Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Trajectories of brain and behaviour development in the womb, at birth and through infancy

Abstract

Birth is often seen as the starting point for studying effects of the environment on human development, with much research focused on the capacities of young infants. However, recent imaging advances have revealed that the complex behaviours of the fetus and the uterine environment exert influence. Birth is now viewed as a punctuate event along a developmental pathway of increasing autonomy of the child from their mother. Here we highlight (1) increasing physiological autonomy and perceptual sensitivity in the fetus, (2) physiological and neurochemical processes associated with birth that influence future behaviour, (3) the recalibration of motor and sensory systems in the newborn to adapt to the world outside the womb and (4) the effect of the prenatal environment on later infant behaviours and brain function. Taken together, these lines of evidence move us beyond nature–nurture issues to a developmental human lifespan view beginning within the womb.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of perinatal brain and behavioural development.
Fig. 2: A timeline of sensory development from prenatal to postnatal life.

Similar content being viewed by others

References

  1. de Haan, M. D. H., Dumontheil, I. & Johnson, M. H. Developmental Cognitive Neuroscience: An Introduction 5th edn (Wiley, 2023).

  2. Maccari, S. et al. Early-life experiences and the development of adult diseases with a focus on mental illness: the human birth theory. Neuroscience 342, 232–251 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Tinbergen, N. The Study of Instinct (Oxford Univ. Press, 1951).

  4. Gottlieb, G. Social induction of malleability in ducklings: sensory basis and psychological mechanism. Anim. Behav. 45, 707–719 (1993).

    Article  Google Scholar 

  5. Lickliter, R. & Lewkowicz, D. J. Intersensory experience and early perceptual development: attenuated prenatal sensory stimulation affects postnatal auditory and visual responsiveness in bobwhite quail chicks (Colinus virginianus). Dev. Psychol. 31, 609–618 (1995).

  6. Lickliter, R. & Gottlieb, G. Visually imprinted maternal preference in ducklings is redirected by social interaction with siblings. Dev. Psychobiol. 19, 265–277 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Bolhuis, J. J., Johnson, M. H. & Horn, G. Effects of early experience on the development of filial preferences in the domestic chick. Dev. Psychobiol. 18, 299–308 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Spelke, E. S. & Kinzler, K. D. Core knowledge. Dev. Sci. 10, 89–96 (2007).

    Article  PubMed  Google Scholar 

  9. Fiser, J. & Aslin, R. N. Statistical learning of new visual feature combinations by infants. Proc. Natl Acad. Sci. USA 99, 15822–15826 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Prechtl, H. F. R. Continuity of Neural Functions from Prenatal to Postnatal Life (Cambridge Univ. Press, 1984).

  11. Lickliter, R. & Bahrick, L. E. in Fetal Development: Research on Brain and Behavior, Environmental Influences, and Emerging Technologies (eds Reissland, N. & Kisilevsky, B. S.) 3–14 (Springer, 2016).

  12. Polese, D. et al. The newborn’s reaction to light as the determinant of the brain’s activation at human birth. Front. Integr. Neurosci. 16, 933426 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kisilvesky, B. S. & Muir, D. W. Human fetal and subsequent newborn responses to sound and vibration. Infant Behav. Dev. 14, 1–26 (1991).

    Article  Google Scholar 

  14. Stanojevic, M., Zaputovic, S. & Bosnjak, A. P. Continuity between fetal and neonatal neurobehavior. Semin. Fetal Neonatal Med. 17, 324–329 (2012).

    Article  PubMed  Google Scholar 

  15. De Asis-Cruz, J. et al. Global network organization of the fetal functional connectome. Cereb. Cortex 31, 3034–3046 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Doria, V. et al. Emergence of resting state networks in the preterm human brain. Proc. Natl Acad. Sci. USA 107, 20015–20020 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stiles, J. & Jernigan, T. L. The basics of brain development. Neuropsychol. Rev. 20, 327–348 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Humphreys, K. L. & Salo, V. C. Expectable environments in early life. Curr. Opin. Behav. Sci. 36, 115–119 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mayer, C. & Joseph, K. S. Fetal growth: a review of terms, concepts and issues relevant to obstetrics. Ultrasound Obstet. Gynecol. 41, 136–145 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Iñiguez, C. et al. Maternal smoking during pregnancy and fetal biometry: the INMA Mother and Child Cohort Study. Am. J. Epidemiol. 178, 1067–1075 (2013).

    Article  PubMed  Google Scholar 

  21. Jaddoe, V. W. V. et al. Maternal smoking and fetal growth characteristics in different periods of pregnancy: the generation R study. Am. J. Epidemiol. 165, 1207–1215 (2007).

    Article  PubMed  Google Scholar 

  22. Reissland, N. et al. Prenatal effects of maternal nutritional stress and mental health on the fetal movement profile. Arch. Gynecol. Obstet. 302, 65–75 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Asis-Cruz, J. et al. Examining the relationship between fetal cortical thickness, gestational age, and maternal psychological distress. Dev. Cogn. Neurosci. 63, 101282 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lebit, D. F.-D. & Vladareanu, P. D. R. The role of 4D ultrasound in the assessment of fetal behaviour. Maedica 6, 120–127 (2011).

    PubMed  PubMed Central  Google Scholar 

  25. Reissland, N., Froggatt, S., Reames, E. & Girkin, J. Effects of maternal anxiety and depression on fetal neuro-development. J. Affect. Disord. 241, 469–474 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Parma, V., Brasselet, R., Zoia, S., Bulgheroni, M. & Castiello, U. The origin of human handedness and its role in pre-birth motor control. Sci. Rep. 7, 16804 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shuffrey, L. C. et al. Fetal heart rate, heart rate variability, and heart rate/movement coupling in the Safe Passage Study. J. Perinatol. 39, 608–618 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dipietro, J. A., Voegtline, K. M., Pater, H. A. & Costigan, K. A. Predicting child temperament and behavior from the fetus. Dev. Psychopathol. 30, 855–870 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Namburete, A. I. L. et al. Learning-based prediction of gestational age from ultrasound images of the fetal brain. Med. Image Anal. 21, 72–86 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gao, Y. & Alison Noble, J. in Medical Image Computing and Computer-Assisted Intervention—MICCAI 2017, 305–313 (Springer, 2017).

  31. De Asis-Cruz, J., Barnett, S. D., Kim, J. H. & Limperopoulos, C. Functional connectivity-derived optimal gestational-age cut points for fetal brain network maturity. Brain Sci. 11, 2076–3425 (2021).

    Article  Google Scholar 

  32. Karolis, V. R. et al. Maturational networks of human fetal brain activity reveal emerging connectivity patterns prior to ex-utero exposure. Commun. Biol. 6, 661 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Spann, M. N. et al. Association of maternal prepregnancy body mass index with fetal growth and neonatal thalamic brain connectivity among adolescent and young women. JAMA Netw. Open 3, e2024661 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Norr, M. E., Hect, J. L., Lenniger, C. J., Van den Heuvel, M. & Thomason, M. E. An examination of maternal prenatal BMI and human fetal brain development. J. Child Psychol. Psychiatry 62, 458–469 (2021).

    Article  PubMed  Google Scholar 

  35. Thomason, M. E., Hect, J. L., Waller, R. & Curtin, P. Interactive relations between maternal prenatal stress, fetal brain connectivity, and gestational age at delivery. Neuropsychopharmacology 46, 1839–1847 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. van den Heuvel, M. I. et al. Maternal stress during pregnancy alters fetal cortico-cerebellar connectivity in utero and increases child sleep problems after birth. Sci. Rep. 11, 2228 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ji, L., Hendrix, C. L. & Thomason, M. E. Empirical evaluation of human fetal fMRI preprocessing steps. Netw. Neurosci. 6, 702–721 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Thomason, M., Austin, A. & Hendrix, C. Fetal amygdala functional connectivity relates to autism spectrum disorder traits at age 3. Biol. Psychiatry 89, S29 (2021).

    Article  Google Scholar 

  39. Alkandari, F., Ellahi, A., Aucott, L., Devereux, G. & Turner, S. Fetal ultrasound measurements and associations with postnatal outcomes in infancy and childhood: a systematic review of an emerging literature. J. Epidemiol. Community Health 69, 41–48 (2015).

    Article  PubMed  Google Scholar 

  40. Montagu, A. Touching: The Human Significance of the Skin (Harper and Row, 1978).

  41. Zoia, S. et al. Evidence of early development of action planning in the human foetus: a kinematic study. Exp. Brain Res. 176, 217–226 (2007).

    Article  PubMed  Google Scholar 

  42. Reissland, N., & Austen, J. in Reach-to-Grasp Behavior: Brain, Behavior, and Modelling Across the Life Span (eds Corbetta, D. & Santello, M.) 3–17 (Routledge, 2018).

  43. de Vries, J. I., Visser, G. H., Mulder, E. J. & Prechtl, H. F. Diurnal and other variations in fetal movement and heart rate patterns at 20–22 weeks. Early Hum. Dev. 15, 333–348 (1987).

    Article  PubMed  Google Scholar 

  44. Kostović, I. & Jovanov-Milosević, N. The development of cerebral connections during the first 20–45 weeks’ gestation. Semin. Fetal Neonatal Med. 11, 415–422 (2006).

    Article  PubMed  Google Scholar 

  45. Piontelli, A. et al. in Development of Normal Fetal Movements: The Last 15 Weeks of Gestation (ed. Piontelli, A.) 41–51 (Springer, 2015).

  46. Išasegi, I. Ž., Krsnik, Ž. & Kostović, I. in Factors Affecting Neurodevelopment (eds. Martin, C. R. et al.) 299–307 (Elsevier, 2021).

  47. Ustun, B., Covey, J. & Reissland, N. Chemosensory continuity from prenatal to postnatal life in humans: a systematic review and meta-analysis. PLoS ONE 18, e0283314 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lagercrantz, H. in Infant Brain Development: Formation of the Mind and the Emergence of Consciousness (ed. Lagercrantz, H.) 43–52 (Springer, 2016).

  49. DiPietro, J. A., Hodgson, D. M., Costigan, K. A., Hilton, S. C. & Johnson, T. R. Development of fetal movement–fetal heart rate coupling from 20 weeks through term. Early Hum. Dev. 44, 139–151 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Lüchinger, A. B., Hadders-Algra, M., van Kan, C. M. & de Vries, J. I. P. Fetal onset of general movements. Pediatr. Res. 63, 191–195 (2008).

    Article  PubMed  Google Scholar 

  51. Zoia, S. et al. The development of upper limb movements: from fetal to post-natal life. PLoS ONE 8, e80876 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ferrari, G. A. et al. Ultrasonographic investigation of human fetus responses to maternal communicative and non-communicative stimuli. Front. Psychol. 7, 354 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Reissland, N., Francis, B., Buttanshaw, L., Austen, J. M. & Reid, V. Do fetuses move their lips to the sound that they hear? An observational feasibility study on auditory stimulation in the womb. Pilot Feasibility Stud. 2, 14 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Myowa-Yamakoshi, M. & Takeshita, H. Do human fetuses anticipate self-oriented actions? A study by four-dimensional (4D) ultrasonography. Infancy 10, 289–301 (2006).

    Article  Google Scholar 

  55. Reissland, N., Francis, B., Aydin, E., Mason, J. & Schaal, B. The development of anticipation in the fetus: a longitudinal account of human fetal mouth movements in reaction to and anticipation of touch. Dev. Psychobiol. 56, 955–963 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Fagard, J., Esseily, R., Jacquey, L., O’Regan, K. & Somogyi, E. Fetal origin of sensorimotor behavior. Front. Neurorobot. 12, 23 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Morton, S. U. & Brodsky, D. Fetal physiology and the transition to extrauterine life. Clin. Perinatol. 43, 395–407 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lecanuet, J. P. & Schaal, B. Fetal sensory competencies. Eur. J. Obstet. Gynecol. Reprod. Biol. 68, 1–23 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Verbruggen, S. W. et al. Stresses and strains on the human fetal skeleton during development. J. R. Soc. Interface 15, 20170593 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Simion, F., Regolin, L. & Bulf, H. A predisposition for biological motion in the newborn baby. Proc. Natl Acad. Sci. USA 105, 809–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Del Giudice, M. Alone in the dark? Modeling the conditions for visual experience in human fetuses. Dev. Psychobiol. 53, 214–219 (2011).

    Article  PubMed  Google Scholar 

  62. Dunn, K., Reissland, N. & Reid, V. M. The functional foetal brain: a systematic preview of methodological factors in reporting foetal visual and auditory capacity. Dev. Cogn. Neurosci. 13, 43–52 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Reppert, S. M., Weaver, D. R. & Godson, C. Melatonin receptors step into the light: cloning and classification of subtypes. Trends Pharmacol. Sci. 17, 100–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Bolnick, J. M., Garcia, G., Fletcher, B. G. & Rayburn, W. F. Cross-over trial of fetal heart rate response to halogen light and vibroacoustic stimulation. J. Matern. Fetal Neonatal Med. 19, 215–219 (2006).

    Article  PubMed  Google Scholar 

  65. Donovan, T., Dunn, K., Penman, A., Young, R. J. & Reid, V. M. Fetal eye movements in response to a visual stimulus. Brain Behav. 10, e01676 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Reid, V. M. et al. The human fetus preferentially engages with face-like visual stimuli. Curr. Biol. 28, 824 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Scheel, A. M., Ritchie, S. J., Brown, N. J. & Jacques, S. L. Methodological problems in a study of fetal visual perception. Curr. Biol. 28, R594–R596 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Reissland, N., Wood, R., Einbeck, J. & Lane, A. Effects of maternal mental health on fetal visual preference for face-like compared to non-face like light stimulation. Early Hum. Dev. 151, 105227 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Hepper, P. G. & Shahidullah, B. S. Development of fetal hearing. Arch. Dis. Child. Fetal Neonatal Ed. 71, F81–F87 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lecanuet, J. P. et al. What sounds reach fetuses: biological and nonbiological modeling of the transmission of pure tones. Dev. Psychobiol. 33, 203–219 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Moore, J. K. & Linthicum, F. H. Jr. The human auditory system: a timeline of development. Int. J. Audiol. 46, 460–478 (2007).

    Article  PubMed  Google Scholar 

  72. Groome, L. J. et al. Behavioral state affects heart rate response to low-intensity sound in human fetuses. Early Hum. Dev. 54, 39–54 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Kisilevsky, B. S. et al. Effects of experience on fetal voice recognition. Psychol. Sci. 14, 220–224 (2003).

    Article  PubMed  Google Scholar 

  74. Morokuma, S. et al. Developmental change in fetal response to repeated low-intensity sound. Dev. Sci. 11, 47–52 (2008).

    Article  PubMed  Google Scholar 

  75. Draganova, R., Eswaran, H., Murphy, P., Lowery, C. & Preissl, H. Serial magnetoencephalographic study of fetal and newborn auditory discriminative evoked responses. Early Hum. Dev. 83, 199–207 (2007).

    Article  PubMed  Google Scholar 

  76. Winkler, I. et al. Newborn infants can organize the auditory world. Proc. Natl Acad. Sci. USA 100, 11812–11815 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Busnel, M. C. et al. Effects of mother’s pertinent addressed speech on the fetal heart rate: a spectral analysis study. 82. Pediatr. Res. 39, 16 (1996).

    Article  Google Scholar 

  78. Voegtline, K. M., Costigan, K. A., Pater, H. A. & DiPietro, J. A. Near-term fetal response to maternal spoken voice. Infant Behav. Dev. 36, 526–533 (2013).

    Article  PubMed  Google Scholar 

  79. Moon, C. M. & Fifer, W. P. Evidence of transnatal auditory learning. J. Perinatol. 20, S37–S44 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Krueger, C. A., Cave, E. C. & Garvan, C. Fetal response to live and recorded maternal speech. Biol. Res. Nurs. 17, 112–120 (2015).

    Article  PubMed  Google Scholar 

  81. Fernald, A. Expanded Intonation Contours in Mothers’ Speech to Newborn (Univ. of Oregon, 1979).

  82. Webb, A. R., Heller, H. T., Benson, C. B. & Lahav, A. Mother’s voice and heartbeat sounds elicit auditory plasticity in the human brain before full gestation. Proc. Natl Acad. Sci. USA 112, 3152–3157 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. DeCasper, A. J. & Fifer, W. P. Of human bonding: newborns prefer their mothers’ voices. Science 208, 1174–1176 (1980).

    Article  CAS  PubMed  Google Scholar 

  84. Carvalho, M. E. S. et al. Vocal responsiveness of preterm infants to maternal infant-directed speaking and singing during skin-to-skin contact (kangaroo care) in the NICU. Infant Behav. Dev. 57, 101332 (2019).

    Article  PubMed  Google Scholar 

  85. Masek, L. R. et al. Where language meets attention: how contingent interactions promote learning. Dev. Rev. 60, 100961 (2021).

    Article  Google Scholar 

  86. Meltzoff, A. N. & Moore, M. K. in The Body and the Self 43–69 (1995).

  87. Shultz, S., Klin, A. & Jones, W. Neonatal transitions in social behavior and their implications for autism. Trends Cogn. Sci. 22, 452–469 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gopnik, A. The Philosophical Baby: What Children’s Minds Tell Us about Truth, Love and the Meaning of Life (Random House, 2009).

  89. Mampe, B., Friederici, A. D., Christophe, A. & Wermke, K. Newborns’ cry melody is shaped by their native language. Curr. Biol. 19, 1994–1997 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Moon, C., Lagercrantz, H. & Kuhl, P. K. Language experienced in utero affects vowel perception after birth: a two-country study. Acta Paediatr. 102, 156–160 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mariani, B. et al. Prenatal experience with language shapes the brain. Sci. Adv. 9, eadj3524 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wu, R., Gopnik, A., Richardson, D. C. & Kirkham, N. Z. Infants learn about objects from statistics and people. Dev. Psychol. 47, 1220–1229 (2011).

    Article  PubMed  Google Scholar 

  93. Nelson, C. A. 3rd & Gabard-Durnam, L. J. Early adversity and critical periods: neurodevelopmental consequences of violating the expectable environment. Trends Neurosci. 43, 133–143 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yadav, A. et al. Fetal growth trajectories and measures of insulin resistance in young adults. J. Clin. Endocrinol. Metab. 108, e861–e870 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Morgan, J. E. et al. Prenatal maternal C-reactive protein prospectively predicts child executive functioning at ages 4–6 years. Dev. Psychobiol. 62, 1111–1123 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Conradt, E., Lester, B. M., Appleton, A. A., Armstrong, D. A. & Marsit, C. J. The roles of DNA methylation of NR3C1 and 11β-HSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigenetics 8, 1321–1329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lenniger, C. & Espinoza-Heredia, C. Associations between prenatal maternal cortisol levels and the developing human brain. Biologicals (2020).

  98. Barker, D. J. P. The developmental origins of chronic adult disease. Acta Paediatr. Suppl. 93, 26–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Ustun, B., Reissland, N., Covey, J., Schaal, B. & Blissett, J. Flavor sensing in utero and emerging discriminative behaviors in the human fetus. Psychol. Sci. 33, 1651–1663 (2022).

    Article  PubMed  Google Scholar 

  100. Seckl, J. R. & Holmes, M. C. Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology. Nat. Clin. Pract. Endocrinol. Metab. 3, 479–488 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Duffy, A. R., Schminkey, D. L., Groer, M. W., Shelton, M. & Dutra, S. Comparison of hair cortisol levels and perceived stress in mothers who deliver at preterm and term. Biol. Res. Nurs. 20, 292–299 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Lewis, A. J., Austin, E., Knapp, R., Vaiano, T. & Galbally, M. Perinatal maternal mental health, fetal programming and child development. Healthcare (Basel) 3, 1212–1227 (2015).

    Article  PubMed  Google Scholar 

  103. Arduini, D., Rizzo, G., Romanini, C. & Mancuso, S. Fetal blood flow velocity waveforms as predictors of growth retardation. Obstet. Gynecol. 70, 7–10 (1987).

    CAS  PubMed  Google Scholar 

  104. O’Donnell, K. J. et al. Maternal prenatal anxiety and downregulation of placental 11β-HSD2. Psychoneuroendocrinology 37, 818–826 (2012).

    Article  PubMed  Google Scholar 

  105. Davis, E. P., Glynn, L. M., Waffarn, F. & Sandman, C. A. Prenatal maternal stress programs infant stress regulation. J. Child Psychol. Psychiatry 52, 119–129 (2011).

    Article  PubMed  Google Scholar 

  106. Bonamy, A.-K. E., Parikh, N. I., Cnattingius, S., Ludvigsson, J. F. & Ingelsson, E. Birth characteristics and subsequent risks of maternal cardiovascular disease: effects of gestational age and fetal growth. Circulation 124, 2839–2846 (2011).

    Article  PubMed  Google Scholar 

  107. Calkins, K. & Devaskar, S. U. Fetal origins of adult disease. Curr. Probl. Pediatr. Adolesc. Health Care 41, 158–176 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Simmons, R. Epigenetics and maternal nutrition: nature v. nurture. Proc. Nutr. Soc. 70, 73–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. De Asis-Cruz, J. & Limperopoulos, C. Harnessing the power of advanced fetal neuroimaging to understand in utero footprints for later neuropsychiatric disorders. Bio. Psychiatry 93, e2022.11.019 (2022).

  110. Narang, K. et al. Impact of asymptomatic and mild COVID-19 infection on fetal growth during pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 281, 63–67 (2023).

    Article  PubMed  Google Scholar 

  111. Goin, D. E. et al. Maternal experience of multiple hardships and fetal growth: extending environmental mixtures methodology to social exposures. Epidemiology 32, 18–26 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Smarr, M. M. et al. Comparison of fetal growth by maternal prenatal acetaminophen use. Pediatr. Res. 86, 261–268 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lehrner, A. et al. Maternal PTSD associates with greater glucocorticoid sensitivity in offspring of Holocaust survivors. Psychoneuroendocrinology 40, 213–220 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Schlotz, W., Godfrey, K. M. & Phillips, D. I. Prenatal origins of temperament: fetal growth, brain structure, and inhibitory control in adolescence. PLoS ONE 9, e96715 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Pierozan, P. & Karlsson, O. Mitotically heritable effects of BMAA on striatal neural stem cell proliferation and differentiation. Cell Death Dis. 10, 478 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Vasung, L. et al. Association between quantitative MR markers of cortical evolving organization and gene expression during human prenatal brain development. Cereb. Cortex 31, 3610–3621 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Rosa, M. J. et al. Identifying sensitive windows for prenatal particulate air pollution exposure and mitochondrial DNA content in cord blood. Environ. Int. 98, 198–203 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Bose, S. et al. Prenatal nitrate exposure and childhood asthma. Influence of maternal prenatal stress and fetal sex. Am. J. Respir. Crit. Care Med. 196, 1396–1403 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nasreen, H.-E., Kabir, Z. N., Forsell, Y. & Edhborg, M. Impact of maternal depressive symptoms and infant temperament on early infant growth and motor development: results from a population based study in Bangladesh. J. Affect. Disord. 146, 254–261 (2013).

    Article  PubMed  Google Scholar 

  120. Barker, E. D., Kirkham, N., Ng, J. & Jensen, S. K. G. Prenatal maternal depression symptoms and nutrition, and child cognitive function. Br. J. Psychiatry 203, 417–421 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bauer, A. et al. Perinatal depression and child development: exploring the economic consequences from a South London cohort. Psychol. Med. 45, 51–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Cao-Lei, L. et al. Prenatal stress and epigenetics. Neurosci. Biobehav. Rev. 117, 198–210 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Maxwell, S. D., Fineberg, A. M., Drabick, D. A., Murphy, S. K. & Ellman, L. M. Maternal prenatal stress and other developmental risk factors for adolescent depression: spotlight on sex differences. J. Abnorm. Child Psychol. 46, 381–397 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Walhovd, K. B. et al. Long-term influence of normal variation in neonatal characteristics on human brain development. Proc. Natl Acad. Sci. USA 109, 20089–20094 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fjell, A. M. et al. Continuity and discontinuity in human cortical development and change from embryonic stages to old age. Cereb. Cortex 29, 3879–3890 (2019).

    Article  PubMed  Google Scholar 

  126. King, S., Dancause, K., Turcotte-Tremblay, A.-M., Veru, F. & Laplante, D. P. Using natural disasters to study the effects of prenatal maternal stress on child health and development. Birth Defects Res. C 96, 273–288 (2012).

    Article  CAS  Google Scholar 

  127. Cao-Lei, L. et al. DNA methylation mediates the effect of maternal cognitive appraisal of a disaster in pregnancy on the child’s C-peptide secretion in adolescence: Project Ice Storm. PLoS ONE 13, e0192199 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. van den Heuvel, M. I. et al. Intergenerational transmission of maternal childhood maltreatment prior to birth: effects on human fetal amygdala functional connectivity. J. Am. Acad. Child Adolesc. Psychiatry 62, 1134–1146 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Mink, J., Boutron-Ruault, M.-C., Charles, M.-A., Allais, O. & Fagherazzi, G. Associations between early-life food deprivation during World War II and risk of hypertension and type 2 diabetes at adulthood. Sci. Rep. 10, 5741 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Opler, M. G. A. & Susser, E. S. Fetal environment and schizophrenia. Environ. Health Perspect. 113, 1239–1242 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Poehlmann, J. et al. Emerging self-regulation in toddlers born preterm or low birth weight: differential susceptibility to parenting? Dev. Psychopathol. 23, 177–193 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Batalle, D. et al. Early development of structural networks and the impact of prematurity on brain connectivity. Neuroimage 149, 379–392 (2017).

    Article  PubMed  Google Scholar 

  133. Haartsen, R., Jones, E. J. H. & Johnson, M. H. Human brain development over the early years. Curr. Opin. Behav. Sci. 10, 149–154 (2016).

    Article  Google Scholar 

  134. Monk, C. et al. Distress during pregnancy: epigenetic regulation of placenta glucocorticoid-related genes and fetal neurobehavior. Am. J. Psychiatry 173, 705–713 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Turco, M. Y. & Moffett, A. Development of the human placenta. Development 146, dev163428 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Monk, C. et al. Effects of maternal breathing rate, psychiatric status, and cortisol on fetal heart rate. Dev. Psychobiol. 53, 221–233 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Mears, K., McAuliffe, F., Grimes, H. & Morrison, J. J. Fetal cortisol in relation to labour, intrapartum events and mode of delivery. J. Obstet. Gynaecol. 24, 129–132 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Sandman, C. A. et al. Elevated maternal cortisol early in pregnancy predicts third trimester levels of placental corticotropin releasing hormone (CRH): priming the placental clock. Peptides 27, 1457–1463 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Steer, P. & Flint, C. ABC of labour care: physiology and management of normal labour. Br. Med. J. 318, 793–796 (1999).

    Article  CAS  Google Scholar 

  140. Sinding, M. et al. Reduced placental oxygenation during subclinical uterine contractions as assessed by BOLD MRI. Placenta 39, 16–20 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Jonsson, M. et al. Implementation of a revised classification for intrapartum fetal heart rate monitoring and association to birth outcome: a national cohort study. Acta Obstet. Gynecol. Scand. 101, 183–192 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Gao, Y. & Raj, J. U. Regulation of the pulmonary circulation in the fetus and newborn. Physiol. Rev. 90, 1291–1335 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Tribe, R. M. et al. Parturition and the perinatal period: can mode of delivery impact on the future health of the neonate? J. Physiol. 596, 5709–5722 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Masukume, G. et al. Caesarean section delivery and childhood obesity in a British longitudinal cohort study. PLoS ONE 14, e0223856 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chien, L.-N., Lin, H.-C., Shao, Y.-H. J., Chiou, S.-T. & Chiou, H.-Y. Risk of autism associated with general anesthesia during cesarean delivery: a population-based birth-cohort analysis. J. Autism Dev. Disord. 45, 932–942 (2015).

    Article  PubMed  Google Scholar 

  146. Uchitel, J., Vanhatalo, S. & Austin, T. Early development of sleep and brain functional connectivity in term-born and preterm infants. Pediatr. Res. 91, 771–786 (2022).

    Article  PubMed  Google Scholar 

  147. Leung, M. P., Thompson, B., Black, J., Dai, S. & Alsweiler, J. M. The effects of preterm birth on visual development. Clin. Exp. Optom. 101, 4–12 (2018).

    Article  PubMed  Google Scholar 

  148. Emberson, L. L., Boldin, A. M., Riccio, J. E., Guillet, R. & Aslin, R. N. Deficits in top-down sensory prediction in infants at risk due to premature birth. Curr. Biol. 27, 431–436 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Burstein, O., Zevin, Z. & Geva, R. Preterm birth and the development of visual attention during the first 2 years of life: a systematic review and meta-analysis. JAMA Netw. Open 4, e213687 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Ream, M. A. & Lehwald, L. Neurologic consequences of preterm birth. Curr. Neurol. Neurosci. Rep. 18, 48 (2018).

    Article  PubMed  Google Scholar 

  151. Bartocci, M. Moderately and late preterms have problem recognizing faces after birth. J. Pediatr. 93, 4–5 (2017).

    Article  Google Scholar 

  152. Ball, G. et al. Rich-club organization of the newborn human brain. Proc. Natl Acad. Sci. USA 111, 7456–7461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Knickmeyer, R. C. et al. Impact of sex and gonadal steroids on neonatal brain structure. Cereb. Cortex 24, 2721–2731 (2014).

    Article  PubMed  Google Scholar 

  154. Knickmeyer, R. C. et al. Impact of demographic and obstetric factors on infant brain volumes: a population neuroscience study. Cereb. Cortex 27, 5616–5625 (2017).

    PubMed  Google Scholar 

  155. Stewart, C. J. et al. Cesarean or vaginal birth does not impact the longitudinal development of the gut microbiome in a cohort of exclusively preterm infants. Front. Microbiol. 8, 1008 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Widström, A.-M., Brimdyr, K., Svensson, K., Cadwell, K. & Nissen, E. A plausible pathway of imprinted behaviors: skin-to-skin actions of the newborn immediately after birth follow the order of fetal development and intrauterine training of movements. Med. Hypotheses 134, 109432 (2020).

    Article  PubMed  Google Scholar 

  157. Kota, S. K. et al. Endocrinology of parturition. Indian J. Endocrinol. Metab. 17, 50–59 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Soma-Pillay, P., Nelson-Piercy, C., Tolppanen, H. & Mebazaa, A. Physiological changes in pregnancy. Cardiovasc. J. Afr. 27, 89–94 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Cuneo, B. F. Outcome of fetal cardiac defects. Curr. Opin. Pediatr. 18, 490–496 (2006).

    Article  PubMed  Google Scholar 

  160. Kukka, A. J. et al. Observational study comparing heart rate in crying and non-crying but breathing infants at birth. BMJ Paediatr. Open 7, e001886 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Widström, A.-M. et al. Newborn behaviour to locate the breast when skin-to-skin: a possible method for enabling early self-regulation. Acta Paediatr. 100, 79–85 (2011).

    Article  PubMed  Google Scholar 

  162. Hym, C. et al. Newborns modulate their crawling in response to their native language but not another language. Dev. Sci. 26, e13248 (2023).

    Article  PubMed  Google Scholar 

  163. Varendi, H., Porter, R. H. & Winberg, J. The effect of labor on olfactory exposure learning within the first postnatal hour. Behav. Neurosci. 116, 206–211 (2002).

    Article  PubMed  Google Scholar 

  164. Zanardo, V., Volpe, F., de Luca, F. & Straface, G. A temperature gradient may support mother-infant thermal identification and communication in the breast crawl from birth to breastfeeding. Acta Paediatr. 106, 1596–1599 (2017).

    Article  PubMed  Google Scholar 

  165. Keven, N. & Akins, K. A. Neonatal imitation in context: sensorimotor development in the perinatal period. Behav. Brain Sci. 40, e381 (2017).

    Article  PubMed  Google Scholar 

  166. Bartocci, M. et al. Activation of olfactory cortex in newborn infants after odor stimulation: a functional near-infrared spectroscopy study. Pediatr. Res. 48, 18–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  167. Linn��r, A. et al. Immediate skin-to-skin contact is feasible for very preterm infants but thermal control remains a challenge. Acta Paediatr. 109, 697–704 (2020).

    Article  PubMed  Google Scholar 

  168. Bergman, N. J., Ludwig, R. J. & Westrup, B. Nurturescience versus neuroscience: a case for rethinking perinatal mother–infant behaviors and relationship. Birth Defects 111, 1110–1127 (2019).

    Article  CAS  Google Scholar 

  169. von Hofsten, C. & Rönnqvist, L. The structuring of neonatal arm movements. Child Dev. 64, 1046–1057 (1993).

    Article  Google Scholar 

  170. Chinn, L. K., Noonan, C. F. & Lockman, J. J. The human face becomes mapped as a sensorimotor reaching space during the first year. Child Dev. 92, 760–773 (2021).

    Article  PubMed  Google Scholar 

  171. Meltzoff, A. N. & Moore, M. K. Newborn infants imitate adult facial gestures. Child Dev. 54, 702–709 (1983).

    Article  CAS  PubMed  Google Scholar 

  172. Oostenbroek, J. et al. Re-evaluating the neonatal imitation hypothesis. Dev. Sci. 22, e12720 (2019).

    Article  PubMed  Google Scholar 

  173. Wörmann, V., Holodynski, M., Kärtner, J. & Keller, H. A cross-cultural comparison of the development of the social smile: a longitudinal study of maternal and infant imitation in 6- and 12-week-old infants. Infant Behav. Dev. 35, 335–347 (2012).

    Article  PubMed  Google Scholar 

  174. Hym, C. et al. Newborn crawling and rooting in response to maternal breast odor. Dev. Sci. 24, e13061 (2021).

    Article  PubMed  Google Scholar 

  175. Marlier, L., Schaal, B. & Soussignan, R. Neonatal responsiveness to the odor of amniotic and lacteal fluids: a test of perinatal chemosensory continuity. Child Dev. 69, 611–623 (1998).

    Article  CAS  PubMed  Google Scholar 

  176. Meltzoff, A. N. & Moore, M. K. in Developmental Neurocognition: Speech and Face Processing in the First Year of Life (eds de Boysson-Bardies, B. et al.) 211–225 (Springer, 1993).

  177. Orioli, G., Bremner, A. J. & Farroni, T. Multisensory perception of looming and receding objects in human newborns. Curr. Biol. 28, R1294–R1295 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. Meltzoff, A. N., Saby, J. N. & Marshall, P. J. Neural representations of the body in 60‐day‐old human infants. Dev. Sci. 22, e12698 (2019).

    Article  PubMed  Google Scholar 

  179. van der Meer, A. L., van der Weel, F. R. & Lee, D. N. The functional significance of arm movements in neonates. Science 267, 693–695 (1995).

    Article  PubMed  Google Scholar 

  180. Moon, C., Cooper, R. P. & Fifer, W. P. Two-day-olds prefer their native language. Infant Behav. Dev. 16, 495–500 (1993).

    Article  Google Scholar 

  181. Bobin-Bègue, A., Provasi, J., Marks, A. & Pouthas, V. Influence of auditory tempo on the endogenous rhythm of non-nutritive sucking. Eur. Rev. Appl. Psychol. 56, 239–245 (2006).

    Article  Google Scholar 

  182. Gilmore, R. O. & Johnson, M. H. Body-centered representations for visually-guided action emerge during early infancy. Cognition 65, B1–B9 (1997).

    Article  CAS  PubMed  Google Scholar 

  183. Witherington, D. C., Overton, W. F., Lickliter, R., Marshall, P. J. & Narvaez, D. Metatheory and the primacy of conceptual analysis in developmental science. Hum. Dev. 61, 181–198 (2018).

    Article  Google Scholar 

  184. Bornstein, M. H. in Parenting: Selected Writings of Marc H. Bornstein (ed. Bornstein, M. H.) 280–315 (Routledge, 2022).

  185. Atkinson, J. & Braddick, O. Inferences about infants’ visual brain mechanisms. Vis. Neurosci. 30, 185–195 (2013).

    Article  PubMed  Google Scholar 

  186. Shen, G., Weiss, S. M., Meltzoff, A. N., Allison, O. N. & Marshall, P. J. Exploring developmental changes in infant anticipation and perceptual processing: EEG responses to tactile stimulation. Infancy.: Off. J. Int. Soc. Infant Stud. 27, 97–114 (2022).

    Article  Google Scholar 

  187. Wiener, R. F. & Thurman, S. L. in Reach-to-Grasp Behavior: Brain, Behavior, and Modelling Across the Life Span (eds Corbetta, D. & Santello, M.) 16–30 (Routledge, 2018).

  188. Weiss, S. M., Meltzoff, A. N. & Marshall, P. J. Neural measures of anticipatory bodily attention in children: relations with executive function. Dev. Cogn. Neurosci. 34, 148–158 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Johnson, M. H. Functional brain development in humans. Nat. Rev. Neurosci. 6, 766–774 (2005).

    Article  CAS  PubMed  Google Scholar 

  190. Farroni, T., Csibra, G., Simion, F. & Johnson, M. H. Eye contact detection in humans from birth. Proc. Natl Acad. Sci. USA 99, 9602–9605 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Farroni, T. et al. Infant cortex responds to other humans from shortly after birth. Sci. Rep. 3, 2851 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Lloyd-Fox, S. et al. Social perception in infancy: a near infrared spectroscopy study. Child Dev. 80, 986–999 (2009).

    Article  PubMed  Google Scholar 

  193. Lloyd-Fox, S. et al. Cortical specialisation to social stimuli from the first days to the second year of life: a rural Gambian cohort. Dev. Cogn. Neurosci. 25, 92–104 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Gibbon, S. et al. Machine learning accurately classifies neural responses to rhythmic speech vs. non-speech from 8-week-old infant EEG. Brain Lang. 220, 104968 (2021).

    Article  PubMed  Google Scholar 

  195. Rekow, D. et al. Odor-driven face-like categorization in the human infant brain. Proc. Natl Acad. Sci. USA 118, e2014979118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Shultz, S., Vouloumanos, A. & Pelphrey, K. The superior temporal sulcus differentiates communicative and noncommunicative auditory signals. J. Cogn. Neurosci. 24, 1224–1232 (2012).

    Article  PubMed  Google Scholar 

  197. Marshall, P. J., Houser, T. M. & Weiss, S. M. The shared origins of embodiment and development. Front. Syst. Neurosci. 15, 726403 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Csibra, G. & Gergely, G. Natural pedagogy as evolutionary adaptation. Philos. Trans. R. Soc. Lond. B 366, 1149–1157 (2011).

    Article  Google Scholar 

  199. Piazza, E. A., Cohen, A., Trach, J. & Lew-Williams, C. Neural synchrony predicts children’s learning of novel words. Cognition 214, 104752 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Nguyen, T., Abney, D. H., Salamander, D., Bertenthal, B. I. & Hoehl, S. Proximity and touch are associated with neural but not physiological synchrony in naturalistic mother-infant interactions. Neuroimage 244, 118599 (2021).

    Article  PubMed  Google Scholar 

  201. Clackson, K., Wass, S., Georgieva, S. & Brightman, L. Do helpful mothers help? Effects of maternal scaffolding and infant engagement on cognitive performance. Front. Psychol. 10, 2661 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Wass, S. V., Clackson, K. & Leong, V. Increases in arousal are more long-lasting than decreases in arousal: on homeostatic failures during emotion regulation in infancy. Infancy 23, 628–649 (2018).

    Article  Google Scholar 

  203. Gao, X., Aderemi, T. A., Zhou, B., Olanipekun, W. D. & Bassey, R. Influence of households’ socio-economic factors on maternal and under-five survival in Nigeria: implication for the sustainable development goal 3. Afr. J. Reprod. Health 27, 83–90 (2023).

    PubMed  Google Scholar 

  204. Cassinelli, E. H. et al. Exploring health behaviours, attitudes and beliefs of women and men during the preconception and interconception periods: a cross-sectional study of adults on the island of ireland. Nutrients 15, 3832 (2023).

  205. Aviv, E. C. et al. Prenatal prolactin predicts postnatal parenting attitudes and brain structure remodeling in first-time fathers. Psychoneuroendocrinology 156, 106332 (2023).

    Article  CAS  PubMed  Google Scholar 

  206. Golombok, S., Cook, R., Bish, A. & Murray, C. Families created by the new reproductive technologies: quality of parenting and social and emotional development of the children. Child Dev. 66, 285–298 (1995).

    Article  CAS  PubMed  Google Scholar 

  207. Katus, L. et al. Perceived stress during the prenatal period: assessing measurement invariance of the Perceived Stress Scale (PSS-10) across cultures and birth parity. Arch. Women Ment. Health 25, 633–640 (2022).

    Article  Google Scholar 

  208. McNab, S. E. et al. The silent burden: a landscape analysis of common perinatal mental disorders in low- and middle-income countries. BMC Pregnancy Childbirth 22, 342 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Rylander, C., Odland, J. Ø. & Sandanger, T. M. Climate change and the potential effects on maternal and pregnancy outcomes: an assessment of the most vulnerable—the mother, fetus, and newborn child. Glob. Health Action 6, 19538 (2013).

    Article  PubMed  Google Scholar 

  210. Merz, E. C. et al. Socioeconomic disparities in chronic physiologic stress are associated with brain structure in children. Biol. Psychiatry 86, 921–929 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Imrie, S., Zadeh, S., Wylie, K. & Golombok, S. Children with trans parents: parent–child relationship quality and psychological well-being. Parent. Sci. Pract. 21, 185–215 (2021).

    Article  PubMed  Google Scholar 

  212. Golombok, S. et al. A longitudinal study of families formed through third-party assisted reproduction: mother-child relationships and child adjustment from infancy to adulthood. Dev. Psychol. 59, 1059–1073 (2023).

    Article  PubMed  Google Scholar 

  213. Peven, K. et al. Equity in newborn care, evidence from national surveys in low- and middle-income countries. Int. J. Equity Health 20, 132 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Gillespie, S. L., Christian, L. M., Alston, A. D. & Salsberry, P. J. Childhood stress and birth timing among African American women: cortisol as biological mediator. Psychoneuroendocrinology 84, 32–41 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Matthews, R. J. et al. Understanding ethnic inequalities in stillbirth rates: a UK population-based cohort study. BMJ Open 12, e057412 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Aydin, E. et al. COVID-19 in the context of pregnancy, infancy and parenting (CoCoPIP) study: protocol for a longitudinal study of parental mental health, social interactions, physical growth and cognitive development of infants during the pandemic. BMJ Open 12, e053800 (2022).

    Article  PubMed  Google Scholar 

  217. Roder-DeWan, S. et al. Health system redesign for maternal and newborn survival: rethinking care models to close the global equity gap. BMJ Glob. Health 5, e002539 (2020).

  218. Spann, M. N. et al. The effects of experience of discrimination and acculturation during pregnancy on the developing offspring brain. Neuropsychopharmacology https://doi.org/10.1038/s41386-023-01765-3 (2023).

  219. Sagiv, S. K. et al. Prenatal organochlorine exposure and measures of behavior in infancy using the Neonatal Behavioral Assessment Scale (NBAS). Environ. Health Perspect. 116, 666–673 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Alipio, J. B. et al. Perinatal fentanyl exposure leads to long-lasting impairments in somatosensory circuit function and behavior. J. Neurosci. 41, 3400–3417 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Fernandez-Gonzalez, S. et al. Study of the fetal and maternal microbiota in pregnant women with intrauterine growth restriction and its relationship with inflammatory biomarkers: a case-control study protocol (SPIRIT compliant). Medicine 99, e22722 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Alvarenga, P., Ángeles Cerezo, M. & Kuchirko, Y. The Maternal Sensitivity Program: A Model for Promoting Infant Development in Challenging Contexts (Springer, 2021).

Download references

Acknowledgements

S.M.W. and S.L.-F. are supported by a UKRI Future Leaders fellowship (grant MR/S018425/1). M.H.J. is supported by a Medical Research Council Programme Grant (MR/T003057/1) to M.H.J. The views expressed are those of the authors and not necessarily those of the MRC or the UKRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Staci Meredith Weiss.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Patricia Kuhl and Bea Van den Bergh for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meredith Weiss, S., Aydin, E., Lloyd-Fox, S. et al. Trajectories of brain and behaviour development in the womb, at birth and through infancy. Nat Hum Behav (2024). https://doi.org/10.1038/s41562-024-01896-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-024-01896-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing