Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly efficient and specific regulation of gene expression using enhanced CRISPR-Cas12f system

Abstract

The recently developed CRISPR activator (CRISPRa) system uses a CRISPR-Cas effector-based transcriptional activator to effectively control the expression of target genes without causing DNA damage. However, existing CRISPRa systems based on Cas9/Cas12a necessitate improvement in terms of efficacy and accuracy due to limitations associated with the CRISPR-Cas module itself. To overcome these limitations and effectively and accurately regulate gene expression, we developed an efficient CRISPRa system based on the small CRISPR-Cas effector Candidatus Woesearchaeota Cas12f (CWCas12f). By engineering the CRISPR-Cas module, linking activation domains, and using various combinations of linkers and nuclear localization signal sequences, the optimized eCWCas12f-VPR system enabled effective and target-specific regulation of gene expression compared with that using the existing CRISPRa system. The eCWCas12f-VPR system developed in this study has substantial potential for controlling the transcription of endogenous genes in living organisms and serves as a foundation for future gene therapy and biological research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optimization of the dCWCas12f-based CRISPR activator for targeted transcriptional activation.
Fig. 2: Targeted transcriptional activation with eCWCas12f-VPR across various endogenous target sites in human cell line.
Fig. 3: Comparative evaluation of off-target effects induced by eCWCas12f-VPR and dLbCas12a-VPR.
Fig. 4: Activation of endogenous gene expression using eCWCas12f-VPR-loaded rAAV delivery vehicles.

Similar content being viewed by others

Data availability

All relevant data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–12.

    Article  CAS  PubMed  Google Scholar 

  2. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA. 2012;109:E2579–2586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bendixen L, Jensen TI, Bak RO. CRISPR-Cas-mediated transcriptional modulation: the therapeutic promises of CRISPRa and CRISPRi. Mol Ther. 2023;31:1920–37.

    Article  CAS  PubMed  Google Scholar 

  5. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013;41:7429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gilbert, Larson LA, Morsut MH, Liu L, Brar Z, Torres GA, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154:442–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qi, Larson LS, Gilbert MH, Doudna LA, Weissman JA, JS, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kampmann M. CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. ACS Chem Biol. 2018;13:406–16.

    Article  CAS  PubMed  Google Scholar 

  9. Fontana, Dong J, Kiattisewee C, Chavali C, VP, Tickman, et al. Effective CRISPRa-mediated control of gene expression in bacteria must overcome strict target site requirements. Nat Commun. 2020;11:1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Magnusson JP, Rios AR, Wu L, Qi LS. Enhanced Cas12a multi-gene regulation using a CRISPR array separator. eLife. 2021;10:e66406.

  11. McCarty NS, Graham AE, Studena L, Ledesma-Amaro R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat Commun. 2020;11:1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tak YE, Kleinstiver BP, Nunez JK, Hsu JY, Horng JE, Gong J, et al. Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors. Nat Methods. 2017;14:1163–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang X, Wang J, Cheng Q, Zheng X, Zhao G, Wang J. Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov. 2017;3:17018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Asmamaw Mengstie M. Viral vectors for the in vivo delivery of CRISPR components: advances and challenges. Front Bioeng Biotechnol. 2022;10:895713.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kim, Lee DY, Moon JM, SB, Chin, HJ, et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat Biotechnol. 2022;40:94–102.

    Article  CAS  PubMed  Google Scholar 

  16. Wu T, Liu C, Zou S, Lyu R, Yang B, Yan H, et al. An engineered hypercompact CRISPR-Cas12f system with boosted gene-editing activity. Nat Chem Biol. 2023;19:1384–93.

  17. Wu Z, Zhang Y, Yu H, Pan D, Wang Y, Wang Y, et al. Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nat Chem Biol. 2021;17:1132–8.

    Article  CAS  PubMed  Google Scholar 

  18. Xu, Chemparathy X, Zeng A, Kempton L, HR, Shang S, et al. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol Cell. 2021;81:4333–45.e4334.

    Article  CAS  PubMed  Google Scholar 

  19. Takeda SN, Nakagawa R, Okazaki S, Hirano H, Kobayashi K, Kusakizako T, et al. Structure of the miniature type V-F CRISPR-Cas effector enzyme. Mol Cell. 2021;81:558–70.e553.

    Article  CAS  PubMed  Google Scholar 

  20. Xin C, Yin J, Yuan S, Ou L, Liu M, Zhang W, et al. Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption. Nat Commun. 2022;13:5623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen W, Ma J, Wu Z, Wang Z, Zhang H, Fu W, et al. Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors. Mol Cell. 2023;83:2768–80.

  22. Huang CJ, Adler BA, Doudna JA. A naturally DNase-free CRISPR-Cas12c enzyme silences gene expression. Mol Cell. 2022;82:2148–60.e2144.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Qi T, Liu J, Yang Y, Wang Z, Wang Y, et al. A highly specific CRISPR-Cas12j nuclease enables allele-specific genome editing. Sci Adv. 2023;9:eabo6405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu, Mohanraju WY, Liao P, Adiego-Perez C, Creutzburg B, SCA, et al. The miniature CRISPR-Cas12m effector binds DNA to block transcription. Mol Cell. 2022;82:4487–502.e4487.

    Article  CAS  PubMed  Google Scholar 

  25. Altae-Tran, Kannan H, Demircioglu S, Oshiro FE, Nety R, SP, et al. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science. 2021;374:57–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karvelis T, Druteika G, Bigelyte G, Budre K, Zedaveinyte R, Silanskas A, et al. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature. 2021;599:692–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saito M, Xu P, Faure G, Maguire S, Kannan S, Altae-Tran H, et al. Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature. 2023;620:660–8.

  28. Liu J, Chen Y, Nong B, Luo X, Cui K, Tan W, et al. CRISPR-assisted transcription activation by phase separation proteins. Protein Cell. 2023;14:874–87.

  29. Chavez, Scheiman A, Vora J, Pruitt S, BW, Tuttle M, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 2015;12:326–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu Y, Yang G, Huang S, Li X, Wang X, Li G, et al. Enhancing prime editing by Csy4-mediated processing of pegRNA. Cell Res. 2021;31:1134–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huntley S, Baggott DM, Hamilton AT, Tran-Gyamfi M, Yang S, Kim J, et al. A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Res. 2006;16:669–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Margolin JF, Friedman JR, Meyer WK, Vissing H, Thiesen HJ, Rauscher FJ 3rd. Kruppel-associated boxes are potent transcriptional repression domains. Proc Natl Acad Sci USA. 1994;91:4509–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nunez, Chen JK, Pommier J, GC, Cogan JZ, Replogle JM, et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell. 2021;184:2503–19.e2517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Badon IW, Oh Y, Kim HJ, Lee SH. Recent application of CRISPR-Cas12 and OMEGA system for genome editing. Mol Ther. 2024;32:32–43.

    Article  CAS  PubMed  Google Scholar 

  35. Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014;30:1473–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Korean Fund for Regenerative Medicine (KFRM) grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Health & Welfare) (22A0203L1). This study was also supported by the Chung-Ang University Research Scholarship Grants in 2023.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, YO, KHP, KPK, and SHL; Methodology, YO, LWG, HKL, JKH, KHP, KPK, and SHL; Software, YO, HKL, JKH, and SHL; Validation, YO, and SHL; Formal Analysis, YO and SHL; Investigation, YO and SHL; Resources, YO, KPK, and SHL; Data Curation, YO, KPK, and SHL; Writing-Original Draft, YO and SHL; Writing-Review & Editing, YO, KHP, KPK and SHL; Visualization, YO and SHL; Supervision, YO, KHP, KPK, and SHL; Project Administration, YO, KPK, and SHL; Funding Acquisition, KPK and SHL.

Corresponding authors

Correspondence to Kwang-Hyun Park, Kee-Pyo Kim or Seung Hwan Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, Y., Gwon, L.W., Lee, H.K. et al. Highly efficient and specific regulation of gene expression using enhanced CRISPR-Cas12f system. Gene Ther (2024). https://doi.org/10.1038/s41434-024-00458-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41434-024-00458-w

Search

Quick links