Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Osteogenesis imperfecta type 10 and the cellular scaffolds underlying common immunological diseases

Abstract

Osteogenesis imperfecta type 10 (OI10) is caused by loss of function codon variants in the gene SERPINH1 that encodes heat shock protein 47 (HSP47), rather than in a gene specifying bone formation. The HSP47 variants disrupt the folding of both collagen and the endonuclease IRE1α (inositol-requiring enzyme 1α) that splices X-Box Binding Protein 1 (XBP1) mRNA. Besides impairing bone development, variants likely affect osteoclast differentiation. Three distinct biochemical scaffold play key roles in the differentiation and regulated cell death of osteoclasts. These scaffolds consist of non-templated protein modifications, ordered lipid arrays, and protein filaments. The scaffold components are specified genetically, but assemble in response to extracellular perturbagens, pathogens, and left-handed Z-RNA helices encoded genomically by flipons. The outcomes depend on interactions between RIPK1, RIPK3, TRIF, and ZBP1 through short interaction motifs called RHIMs. The causal HSP47 nonsynonymous substitutions occur in a novel variant leucine repeat region (vLRR) that are distantly related to RHIMs. Other vLRR protein variants are causal for a variety of different mendelian diseases. The same scaffolds that drive mendelian pathology are associated with many other complex disease outcomes. Their assembly is triggered dynamically by flipons and other context-specific switches rather than by causal, mendelian, codon variants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interactions that regulate osteoclast fate from three different perspectives.
Fig. 2: The alignment of the vLRR in HSP with RHIM in cell death effector proteins.
Fig. 3: vLRR and RHIM crystal structures showing the protein backbone as a rope and vLRR by a space-filling representations.

Similar content being viewed by others

Data availability

Not applicable as all the data synthesized in this review are available through the sources cited.

References

  1. Yahara Y, Nguyen T, Ishikawa K, Kamei K, Alman BA. The origins and roles of osteoclasts in bone development, homeostasis and repair. Development. 2022;149:dev199908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Diella F, Haslam N, Chica C, Budd A, Michael S, Brown NP, et al. Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front Biosci. 2008;13:6580–603.

    Article  CAS  PubMed  Google Scholar 

  3. Forlino A, Cabral WA, Barnes AM, Marini JC. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol. 2011;7:540–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ito S, Nagata K. Roles of the endoplasmic reticulum-resident, collagen-specific molecular chaperone Hsp47 in vertebrate cells and human disease. J Biol Chem. 2019;294:2133–41.

    Article  CAS  PubMed  Google Scholar 

  5. Nagai N, Hosokawa M, Itohara S, Adachi E, Matsushita T, Hosokawa N, et al. Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with defects in collagen biosynthesis. J Cell Biol. 2000;150:1499–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van Dijk FS, Semler O, Etich J, Kohler A, Jimenez-Estrada JA, Bravenboer N, et al. Interaction between KDELR2 and HSP47 as a Key Determinant in Osteogenesis Imperfecta Caused by Bi-allelic Variants in KDELR2. Am J Hum Genet. 2020;107:989–99.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Christiansen HE, Schwarze U, Pyott SM, AlSwaid A, Al Balwi M, Alrasheed S, et al. Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet. 2010;86:389–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duran I, Nevarez L, Sarukhanov A, Wu S, Lee K, Krejci P, et al. HSP47 and FKBP65 cooperate in the synthesis of type I procollagen. Hum Mol Genet. 2015;24:1918–28.

    Article  CAS  PubMed  Google Scholar 

  9. Sepulveda D, Rojas-Rivera D, Rodriguez DA, Groenendyk J, Kohler A, Lebeaupin C, et al. Interactome screening identifies the ER Luminal Chaperone Hsp47 as a regulator of the unfolded protein response transducer IRE1alpha. Mol Cell. 2018;69:238–252.e7.

    Article  CAS  PubMed  Google Scholar 

  10. Le Goupil S, Laprade H, Aubry M, Chevet E. Exploring the IRE1 interactome: from canonical signaling functions to unexpected roles. J Biol Chem. 2024;300:107169.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Luo X, Alfason L, Wei M, Wu S, Kasim V. Spliced or unspliced, that is the question: the biological roles of XBP1 isoforms in pathophysiology. Int J Mol Sci. 2022;23:2746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Le Thomas A, Ferri E, Marsters S, Harnoss JM, Lawrence DA, Zuazo-Gaztelu I, et al. Decoding non-canonical mRNA decay by the endoplasmic-reticulum stress sensor IRE1alpha. Nat Commun. 2021;12:7310.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Maurel M, Chevet E, Tavernier J, Gerlo S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci. 2014;39:245–54.

    Article  CAS  PubMed  Google Scholar 

  14. Tohmonda T, Yoda M, Iwawaki T, Matsumoto M, Nakamura M, Mikoshiba K, et al. IRE1alpha/XBP1-mediated branch of the unfolded protein response regulates osteoclastogenesis. J Clin Investig. 2015;125:3269–79.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kim JH, Kim N. Regulation of NFATc1 in Osteoclast differentiation. J Bone Metab. 2014;21:233–41.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shan B, Wang X, Wu Y, Xu C, Xia Z, Dai J, et al. The metabolic ER stress sensor IRE1alpha suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nat Immunol. 2017;18:519–29.

    Article  CAS  PubMed  Google Scholar 

  17. Lu SY, Li M, Lin YL. Mitf regulates osteoclastogenesis by modulating NFATc1 activity. Exp Cell Res. 2014;328:32–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ploper D, Taelman VF, Robert L, Perez BS, Titz B, Chen HW, et al. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proc Natl Acad Sci USA. 2015;112:E420–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Agostini F, Agostinis R, Medina DL, Bisaglia M, Greggio E, Plotegher N. The regulation of MiTF/TFE transcription factors across model organisms: from brain physiology to implication for neurodegeneration. Mol Neurobiol. 2022;59:5000–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. DeSelm CJ, Miller BC, Zou W, Beatty WL, van Meel E, Takahata Y, et al. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell. 2011;21:966–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ponpuak M, Mandell MA, Kimura T, Chauhan S, Cleyrat C, Deretic V. Secretory autophagy. Curr Opin Cell Biol. 2015;35:106–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal. 2012;5:ra42.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. Embo J. 2012;31:1095–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell. 2002;109:707–18.

    Article  CAS  PubMed  Google Scholar 

  25. Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol. 2020;21:501–21.

    Article  CAS  PubMed  Google Scholar 

  26. Kuchitsu Y, Mukai K, Uematsu R, Takaada Y, Shinojima A, Shindo R, et al. STING signalling is terminated through ESCRT-dependent microautophagy of vesicles originating from recycling endosomes. Nat Cell Biol. 2023;25:453–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. York AG, Williams KJ, Argus JP, Zhou QD, Brar G, Vergnes L, et al. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell. 2015;163:1716–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. MacLauchlan S, Kushwaha P, Tai A, Chen S, Manning C, Swarnkar G, et al. STING-dependent interferon signatures restrict osteoclast differentiation and bone loss in mice. Proc Natl Acad Sci USA. 2023;120:e2210409120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Villarroya-Beltri C, Guerra S, Sanchez-Madrid F. ISGylation - a key to lock the cell gates for preventing the spread of threats. J Cell Sci. 2017;130:2961–9.

    CAS  PubMed  Google Scholar 

  30. Bogunovic D, Boisson-Dupuis S, Casanova JL. ISG15: leading a double life as a secreted molecule. Exp Mol Med. 2013;45:e18.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kim N, Kadono Y, Takami M, Lee J, Lee SH, Okada F, et al. Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis. J Exp Med. 2005;202:589–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang R, Wang X, Zhou Y, Xiao Y. RANKL-induced M1 macrophages are involved in bone formation. Bone Res. 2017;5:17019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rebsamen M, Heinz LX, Meylan E, Michallet MC, Schroder K, Hofmann K, et al. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep. 2009;10:916–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaiser WJ, Upton JW, Mocarski ES. Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA-dependent activator of IFN regulatory factors. J Immunol. 2008;181:6427–34.

    Article  CAS  PubMed  Google Scholar 

  35. Wang AH, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, van der Marel G, et al. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979;282:680–6.

    Article  CAS  PubMed  Google Scholar 

  36. Herbert A. Z-DNA and Z-RNA in human disease. Commun Biol. 2019;2:7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Herbert A. A genetic instruction code based on DNA conformation. Trends Genet. 2019;35:887–90.

    Article  CAS  PubMed  Google Scholar 

  38. Herbert A. Flipons and the logic of soft-wired genomes, 1st ed. (CRC Press: Boca Raton, 2024).

  39. Herbert A. ALU non-B-DNA conformations, flipons, binary codes and evolution. R Soc Open Sci. 2020;7:200222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakahama T, Kato Y, Shibuya T, Inoue M, Kim JI, Vongpipatana T, et al. Mutations in the adenosine deaminase ADAR1 that prevent endogenous Z-RNA binding induce Aicardi-Goutieres-syndrome-like encephalopathy. Immunity. 2021;54:1976–1988.e7.

    Article  CAS  PubMed  Google Scholar 

  41. de Reuver R, Dierick E, Wiernicki B, Staes K, Seys L, De Meester E, et al. ADAR1 interaction with Z-RNA promotes editing of endogenous double-stranded RNA and prevents MDA5-dependent immune activation. Cell Rep. 2021;36:109500.

    Article  PubMed  Google Scholar 

  42. Jiao H, Wachsmuth L, Wolf S, Lohmann J, Nagata M, Kaya GG, et al. ADAR1 averts fatal type I interferon induction by ZBP1. Nature. 2022;607:776–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang T, Yin C, Fedorov A, Qiao L, Bao H, Beknazarov N, et al. ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. Nature. 2022;606:594–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Herbert A, Schade M, Lowenhaupt K, Alfken J, Schwartz T, Shlyakhtenko LS, et al. The Zα domain from human ADAR1 binds to the Z-DNA conformer of many different sequences. Nucleic Acids Res. 1998;26:3486–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schwartz T, Rould MA, Lowenhaupt K, Herbert A, Rich A. Crystal structure of the Zα domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science. 1999;284:1841–5.

    Article  CAS  PubMed  Google Scholar 

  46. Herbert A, Alfken J, Kim YG, Mian IS, Nishikura K, Rich A. A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc Natl Acad Sci USA. 1997;94:8421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schwartz T, Behlke J, Lowenhaupt K, Heinemann U, Rich A. Structure of the DLM-1-Z-DNA complex reveals a conserved family of Z-DNA-binding proteins. Nat Struct Biol. 2001;8:761–5.

    Article  CAS  PubMed  Google Scholar 

  48. Herbert A. The ancient Z-DNA and Z-RNA specific Zα fold has evolved modern roles in immunity and transcription through the natural selection of Flipons. R Soc Open Sci. 2024.

  49. Herbert A. Z-DNA and Z-RNA: methods-past and future. Methods Mol Biol. 2023;2651:295–329.

    Article  CAS  PubMed  Google Scholar 

  50. Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell. 2014;157:1189–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jiao H, Wachsmuth L, Kumari S, Schwarzer R, Lin J, Eren RO, et al. Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature. 2020;580:391–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hubbard NW, Ames JM, Maurano M, Chu LH, Somfleth KY, Gokhale NS, et al. ADAR1 mutation causes ZBP1-dependent immunopathology. Nature. 2022;607:769–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. de Reuver R, Verdonck S, Dierick E, Nemegeer J, Hessmann E, Ahmad S, et al. ADAR1 prevents autoinflammation by suppressing spontaneous ZBP1 activation. Nature. 2022;607:784–9.

    Article  PubMed  Google Scholar 

  54. Solon M, Ge N, Hambro S, Haller S, Jiang J, Baca M, et al. ZBP1 and TRIF trigger lethal necroptosis in mice lacking caspase-8 and TNFR1. Cell Death Differ. 2024;31:672–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Patterson JB, Thomis DC, Hans SL, Samuel CE. Mechanism of interferon action: double-stranded RNA-specific adenosine deaminase from human cells is inducible by alpha and gamma interferons. Virology. 1995;210:508–11.

    Article  CAS  PubMed  Google Scholar 

  56. Fu Y, Comella N, Tognazzi K, Brown LF, Dvorak HF, Kocher O. Cloning of DLM-1, a novel gene that is up-regulated in activated macrophages, using RNA differential display. Gene. 1999;240:157–63.

    Article  CAS  PubMed  Google Scholar 

  57. Herbert A. To “Z” or not to “Z”: Z-RNA, self-recognition, and the MDA5 helicase. PLoS Genet. 2021;17:e1009513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25:486–541.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Denton D, Kumar S. Autophagy-dependent cell death. Cell Death Differ. 2019;26:605–16.

    Article  CAS  PubMed  Google Scholar 

  60. Tummers B, Green DR. The evolution of regulated cell death pathways in animals and their evasion by pathogens. Physiol Rev. 2022;102:411–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Newton K, Wickliffe KE, Maltzman A, Dugger DL, Strasser A, Pham VC, et al. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature. 2016;540:129–33.

    Article  CAS  PubMed  Google Scholar 

  62. Hangai S, Ao T, Kimura Y, Matsuki K, Kawamura T, Negishi H, et al. PGE2 induced in and released by dying cells functions as an inhibitory DAMP. Proc Natl Acad Sci USA. 2016;113:3844–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ingram JP, Thapa RJ, Fisher A, Tummers B, Zhang T, Yin C, et al. ZBP1/DAI Drives RIPK3-Mediated cell death induced by IFNs in the absence of RIPK1. J Immunol. 2019;203:1348–55.

    Article  CAS  PubMed  Google Scholar 

  64. Teo Hansen Selno A, Schlichtner S, Yasinska IM, Sakhnevych SS, Fiedler W, Wellbrock J, et al. High Mobility Group Box 1 (HMGB1) induces toll-like receptor 4-mediated production of the immunosuppressive protein Galectin-9 in human cancer cells. Front Immunol. 2021;12:675731.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lim J, Park H, Heisler J, Maculins T, Roose-Girma M, Xu M, et al. Autophagy regulates inflammatory programmed cell death via turnover of RHIM-domain proteins. Elife. 2019;8:e44452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Waldron T Infectious Diseases. In: Palaeopathology. England: Cambridge University Press: Cambridge; 2020. p. 147–87.

  67. Riebeling T, Kunzendorf U, Krautwald S. The role of RHIM in necroptosis. Biochem Soc Trans. 2022;50:1197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Balachandran S, Mocarski ES. Viral Z-RNA triggers ZBP1-dependent cell death. Curr Opin Virol. 2021;51:134–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lannoy V, Cote-Biron A, Asselin C, Rivard N. TIRAP, TRAM, and Toll-Like receptors: the untold story. Mediators Inflamm. 2023;2023:2899271.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Liang S, Nian Z, Shi K. Inhibition of RIPK1/RIPK3 ameliorates osteoclastogenesis through regulating NLRP3-dependent NF-kappaB and MAPKs signaling pathways. Biochem Biophys Res Commun. 2020;526:1028–35.

    Article  CAS  PubMed  Google Scholar 

  71. Peng R, Wang CK, Wang-Kan X, Idorn M, Kjaer M, Zhou FY, et al. Human ZBP1 induces cell death-independent inflammatory signaling via RIPK3 and RIPK1. EMBO Rep. 2022;23:e55839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Martens A, Hertens P, Priem D, Rinotas V, Meletakos T, Gennadi M, et al. A20 controls RANK-dependent osteoclast formation and bone physiology. EMBO Rep. 2022;23:e55233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, et al. Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Investig. 2008;118:1858–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Choi YJ, Sohn YB, Chung YS. Updates on Paget’s disease of bone. Endocrinol Metab. 2022;37:732–43.

    Article  Google Scholar 

  75. Gentle IE. Supramolecular complexes in cell death and inflammation and their regulation by autophagy. Front Cell Dev Biol. 2019;7:73.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hennig P, Fenini G, Di Filippo M, Karakaya T, Beer HD. The pathways underlying the multiple roles of p62 in inflammation and cancer. Biomedicines. 2021;9:707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Samie M, Lim J, Verschueren E, Baughman JM, Peng I, Wong A, et al. Selective autophagy of the adaptor TRIF regulates innate inflammatory signaling. Nat Immunol. 2018;19:246–54.

    Article  CAS  PubMed  Google Scholar 

  78. Upton JW, Kaiser WJ, Mocarski ES. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe. 2010;7:302–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Harvey L, Gray T, Beneton MN, Douglas DL, Kanis JA, Russell RG. Ultrastructural features of the osteoclasts from Paget’s disease of bone in relation to a viral aetiology. J Clin Pathol. 1982;35:771–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rea SL, Walsh JP, Layfield R, Ratajczak T, Xu J. New insights into the role of sequestosome 1/p62 mutant proteins in the pathogenesis of Paget’s disease of bone. Endocr Rev. 2013;34:501–24.

    Article  CAS  PubMed  Google Scholar 

  81. Zargarian S, Shlomovitz I, Erlich Z, Hourizadeh A, Ofir-Birin Y, Croker BA, et al. Phosphatidylserine externalization, “necroptotic bodies” release, and phagocytosis during necroptosis. PLoS Biol. 2017;15:e2002711.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Najafov A, Mookhtiar AK, Luu HS, Ordureau A, Pan H, Amin PP, et al. TAM kinases promote necroptosis by regulating oligomerization of MLKL. Mol Cell. 2019;75:457–468.e4.

    Article  CAS  PubMed  Google Scholar 

  83. Gong YN, Guy C, Olauson H, Becker JU, Yang M, Fitzgerald P, et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell. 2017;169:286–300.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dovey CM, Diep J, Clarke BP, Hale AT, McNamara DE, Guo H, et al. MLKL requires the inositol phosphate code to execute necroptosis. Mol Cell. 2018;70:936–948.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. McNamara DE, Dovey CM, Hale AT, Quarato G, Grace CR, Guibao CD, et al. Direct activation of human MLKL by a select repertoire of inositol phosphate metabolites. Cell Chem Biol. 2019;26:863–877.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Posor Y, Jang W, Haucke V. Phosphoinositides as membrane organizers. Nat Rev Mol Cell Biol. 2022;23:797–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kervin TA, Overduin M. Regulation of the phosphoinositide code by phosphorylation of membrane readers. Cells. 2021;10:1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jamard C, Gil C, Castets M, Ichim G, Weber K. Lysosomal MLKL is balanced by ESCRT to control cell death. BioRxiv (2023).

  89. Frank D, Vaux DL, Murphy JM, Vince JE, Lindqvist LM. Activated MLKL attenuates autophagy following its translocation to intracellular membranes. J Cell Sci. 2019;132:jcs220996.

    Article  CAS  PubMed  Google Scholar 

  90. Chen D, Wang Z, Zhao YG, Zheng H, Zhao H, Liu N, et al. Inositol polyphosphate multikinase inhibits liquid-liquid phase separation of TFEB to negatively regulate autophagy activity. Dev Cell. 2020;55:588–602.e7.

    Article  CAS  PubMed  Google Scholar 

  91. D’Cruz AA, Speir M, Bliss-Moreau M, Dietrich S, Wang S, Chen AA, et al. The pseudokinase MLKL activates PAD4-dependent NET formation in necroptotic neutrophils. Sci Signal. 2018;11:eaao1716.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Martens S, Bridelance J, Roelandt R, Vandenabeele P, Takahashi N. MLKL in cancer: more than a necroptosis regulator. Cell Death Differ. 2021;28:1757–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hiraiwa M, Ozaki K, Yamada T, Iezaki T, Park G, Fukasawa K, et al. mTORC1 activation in osteoclasts prevents bone loss in a mouse model of osteoporosis. Front Pharm. 2019;10:684.

    Article  CAS  Google Scholar 

  94. Nassour J, Radford R, Correia A, Fuste JM, Schoell B, Jauch A, et al. Autophagic cell death restricts chromosomal instability during replicative crisis. Nature. 2019;565:659–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nassour J, Aguiar LG, Correia A, Schmidt TT, Mainz L, Przetocka S, et al. Telomere-to-mitochondria signalling by ZBP1 mediates replicative crisis. Nature. 2023;614:767–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lei Y, VanPortfliet JJ, Chen YF, Bryant JD, Li Y, Fails D, et al. Cooperative sensing of mitochondrial DNA by ZBP1 and cGAS promotes cardiotoxicity. Cell. 2023;186:3013–3032.e22.

    Article  PubMed  Google Scholar 

  97. Chen G, Kroemer G, Kepp O. Mitophagy: an emerging role in aging and age-associated diseases. Front Cell Dev Biol. 2020;8:200.

    Article  PubMed  PubMed Central  Google Scholar 

  98. McDonald MM, Khoo WH, Ng PY, Xiao Y, Zamerli J, Thatcher P, et al. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell. 2021;184:1330–1347.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Huang T, Wang Y, Yu Z, Miao X, Jiang Z, Yu K, et al. Effect of mitophagy in the formation of osteomorphs derived from osteoclasts. iScience. 2023;26:106682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Carreras-Sureda A, Jana F, Urra H, Durand S, Mortenson DE, Sagredo A, et al. Non-canonical function of IRE1alpha determines mitochondria-associated endoplasmic reticulum composition to control calcium transfer and bioenergetics. Nat Cell Biol. 2019;21:755–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tummers B, Mari L, Guy CS, Heckmann BL, Rodriguez DA, Ruhl S, et al. Caspase-8-dependent inflammatory responses are controlled by its adaptor, FADD, and necroptosis. Immunity. 2020;52:994–1006.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Newton K, Dugger DL, Maltzman A, Greve JM, Hedehus M, Martin-McNulty B, et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 2016;23:1565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Moerke C, Bleibaum F, Kunzendorf U, Krautwald S. Combined knockout of RIPK3 and MLKL reveals unexpected outcome in tissue injury and inflammation. Front Cell Dev Biol. 2019;7:19.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kearney CJ, Martin SJ. An inflammatory perspective on necroptosis. Mol Cell. 2017;65:965–73.

    Article  CAS  PubMed  Google Scholar 

  105. Fearns C, Pan Q, Mathison JC, Chuang TH. Triad3A regulates ubiquitination and proteasomal degradation of RIP1 following disruption of Hsp90 binding. J Biol Chem. 2006;281:34592–600.

    Article  CAS  PubMed  Google Scholar 

  106. Li D, Xu T, Cao Y, Wang H, Li L, Chen S, et al. A cytosolic heat shock protein 90 and cochaperone CDC37 complex is required for RIP3 activation during necroptosis. Proc Natl Acad Sci USA. 2015;112:5017–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jacobsen AV, Lowes KN, Tanzer MC, Lucet IS, Hildebrand JM, Petrie EJ, et al. HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death. Cell Death Dis. 2016;7:e2051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhao XM, Chen Z, Zhao JB, Zhang PP, Pu YF, Jiang SH, et al. Hsp90 modulates the stability of MLKL and is required for TNF-induced necroptosis. Cell Death Dis. 2016;7:e2089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Prince TL, Kijima T, Tatokoro M, Lee S, Tsutsumi S, Yim K, et al. Client proteins and small molecule inhibitors display distinct binding preferences for constitutive and stress-induced hsp90 isoforms and their conformationally restricted mutants. PLoS One. 2015;10:e0141786.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wang FM, Chen YJ, Ouyang HJ. Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation. Biochem J. 2011;433:245–52.

    Article  CAS  PubMed  Google Scholar 

  111. Guo M, Zhuang H, Su Y, Meng Q, Liu W, Liu N, et al. SIRT3 alleviates imiquimod-induced psoriatic dermatitis through deacetylation of XBP1s and modulation of TLR7/8 inducing IL-23 production in macrophages. Front Immunol. 2023;14:1128543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bang IH, Kwon OK, Hao L, Park D, Chung MJ, Oh BC, et al. Deacetylation of XBP1s by sirtuin 6 confers resistance to ER stress-induced hepatic steatosis. Exp Mol Med. 2019;51:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Westerheide SD, Anckar J, Stevens SM Jr., Sistonen L, Morimoto RI. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science. 2009;323:1063–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Masser AE, Ciccarelli M, Andreasson C. Hsf1 on a leash - controlling the heat shock response by chaperone titration. Exp Cell Res. 2020;396:112246.

    Article  CAS  PubMed  Google Scholar 

  115. Vihervaara A, Sistonen L. HSF1 at a glance. J Cell Sci. 2014;127:261–6.

    Article  CAS  PubMed  Google Scholar 

  116. Mahat DB, Salamanca HH, Duarte FM, Danko CG, Lis JT. Mammalian heat shock response and mechanisms underlying its genome-wide transcriptional regulation. Mol Cell. 2016;62:63–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharm Ther. 1998;79:129–68.

    Article  CAS  Google Scholar 

  118. Gomez-Pastor R, Burchfiel ET, Thiele DJ. Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol. 2018;19:4–19.

    Article  CAS  PubMed  Google Scholar 

  119. Vourc’h C, Dufour S, Timcheva K, Seigneurin-Berny D, Verdel A. HSF1-activated non-coding stress response: satellite lncRNAs and beyond, an emerging story with a complex scenario. Genes. 2022;13:597.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Latorre J, de Vera N, Santalucia T, Balada R, Marazuela-Duque A, Vaquero A, et al. Lack of the Histone Deacetylase SIRT1 Leads to protection against endoplasmic reticulum stress through the upregulation of heat shock proteins. Int J Mol Sci. 2024;25:2856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Weindling E, Bar-Nun S. Sir2 links the unfolded protein response and the heat shock response in a stress response network. Biochem Biophys Res Commun. 2015;457:473–8.

    Article  CAS  PubMed  Google Scholar 

  122. Chai RC, Kouspou MM, Lang BJ, Nguyen CH, van der Kraan AG, Vieusseux JL, et al. Molecular stress-inducing compounds increase osteoclast formation in a heat shock factor 1 protein-dependent manner. J Biol Chem. 2014;289:13602–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ma J, Yang C, Zhong H, Wang C, Zhang K, Li X, et al. Role of HSP90alpha in osteoclast formation and osteoporosis development. Exp Ther Med. 2022;23:273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mullin BH, Tickner J, Zhu K, Kenny J, Mullin S, Brown SJ, et al. Characterisation of genetic regulatory effects for osteoporosis risk variants in human osteoclasts. Genome Biol. 2020;21:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Brown MK, Naidoo N. The endoplasmic reticulum stress response in aging and age-related diseases. Front Physiol. 2012;3:263.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Khalil H, Kanisicak O, Vagnozzi RJ, Johansen AK, Maliken BD, Prasad V, et al. Cell-specific ablation of Hsp47 defines the collagen-producing cells in the injured heart. JCI Insight. 2019;4:e128722.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kawasaki K, Ushioda R, Ito S, Ikeda K, Masago Y, Nagata K. Deletion of the collagen-specific molecular chaperone Hsp47 causes endoplasmic reticulum stress-mediated apoptosis of hepatic stellate cells. J Biol Chem. 2015;290:3639–46.

    Article  CAS  PubMed  Google Scholar 

  128. Sakamoto N, Okuno D, Tokito T, Yura H, Kido T, Ishimoto H, et al. HSP47: a therapeutic target in pulmonary fibrosis. Biomedicines. 2023;11:2387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mehrotra P, Ravichandran KS. Drugging the efferocytosis process: concepts and opportunities. Nat Rev Drug Discov. 2022;21:601–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Otsuka M, Shiratori M, Chiba H, Kuronuma K, Sato Y, Niitsu Y, et al. Treatment of pulmonary fibrosis with siRNA against a collagen-specific chaperone HSP47 in vitamin A-coupled liposomes. Exp Lung Res. 2017;43:271–82.

    Article  CAS  PubMed  Google Scholar 

  131. Lees JA, Li P, Kumar N, Weisman LS, Reinisch KM. Insights into Lysosomal PI(3,5)P(2) Homeostasis from a Structural-Biochemical Analysis of the PIKfyve Lipid Kinase Complex. Mol Cell. 2020;80:736–743.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Madureira M, Connor-Robson N, Wade-Martins R. LRRK2: autophagy and lysosomal activity. Front Neurosci. 2020;14:498.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Paisan-Ruiz C, Nath P, Washecka N, Gibbs JR, Singleton AB. Comprehensive analysis of LRRK2 in publicly available Parkinson’s disease cases and neurologically normal controls. Hum Mutat. 2008;29:485–90.

    Article  CAS  PubMed  Google Scholar 

  134. Refai FS, Ng SH, Tan EK. Evaluating LRRK2 genetic variants with unclear pathogenicity. Biomed Res Int. 2015;2015:678701.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Moriwaki Y, Kim YJ, Ido Y, Misawa H, Kawashima K, Endo S, et al. L347P PINK1 mutant that fails to bind to Hsp90/Cdc37 chaperones is rapidly degraded in a proteasome-dependent manner. Neurosci Res. 2008;61:43–8.

    Article  CAS  Google Scholar 

  136. Ibanez P, Lesage S, Lohmann E, Thobois S, De Michele G, et al. Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and North Africa. Brain. 2006;129:686–94.

    Article  PubMed  Google Scholar 

  137. Kocaturk NM, Peker N, Eberhart K, Akkoc Y, Deveci G, Dengjel J, et al. Novel protein complexes containing autophagy and UPS components regulate proteasome-dependent PARK2 recruitment onto mitochondria and PARK2-PARK6 activity during mitophagy. Cell Death Dis. 2022;13:947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Herbert A, Poptsova M. Z-RNA and the flipside of the SARS Nsp13 Helicase: is there a role for flipons in coronavirus-induced pathology? Front Immunol. 2022;13:912717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wiegand T, Malar AA, Cadalbert R, Ernst M, Bockmann A, Meier BH. Asparagine and glutamine side-chains and ladders in HET-s(218-289) amyloid fibrils studied by fast magic-angle spinning NMR. Front Mol Biosci. 2020;7:582033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rodriguez-Ramos A, Gonzalez JA, Fanarraga ML. Enhanced inhibition of amyloid formation by heat shock protein 90 immobilized on nanoparticles. ACS Chem Neurosci. 2023;14:2811–7.

    Article  CAS  PubMed  Google Scholar 

  141. Fu TM, Li Y, Lu A, Li Z, Vajjhala PR, Cruz AC, et al. Cryo-EM structure of Caspase-8 Tandem DED filament reveals assembly and regulation mechanisms of the death-inducing signaling complex. Mol Cell. 2016;64:236–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mompean M, Li W, Li J, Laage S, Siemer AB, Bozkurt G, et al. The structure of the necrosome RIPK1-RIPK3 Core, a human hetero-amyloid signaling complex. Cell. 2018;173:1244–1253.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen X, Zhu R, Zhong J, Ying Y, Wang W, Cao Y, et al. Mosaic composition of RIP1-RIP3 signalling hub and its role in regulating cell death. Nat Cell Biol. 2022;24:471–82.

    Article  CAS  PubMed  Google Scholar 

  144. Hildebrand JM, Tanzer MC, Lucet IS, Young SN, Spall SK, Sharma P, et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci USA. 2014;111:15072–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dougall WC, Holen I, Gonzalez Suarez E. Targeting RANKL in metastasis. Bonekey Rep. 2014;3:519.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Fricker LD. Proteasome inhibitor drugs. Annu Rev Pharm Toxicol. 2020;60:457–76.

    Article  CAS  Google Scholar 

  147. Hughes BK, Wallis R, Bishop CL. Yearning for machine learning: applications for the classification and characterisation of senescence. Cell Tissue Res. 2023;394:1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Cohn RL, Gasek NS, Kuchel GA, Xu M. The heterogeneity of cellular senescence: insights at the single-cell level. Trends Cell Biol. 2023;33:9–17.

    Article  CAS  PubMed  Google Scholar 

  149. Colletti M, Ceglie D, Di Giannatale A, Nazio F. Autophagy and exosomes relationship in cancer: friends or foes? Front Cell Dev Biol. 2020;8:614178.

    Article  PubMed  Google Scholar 

  150. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446:153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Iwawaki T, Hosoda A, Okuda T, Kamigori Y, Nomura-Furuwatari C, Kimata Y, et al. Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat Cell Biol. 2001;3:158–64.

    Article  CAS  PubMed  Google Scholar 

  152. Lenk GM, Szymanska K, Debska-Vielhaber G, Rydzanicz M, Walczak A, Bekiesinska-Figatowska M, et al. Biallelic mutations of VAC14 in pediatric-onset neurological disease. Am J Hum Genet. 2016;99:188–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to the authors who generated the experimental data on which this synthesis is based.

Author information

Authors and Affiliations

Authors

Contributions

This review was conceived and created by the author, as were the figures.

Corresponding author

Correspondence to Alan Herbert.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herbert, A. Osteogenesis imperfecta type 10 and the cellular scaffolds underlying common immunological diseases. Genes Immun (2024). https://doi.org/10.1038/s41435-024-00277-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41435-024-00277-4

Search

Quick links