genetic information. Comput. Struct. Biotechnol. J. 17, 127–135 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. McShane, L. M. et al. Criteria for the use of omics-based predictors in clinical trials. Nature 502, 317–320 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Otte, M. L. et al. Mucosal healing and inflammatory bowel disease: therapeutic implications and new targets. World J. Gastroenterol. 29, 1157–1172 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Argmann, C. et al. Biopsy and blood-based molecular biomarker of inflammation in IBD. Gut 72, 1271–1287 (2023).

    CAS  PubMed  Google Scholar 

  130. Gilroy, D. W. Resolving inflammation. Nat. Rev. Immunol. 21, 620–621 (2021).

    CAS  PubMed  Google Scholar 

  131. Steere, B. et al. Mirikizumab regulates genes involved in ulcerative colitis disease activity and anti-TNF resistance: results from a phase 2 study. Clin. Transl Gastroenterol. 14, e00578 (2023).

    PubMed  PubMed Central  Google Scholar 

  132. Johnson, T. et al. Mirikizumab-induced transcriptome changes in ulcerative colitis patient biopsies at week 12 are maintained through week 52. Clin. Transl Gastroenterol. 14, e00630 (2023).

    PubMed  PubMed Central  Google Scholar 

  133. Bourgonje, A. R., van Goor, H., Faber, K. N. & Dijkstra, G. Clinical value of multiomics-based biomarker signatures in inflammatory bowel diseases: challenges and opportunities. Clin. Transl Gastroenterol. 14, e00579 (2023).

    PubMed  PubMed Central  Google Scholar 

  134. Weersma, R. K., Xavier, R. J., IBD Multi Omics Consortium, Vermeire, S. & Barrett, J. C. Multiomics analyses to deliver the most effective treatment to every patient with inflammatory bowel disease. Gastroenterology 155, e1–e4 (2018).

    PubMed  Google Scholar 

  135. Seyed Tabib, N. S. et al. Big data in IBD: big progress for clinical practice. Gut 69, 1520–1532 (2020).

    PubMed  Google Scholar 

  136. Han, J. J. FDA Modernization Act 2.0 allows for alternatives to animal testing. Artif. Organs 47, 449–450 (2023).

    PubMed  Google Scholar 

  137. Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    CAS  PubMed  Google Scholar 

  138. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    CAS  PubMed  Google Scholar 

  139. Driehuis, E., Kretzschmar, K. & Clevers, H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat. Protoc. 15, 3380–3409 (2020).

    CAS  PubMed  Google Scholar 

  140. Han, Y. et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature 589, 270–275 (2021).

    CAS  PubMed  Google Scholar 

  141. Perrone, F. & Zilbauer, M. Biobanking of human gut organoids for translational research. Exp. Mol. Med. 53, 1451–1458 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Cong, Y. et al. Drug toxicity evaluation based on organ-on-a-chip technology: a review. Micromachines 11, 381 (2020).

    PubMed  PubMed Central  Google Scholar 

  143. Matsui, T. & Shinozawa, T. Human organoids for predictive toxicology research and drug development. Front. Genet. 12, 767621 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Michiba, K. et al. Usefulness of human jejunal spheroid-derived differentiated intestinal epithelial cells for the prediction of intestinal drug absorption in humans. Drug. Metab. Dispos. 50, 204–213 (2022).

    CAS  PubMed  Google Scholar 

  145. Jelinsky, S. A. et al. Molecular and functional characterization of human intestinal organoids and monolayers for modeling epithelial barrier. Inflamm. Bowel Dis. 29, 195–206 (2023).

    PubMed  Google Scholar 

  146. Xu, P., Elizalde, M., Masclee, A., Pierik, M. & Jonkers, D. Corticosteroid enhances epithelial barrier function in intestinal organoids derived from patients with Crohn’s disease. J. Mol. Med. 99, 805–815 (2021).

    CAS  PubMed  Google Scholar 

  147. Tindle, C. et al. A living organoid biobank of Crohn’s disease patients reveals molecular subtypes for personalized therapeutics. Preprint at bioRxiv https://doi.org/10.1101/2023.03.11.532245 (2023).

  148. Bar-Ephraim, Y. E., Kretzschmar, K. & Clevers, H. Organoids in immunological research. Nat. Rev. Immunol. 20, 279–293 (2020).

    CAS  PubMed  Google Scholar 

  149. Günther, C., Winner, B., Neurath, M. F. & Stappenbeck, T. S. Organoids in gastrointestinal diseases: from experimental models to clinical translation. Gut 71, 1892–1908 (2022).

    PubMed  Google Scholar 

  150. Tian, C. M. et al. Stem cell-derived intestinal organoids: a novel modality for IBD. Cell Death Discov. 9, 1–16 (2023).

    Google Scholar 

  151. Leung, C. M. et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Prim. 2, 1–29 (2022).

    Google Scholar 

  152. Xiang, Y. et al. Gut-on-chip: recreating human intestine in vitro. J. Tissue Eng. 11, 2041731420965318 (2020).

    PubMed  PubMed Central  Google Scholar 

  153. Loewa, A., Feng, J. J. & Hedtrich, S. Human disease models in drug development. Nat. Rev. Bioeng. 1, 545–559 (2023).

    Google Scholar 

  154. Rutherford, D. & Ho, G. T. Therapeutic potential of human intestinal organoids in tissue repair approaches in inflammatory bowel diseases. Inflamm. Bowel Dis. 29, 1488–1498 (2023).

    PubMed  PubMed Central  Google Scholar 

  155. Subbiah, V. The next generation of evidence-based medicine. Nat. Med. 29, 49–58 (2023).

    CAS  PubMed  Google Scholar 

  156. D’Amico, F., Baumann, C., Rousseau, H., Danese, S. & Peyrin-Biroulet, L. Phase I, II and III trials in inflammatory bowel diseases: a practical guide for the non-specialist. J. Crohns Colitis 14, 710–718 (2020).

    PubMed  Google Scholar 

  157. Allegretti, J. R. et al. Low-dose interleukin 2 for the treatment of moderate to severe ulcerative colitis. Gastroenterology 165, 492–495 (2023).

    CAS  PubMed  Google Scholar 

  158. Harris, M. S. & Howden, C. W. Innovative trial designs in GI drug development: why trials succeed and fail. Gastroenterology 156, 1239–1242 (2019).

    PubMed  Google Scholar 

  159. Wong, K. M., Capasso, A. & Eckhardt, S. G. The changing landscape of phase I trials in oncology. Nat. Rev. Clin. Oncol. 13, 106–117 (2016).

    CAS  PubMed  Google Scholar 

  160. Davies, A. et al. Pharmacokinetics and safety of subcutaneous rituximab in follicular lymphoma (SABRINA): stage 1 analysis of a randomised phase 3 study. Lancet Oncol. 15, 343–352 (2014).

    CAS  PubMed  Google Scholar 

  161. Parikh, A. et al. Vedolizumab for the treatment of active ulcerative colitis: a randomized controlled phase 2 dose-ranging study. Inflamm. Bowel Dis. 18, 1470–1479 (2012).

    PubMed  Google Scholar 

  162. Dumville, J. C., Hahn, S., Miles, J. N. V. & Torgerson, D. J. The use of unequal randomisation ratios in clinical trials: a review. Contemp. Clin. Trials 27, 1–12 (2006).

    CAS  PubMed  Google Scholar 

  163. Sandborn, W. J. et al. Guselkumab for the treatment of Crohn’s disease: induction results from the phase 2 GALAXI-1 study. Gastroenterology 162, 1650–1664.e8 (2022).

    CAS  PubMed  Google Scholar 

  164. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03926130 (2023).

  165. Jahanshahi, M. et al. The use of external controls in FDA regulatory decision making. Ther. Innov. Regul. Sci. 55, 1019–1035 https://pubmed.ncbi.nlm.nih.gov/34014439/ (2021).

  166. Honap, S. & Peyrin-Biroulet, L. Review article: externally derived control arms—an opportunity for clinical trials in inflammatory bowel disease? Aliment. Pharmacol. Ther. 58, 659–667 (2023).

    PubMed  Google Scholar 

  167. Zayadi, A. et al. Use of external control arms in immune-mediated inflammatory diseases: a systematic review. BMJ Open 13, e076677 (2023).

    PubMed  PubMed Central  Google Scholar 

  168. Danese, S. et al. Anti-TL1A antibody PF-06480605 safety and efficacy for ulcerative colitis: a phase 2a single-arm study. Clin. Gastroenterol. Hepatol. 19, 2324–2332.e6 (2021).

    CAS  PubMed  Google Scholar 

  169. Croft, N. M. et al. Efficacy and safety of adalimumab in paediatric patients with moderate-to-severe ulcerative colitis (ENVISION I): a randomised, controlled, phase 3 study. Lancet Gastroenterol. Hepatol. 6, 616–627 (2021).

    PubMed  Google Scholar 

  170. Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    CAS  PubMed  Google Scholar 

  171. Pallmann, P. et al. Adaptive designs in clinical trials: why use them, and how to run and report them. BMC Med. 16, 29 (2018).

    PubMed  PubMed Central  Google Scholar 

  172. Park, J. J. H., Mills & E. J., Wathen, J. K. Introduction to Adaptive Trial Designs and Master Protocols (Cambridge Univ. Press, 2023).

  173. Woodcock, J. & LaVange, L. M. Master protocols to study multiple therapies, multiple diseases, or both. N. Engl. J. Med. 377, 62–70 (2017).

    CAS  PubMed  Google Scholar 

  174. Park, J. J. H. et al. Systematic review of basket trials, umbrella trials, and platform trials: a landscape analysis of master protocols. Trials 20, 572 (2019).

    PubMed  PubMed Central  Google Scholar 

  175. D’Amico, F., Danese, S. & Peyrin-Biroulet, L. Adaptive designs: lessons for inflammatory bowel disease trials. J. Clin. Med. 9, 2350 (2020).

    PubMed  PubMed Central  Google Scholar 

  176. The I-SPY Trials (Quantum Leap Healthcare Collaborative, accessed 8 November 2023); https://www.ispytrials.org/.

  177. Barker, A. et al. I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin. Pharmacol. Ther. 86, 97–100 (2009).

    CAS  PubMed  Google Scholar 

  178. Rugo, H. S. et al. Adaptive randomization of veliparib–carboplatin treatment in breast cancer. N. Engl. J. Med. 375, 23–34 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Sandborn, W. J. et al. Oral ritlecitinib and brepocitinib for moderate-to-severe ulcerative colitis: results from a randomized, phase 2b study. Clin. Gastroenterol. Hepatol. S1542-3565, 00007-1 (2023).

    Google Scholar 

  180. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05499130 (2024).

  181. ISRCTN. A clinical trial to see if a mesenchymal stem cells treatment called ORBCEL-CTM can help to treat primary sclerosing cholangitis, rheumatoid arthritis, lupus nephritis and Crohn’s disease. ISRCTN registry https://www.isrctn.com/ISRCTN80103507 (2023).

  182. Pathiyil, M. M. et al. Representation and reporting of diverse groups in randomised controlled trials of pharmacological agents in inflammatory bowel disease: a systematic review. Lancet Gastroenterol. Hepatol. 8, 1143–1151 (2023).

    PubMed  Google Scholar 

  183. D’Haens, G. et al. Mirikizumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 388, 2444–2455 (2023).

    PubMed  Google Scholar 

  184. Sedano, R. et al. Design of clinical trials for mild to moderate ulcerative colitis. Gastroenterology 162, 1005–1018 (2022).

    PubMed  Google Scholar 

  185. Vermeire, S. et al. Clinical remission in patients with moderate-to-severe Crohn’s disease treated with filgotinib (the FITZROY study): results from a phase 2, double-blind, randomised, placebo-controlled trial. Lancet 389, 266–275 (2017).

    CAS  PubMed  Google Scholar 

  186. Feagan, B. G. et al. Filgotinib as induction and maintenance therapy for ulcerative colitis (SELECTION): a phase 2b/3 double-blind, randomised, placebo-controlled trial. Lancet 397, 2372–2384 (2021).

    CAS  PubMed  Google Scholar 

  187. Sandborn, W. J. et al. Ozanimod as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 385, 1280–1291 (2021).

    CAS  PubMed  Google Scholar 

  188. Sands, B. E. et al. Vedolizumab versus adalimumab for moderate-to-severe ulcerative colitis. N. Engl. J. Med. 381, 1215–1226 (2019).

    CAS  PubMed  Google Scholar 

  189. Sands, B. E. et al. Ustekinumab versus adalimumab for induction and maintenance therapy in biologic-naive patients with moderately to severely active Crohn’s disease: a multicentre, randomised, double-blind, parallel-group, phase 3b trial. Lancet 399, 2200–2211 (2022).

    CAS  PubMed  Google Scholar 

  190. Gastroenterology Advances. Risankizumab meets all endpoints vs ustekinumab for Crohn’s disease. Gastroenterology Learning Network https://www.hmpgloballearningnetwork.com/site/gastro/advances/risankizumab-meets-all-endpoints-versus-ustekinumab-crohns-disease-0 (2023).

  191. Ye, B. D. et al. Efficacy and safety of biosimilar CT-P13 compared with originator infliximab in patients with active Crohn’s disease: an international, randomised, double-blind, phase 3 non-inferiority study. Lancet 393, 1699–1707 (2019).

    CAS  PubMed  Google Scholar 

  192. Grant, R. K. et al. The ACE (Albumin, CRP and Endoscopy) index in acute colitis: a simple clinical index on admission that predicts outcome in patients with acute ulcerative colitis. Inflamm. Bowel Dis. 27, 451–457 (2021).

    PubMed  Google Scholar 

  193. Adams, A. et al. Early management of acute severe UC in the biologics era: development and international validation of a prognostic clinical index to predict steroid response. Gut 72, 433–442 (2023).

    CAS  PubMed  Google Scholar 

  194. Travis, S. et al. Vedolizumab for the treatment of chronic pouchitis. N. Engl. J. Med. 388, 1191–1200 (2023).

    CAS  PubMed  Google Scholar 

  195. Panés, J. et al. Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn’s disease: a phase 3 randomised, double-blind controlled trial. Lancet 388, 1281–1290 (2016).

    PubMed  Google Scholar 

  196. Panés, J. et al. Long-term efficacy and safety of stem cell therapy (Cx601) for complex perianal fistulas in patients with Crohn’s disease. Gastroenterology 154, 1334–1342 (2018).

    PubMed  Google Scholar 

  197. Takeda. Takeda announces topline results of phase 3 ADMIRE-CD II trial of Alofisel (darvadstrocel) in complex Crohn’s perianal fistulas. Takeda https://www.takeda.com/newsroom/newsreleases/2023/Takeda-Announces-Topline-Results-of-Phase-3-ADMIRE-CD-II-Trial-of-Alofisel-darvadstrocel-in-Complex-Crohns-Perianal-Fistulas/ (2023).

  198. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05843578 (2024).

  199. Leona M. and Harry B. Helmsley Charitable Trust. Endpoint development for ostomy clinical trials (EndO-Trial) consortium. Helmsley Charitable Trust https://helmsleytrust.org/grants/university-of-western-ontario-20196486/ (2024).

  200. Lenze, E. J. et al. Fluvoxamine vs placebo and clinical deterioration in outpatients with symptomatic COVID-19: a randomized clinical trial. JAMA 324, 2292–2300 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Simmons, L. A. et al. From hybrid to fully remote clinical trial amidst the COVID-19 pandemic: strategies to promote recruitment, retention, and engagement in a randomized mHealth trial. Digital Health 8, 20552076221129065 (2022).

    PubMed  PubMed Central  Google Scholar 

  202. Xue, J. Z. et al. Clinical trial recovery from COVID-19 disruption. Nat. Rev. Drug Discov. 19, 662–663 (2020).

    PubMed  Google Scholar 

  203. Bouhnik Y, Hebuterne X, Raith M. P675 CT-Scout platform, the digital solution to boost patient recruitment in inflammatory bowel disease clinical trials: a multicentre prospective observational comparative study. ECCO https://www.ecco-ibd.eu/publications/congress-abstracts/item/p675-ct-scout-platform-the-digital-solution-to-boost-patient-recruitment-in-inflammatory-bowel-disease-clinical-trials-a-multicentre-prospective-observational-comparative-study.html (2023).

  204. Bouhnik, Y., Louis, E. & Peyrin-Biroulet, L. Looking for innovative digital solutions to optimize patient recruitment in inflammatory bowel disease trials. Gastroenterology 158, 2306–2307 (2020).

    PubMed  Google Scholar 

  205. CTMA. Clinical trials mobile application. CTMA https://www.ctma.fr/ (2023).

  206. US Food and Drug Administration. Informed consent. FDA https://www.fda.gov/regulatory-information/search-fda-guidance-documents/informed-consent (2023).

  207. Mitchell, E. J. et al. e-Consent in UK academic-led clinical trials: current practice, challenges and the need for more evidence. Trials 24, 657 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Otobo, E. et al. P039 reinventing inflammatory bowel disease clinical trial recruitment using novel digital medicine tools. Inflamm. Bowel Dis. 25, S19–S20 (2019).

    Google Scholar 

  209. Howell, C. A. et al. Double-blinded randomised placebo controlled trial of enterosgel (polymethylsiloxane polyhydrate) for the treatment of IBS with diarrhoea (IBS-D). Gut 71, 2430–2438 (2022).

    CAS  PubMed  Google Scholar 

  210. Do, N. T. T. et al. Implementation of point-of-care testing of C-reactive protein concentrations to improve antibiotic targeting in respiratory illness in Vietnamese primary care: a pragmatic cluster-randomised controlled trial. Lancet Infect. Dis. 23, 1085–1094 (2023).

    CAS  PubMed  Google Scholar 

  211. Heida, A. et al. Agreement between home-based measurement of stool calprotectin and ELISA results for monitoring inflammatory bowel disease activity. Clin. Gastroenterol. Hepatol. 15, 1742–1749 (2017).

    CAS  PubMed  Google Scholar 

  212. Östlund, I., Werner, M. & Karling, P. Self-monitoring with home based fecal calprotectin is associated with increased medical treatment. A randomized controlled trial on patients with inflammatory bowel disease. Scand. J. Gastroenterol. 56, 38–45 (2021).

    PubMed  Google Scholar 

  213. Berre, C. L. et al. Selecting end points for disease-modification trials in inflammatory bowel disease: the sPIRIT consensus from the IOIBD. Gastroenterology 160, 1452–1460.e21 (2021).

    PubMed  Google Scholar 

  214. Jagannath, B. et al. A sweat-based wearable enabling technology for real-time monitoring of IL-1β and CRP as potential markers for inflammatory bowel disease. Inflamm. Bowel Dis. 26, 1533–1542 (2020).

    PubMed  Google Scholar 

  215. Hirten, R. P. et al. Longitudinal monitoring of IL-6 and CRP in inflammatory bowel disease using IBD-AWARE. Biosens. Bioelectron. X 16, 100435 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Brosteanu, O. et al. Risk-adapted monitoring is not inferior to extensive on-site monitoring: results of the ADAMON cluster-randomised study. Clin. Trials 14, 584–596 (2017).

    PubMed  PubMed Central  Google Scholar 

  217. European Medicines Agency. Guideline on computerised systems and electronic data in clinical trials. EMA https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/guideline-computerised-systems-and-electronic-data-clinical-trials_en.pdf (2023).

  218. Lensen, S. et al. Access to routinely collected health data for clinical trials—review of successful data requests to UK registries. Trials 21, 398 (2020).

    PubMed  PubMed Central  Google Scholar 

  219. Noor, N. & Siegel, C. A. Leveraging virtual technology to conduct clinical trials in inflammatory bowel disease. Gastroenterol. Hepatol. 19, 468–474 (2023).

    Google Scholar 

  220. Hanzel, J. et al. Approval timelines for advanced therapeutics in inflammatory bowel disease: a comparison between the European Medicines Agency and the Food and Drug Administration. Inflamm. Bowel Dis. https://doi.org/10.1093/ibd/izad168 (2023).

  221. AbbVie. AbbVie receives orphan drug designation for investigational IL-23 inhibitor risankizumab from the U.S. Food and Drug Administration for the treatment of pediatric patients with Crohn’s disease. AbbVie News Center https://news.abbvie.com/2016-11-30-AbbVie-Receives-Orphan-Drug-Designation-for-Investigational-IL-23-Inhibitor-Risankizumab-from-the-U-S-Food-and-Drug-Administration-for-the-Treatment-of-Pediatric-Patients-with-Crohns-Disease (2023).

  222. European Medicines Agency. EU/3/11/875 - orphan designation for treatment of pouchitis: Metronidazole. EMA https://www.ema.europa.eu/en/medicines/human/orphan-designations/eu-3-11-875 (2011).

  223. BioSpace. Applied Molecular Transport announces FDA orphan drug designation granted to AMT-101 for treatment of pouchitis. BioSpace https://www.biospace.com/article/releases/applied-molecular-transport-announces-fda-orphan-drug-designation-granted-to-amt-101-for-treatment-of-pouchitis/ (2022).

  224. Targan, S. R. et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor α for Crohn’s disease. N. Engl. J. Med. 337, 1029–1036 (1997).

    CAS  PubMed  Google Scholar 

  225. Hanauer, S. B. et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet 359, 1541–1549 (2002).

    CAS  PubMed  Google Scholar 

  226. Sands, B. E., Blank, M. A., Patel, K. & van Deventer, S. J. ACCENT II Study. Long-term treatment of rectovaginal fistulas in Crohn’s disease: response to infliximab in the ACCENT II Study. Clin. Gastroenterol. Hepatol. 2, 912–920 (2004).

    CAS  PubMed  Google Scholar 

  227. Rutgeerts, P. et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 353, 2462–2476 (2005).

    CAS  PubMed  Google Scholar 

  228. Hanauer, S. B. et al. Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC-I trial. Gastroenterology 130, 323–333; quiz 591 (2006).

    CAS  PubMed  Google Scholar 

  229. Sandborn, W. J. et al. Adalimumab for maintenance treatment of Crohn’s disease: results of the CLASSIC II trial. Gut 56, 1232–1239 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Sandborn, W. J. et al. Adalimumab induces and maintains clinical remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology 142, 257–265 (2012).

    CAS  PubMed  Google Scholar 

  231. Sandborn, W. J. et al. Subcutaneous golimumab induces clinical response and remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology 146, 85–95; quiz e14–15 (2014).

    CAS  PubMed  Google Scholar 

  232. Sandborn, W. J. et al. Subcutaneous golimumab maintains clinical response in patients with moderate-to-severe ulcerative colitis. Gastroenterology 146, 96–109 (2014).

    CAS  PubMed  Google Scholar 

  233. Sandborn, W. J. et al. Certolizumab pegol for the treatment of Crohn’s disease. N. Engl. J. Med. 357, 228–238 (2007).

    CAS  PubMed  Google Scholar 

  234. Feagan, B. G. et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 369, 699–710 (2013).

    CAS  PubMed  Google Scholar 

  235. Feagan, B. G. et al. Ustekinumab as induction and maintenance therapy for Crohn’s disease. N. Engl. J. Med. 375, 1946–1960 (2016).

    CAS  PubMed  Google Scholar 

  236. Sands, B. E. et al. Ustekinumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 381, 1201–1214 (2019).

    CAS  PubMed  Google Scholar 

  237. Sandborn, W. J. et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 376, 1723–1736 (2017).

    CAS  PubMed  Google Scholar 

  238. Loftus, E. V. et al. Upadacitinib induction and maintenance therapy for Crohn’s disease. N. Engl. J. Med. 388, 1966–1980 (2023).

    CAS  PubMed  Google Scholar 

  239. Danese, S. et al. Upadacitinib as induction and maintenance therapy for moderately to severely active ulcerative colitis: results from three phase 3, multicentre, double-blind, randomised trials. Lancet 399, 2113–2128 (2022).

    CAS  PubMed  Google Scholar 

  240. Sandborn, W. J. et al. Ozanimod induction and maintenance treatment for ulcerative colitis. N. Engl. J. Med. 374, 1754–1762 (2016).

    CAS  PubMed  Google Scholar 

  241. Sandborn, W. J. et al. Etrasimod as induction and maintenance therapy for ulcerative colitis (ELEVATE): two randomised, double-blind, placebo-controlled, phase 3 studies. Lancet 401, 1159–1171 (2023).

    PubMed  Google Scholar 

  242. Ferrante, M. et al. Risankizumab as maintenance therapy for moderately to severely active Crohn’s disease: results from the multicentre, randomised, double-blind, placebo-controlled, withdrawal phase 3 FORTIFY maintenance trial. Lancet 399, 2031–2046 (2022).

    CAS  PubMed  Google Scholar 

  243. Peyrin-Biroulet, L. et al. The efficacy and safety of guselkumab induction therapy in patients with moderately to severely active ulcerative colitis: results from the phase 3 QUASAR induction study. U Eur. Gastroenterol. J. 11, 45 (2023).

    Google Scholar 

  244. Ferrante, M. et al. OP05 Primary efficacy and safety of mirikizumab in moderate to severe Crohn’s disease: results of the treat-through VIVID 1 study. J. Crohn’s Colitis 18, i7–i9 (2024).

    Google Scholar 

  245. AbbVie. Risankizumab (SKYRIZI®) met primary and key secondary endpoints in 52-week phase 3 maintenance study in ulcerative colitis patients. AbbVie News Center https://news.abbvie.com/2023-06-15-Risankizumab-SKYRIZI-R-Met-Primary-and-Key-Secondary-Endpoints-in-52-Week-Phase-3-Maintenance-Study-in-Ulcerative-Colitis-Patients (2023).

  246. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03341962 (2024).

  247. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05611671 (2024).

  248. Vermeire, S. et al. ABX464 (obefazimod) for moderate-to-severe, active ulcerative colitis: a phase 2b, double-blind, randomised, placebo-controlled induction trial and 48 week, open-label extension. Lancet Gastroenterol. Hepatol. 7, 1024–1035 (2022).

    PubMed  Google Scholar 

  249. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05507203 (2024).

  250. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05535946 (2023).

  251. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06052059 (2024).

  252. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05910528 (2024).

  253. Allegretti, J. et al. Low dose IL-2 for the treatment of moderate to severe ulcerative colitis. Gastroenterology 160, S9–S10 (2021).

    Google Scholar 

  254. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04987307 (2024).

  255. Firoozbhakt, F., Sarkar, N., Gorski, K. & Tchao, N. Targeting improved T-reg selectivity with the IL-2 mutein efavaleukin alfa: rationale for IL-2 therapy in ulcerative colitis. U Eur. Gastroenterol. J. 11, 959 (2023).

    Google Scholar 

  256. Sands, B. E. et al. OP03 Efficacy and safety of the oral selective sphingosine-1-phosphate-1 receptor modulator VTX002 in moderately to severely active ulcerative colitis: results from a randomised, double-blind, placebo-controlled, phase 2 trial. J. Crohns Colitis 18, i4–i5 (2024).

    Google Scholar 

  257. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03599622 (2024).

  258. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05181137 (2023).

  259. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03677648 (2023).

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the development of presented concepts and writing of the manuscript.

Corresponding authors

Correspondence to Sailish Honap or Laurent Peyrin-Biroulet.

Ethics declarations

Competing interests

S.H. served as a speaker, a consultant, an advisory board member and/or has received travel grants from Pfizer, Janssen, AbbVie, Takeda, Ferring and Pharmacosmos. V.J. has received consulting/advisory board fees from AbbVie, Alimentiv Inc., Arena Pharmaceuticals, Asahi Kasei Pharma, Asieris, AstraZeneca, Bristol Myers Squibb, Celltrion, Eli Lilly, Ferring, Flagship Pioneering, Fresenius Kabi, Galapagos, GlaxoSmithKline, Genentech, Gilead, Janssen, Merck, Metacrine, Mylan, Pandion, Pendopharm, Pfizer, Protagonist, Prometheus, Reistone Biopharma, Roche, Sandoz, Second Genome, Sorriso Pharmaceuticals, Takeda, Teva, Topivert, Ventyx and Vividion; and speaker fees from AbbVie, Ferring, Bristol Myers Squibb, Galapagos, Janssen, Pfizer, Shire, Takeda and Fresenius Kabi. S.D. has served as a speaker, consultant and advisory board member for Schering-Plough, AbbVie, Actelion, Alphawasserman, AstraZeneca, Cellerix, Cosmo Pharmaceuticals, Ferring, Genentech, Grunenthal, Johnson and Johnson, Millenium Takeda, MSD, Nikkiso Europe GmbH, Novo Nordisk, Nycomed, Pfizer, Pharmacosmos, UCB Pharma and Vifor. L.P.-B. reports consulting fees from AbbVie, Abivax, Adacyte, Alimentiv, Amgen, Applied Molecular Transport, Arena, Banook, Biogen, Bristol Myers Squibb, Celltrion, Connect Biopharm, Cytoki Pharma, Enthera, Ferring, Fresenius Kabi, Galapagos, Genentech, Gilead, Gossamer Bio, GSK, IAC Image Analysis, Index Pharmaceuticals, Inotrem, Janssen, Lilly, Medac, Mopac, Morphic, MSD, Nordic Pharma, Novartis, Oncodesign Precision Medicine, ONO Pharma, OSE Immunotherapeuthics, Pandion Therapeuthics, Par’Immune, Pfizer, Prometheus, Protagonist, Roche, Samsung, Sandoz, Sanofi, Satisfay, Takeda, Telavant, Theravance, Thermo Fischer, Tigenix, Tillots, Viatris, Vectivbio, Ventyx and Ysopia; grants from Celltrion, Fresenius Kabi, Medac, MSD and Takeda; lecture fees from AbbVie, Amgen, Arena, Biogen, Celltrion, Ferring, Galapagos, Genentech, Gilead, Janssen, Lilly, Medac, MSD, Nordic Pharma, Pfizer, Sandoz, Takeda, Tillots and Viatris; and travel support from AbbVie, Amgen, Celltrion, Connect Biopharm, Ferring, Galapagos, Genentech, Gilead, Gossamer Bio, Janssen, Lilly, Medac, Morphic, MSD, Pfizer, Sandoz, Takeda, Thermo Fischer and Tillots.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Kenneth Hung and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honap, S., Jairath, V., Danese, S. et al. Navigating the complexities of drug development for inflammatory bowel disease. Nat Rev Drug Discov 23, 546–562 (2024). https://doi.org/10.1038/s41573-024-00953-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-024-00953-0

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research