Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Superoxide dismutase 1-modified dental pulp stem cells alleviate high-altitude pulmonary edema by inhibiting oxidative stress through the Nrf2/HO-1 pathway

Abstract

High-altitude pulmonary edema (HAPE) is a deadly form of altitude sickness, and there is no effective treatment for HAPE. Dental pulp stem cells (DPSCs) are a type of mesenchymal stem cell isolated from dental pulp tissues and possess various functions, such as anti-inflammatory and anti-oxidative stress. DPSCs have been used to treat a variety of diseases, but there are no studies on treating HAPE. In this study, Sprague-Dawley rats were exposed to acute low-pressure hypoxia to establish the HAPE model, and SOD1-modified DPSCs (DPSCsHiSOD1) were administered through the tail vein. Pulmonary arterial pressure, lung water content (LWC), total lung protein content of bronchoalveolar lavage fluid (BALF) and lung homogenates, oxidative stress, and inflammatory indicators were detected to evaluate the effects of DPSCsHiSOD1 on HAPE. Rat type II alveolar epithelial cells (RLE-6TN) were used to investigate the effects and mechanism of DPSCsHiSOD1 on hypoxia injury. We found that DPSCs could treat HAPE, and the effect was better than that of dexamethasone treatment. SOD1 modification could enhance the function of DPSCs in improving the structure of lung tissue, decreasing pulmonary arterial pressure and LWC, and reducing the total lung protein content of BALF and lung homogenates, through anti-oxidative stress and anti-inflammatory effects. Furthermore, we found that DPSCsHiSOD1 could protect RLE-6TN from hypoxic injury by reducing the accumulation of reactive oxygen species (ROS) and activating the Nrf2/HO-1 pathway. Our findings confirm that SOD1 modification could enhance the anti-oxidative stress ability of DPSCs through the Nrf2/HO-1 signalling pathway. DPSCs, especially DPSCsHiSOD1, could be a potential treatment for HAPE.

Schematic diagram of the antioxidant stress mechanism of DPSCs in the treatment of high-altitude pulmonary edema. DPSCs can alleviate oxidative stress by releasing superoxide dismutase 1, thereby reducing ROS production and activating the Nrf2/HO-1 signalling pathway to ameliorate lung cell injury in HAPE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DPSCs could repair hypoxic injury of RLE-6TN.
Fig. 2: DPSCs could prevent and treat HAPE.
Fig. 3: Evaluation of the efficacy of SOD1-modified DPSCs in the treatment of HAPE.
Fig. 4: Antioxidative stress and anti-inflammatory effect of SOD1-modified DPSCs for the treatment of HAPE.
Fig. 5: SOD1 enhances the anti-oxidative stress of DPSCs by activating the Nrf2/HO-1 signalling pathway.

Similar content being viewed by others

References

  1. Luks AM, Hackett PH. Medical conditions and high-altitude travel. N Engl J Med. 2022;386(4):364–73. https://doi.org/10.1056/NEJMra2104829.

    Article  PubMed  Google Scholar 

  2. Basnyat B. Acute high-altitude illnesses. N. Engl J Med. 2013;369(17):1666. https://doi.org/10.1056/NEJMc1309747.

    Article  CAS  PubMed  Google Scholar 

  3. Luks AM, Auerbach PS, Freer L, Grissom CK, Keyes LE, McIntosh SE, et al. Wilderness medical society clinical practice guidelines for the prevention and treatment of acute altitude illness: 2019 Update. Wilderness Environ Med. 2019;30(4s):3–18. https://doi.org/10.1016/j.wem.2019.04.006.

    Article  Google Scholar 

  4. Stream JO, Grissom CK. Update on high-altitude pulmonary edema: pathogenesis, prevention, and treatment. Wilderness Environ Med. 2008;19(4):293–303. https://doi.org/10.1580/07-WEME-REV-173.1.

    Article  PubMed  Google Scholar 

  5. Pena E, Alam SE, Siques P, Brito J. Oxidative stress and diseases associated with high-altitude exposure. Antioxidants. 2022;11(2):267. https://doi.org/10.3390/antiox11020267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dosek A, Ohno H, Acs Z, Taylor AW, Radak Z. High altitude and oxidative stress. Respir Physiol Neurobiol. 2007;158(2-3):128–31. https://doi.org/10.1016/j.resp.2007.03.013.

    Article  CAS  PubMed  Google Scholar 

  7. Bugger H, Pfeil K. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis. 2020;1866(7):165768. https://doi.org/10.1016/j.bbadis.2020.165768.

    Article  CAS  PubMed  Google Scholar 

  8. Huang XJ, Song CX, Zhong CQ, Wang FS. Research progress in the radioprotective effect of superoxide dismutase. Drug Discov Ther. 2012;6(4):169–77. https://doi.org/10.5582/ddt.2012.v6.4.169.

    Article  CAS  PubMed  Google Scholar 

  9. Ryan AL, Ikonomou L, Atarod S, Bölükbas DA, Collins J, Freishtat R, et al. Stem cells, cell therapies, and bioengineering in lung biology and diseases 2017. An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol. 2019;61(4):429–39. https://doi.org/10.1165/rcmb.2019-0286ST.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Margiana R, Markov A, Zekiy AO, Hamza MU, Al-Dabbagh KA, Al-Zubaidi SH, et al. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res Ther. 2022;13(1):366. https://doi.org/10.1186/s13287-022-03054-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Valle-Prieto A, Conget PA. Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev. 2010;19(12):1885–93. https://doi.org/10.1089/scd.2010.0093.

    Article  CAS  PubMed  Google Scholar 

  12. Yamaza T, Kentaro A, Chen C, Liu Y, Shi Y, Gronthos S, et al. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther. 2010;1(1):5. https://doi.org/10.1186/scrt5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baniebrahimi G, Khanmohammadi R, Mir F. Teeth-derived stem cells: A source for cell therapy. J Cell Physiol. 2019;234(3):2426–35. https://doi.org/10.1002/jcp.27270.

    Article  CAS  PubMed  Google Scholar 

  14. Lv H, Chen W, Xiang AP, Zhang Q, Yang Y, Yi H. Mesenchymal stromal cells as a salvage treatment for confirmed acute respiratory distress syndrome: preliminary data from a single-arm study. Intensive Care Med. 2020;46(10):1944–7. https://doi.org/10.1007/s00134-020-06122-2.

    Article  PubMed  Google Scholar 

  15. Le Thi Bich P, Thi HN, Chau HDN, Van TP, Do Q, Khac HD, et al. Allogeneic umbilical cord-derived mesenchymal stem cell transplantation for treating chronic obstructive pulmonary disease: a pilot clinical study. Stem Cell Res Ther. 2020;11(1):60. https://doi.org/10.1186/s13287-020-1583-4.

    Article  CAS  Google Scholar 

  16. Shi L, Yuan X, Yao W, Wang S, Zhang C, Zhang B. Human mesenchymal stem cells treatment for severe COVID-19: 1-year follow-up results of a randomized, double-blind, placebo-controlled trial[J]. EBioMedicine. 2022;75:103789. https://doi.org/10.1016/j.ebiom.2021.103789.

    Article  CAS  PubMed  Google Scholar 

  17. Wang D, Liu F, Yang W, Sun Y, Wang X, Sui X. Meldonium ameliorates hypoxia-induced lung injury and oxidative stress by regulating platelet-type phosphofructokinase-mediated glycolysis. Front Pharm. 2022;13:863451. https://doi.org/10.3389/fphar.2022.863451.

    Article  CAS  Google Scholar 

  18. Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4(3):206–16. https://doi.org/10.1016/j.stem.2009.02.001.

    Article  CAS  PubMed  Google Scholar 

  19. Cerrada A, Torre PDL, Grande J, Haller T, Flores AI, Pérez-Gil J. Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes. PLoS One. 2014;9(10):110195. https://doi.org/10.1371/journal.pone.0110195.

    Article  CAS  Google Scholar 

  20. Ting AE, Baker EK, Champagne J, Desai TJ, Santos CCD, Heijink LH. Proceedings of the ISCT scientific signature series symposium, “Advances in cell and gene therapies for lung diseases and critical illnesses”: International Society for Cell & Gene Therapy, Burlington VT, US, July 16, 2021. Cytotherapy. 2022;24(8):774–88. https://doi.org/10.1016/j.jcyt.2021.11.007.

    Article  PubMed  Google Scholar 

  21. Kumar A, Kumar V, Rattan V, Jha V, Bhattacharyya S. Secretome proteins regulate comparative osteogenic and adipogenic potential in bone marrow and dental stem cells. Biochimie. 2018;155:129–39. https://doi.org/10.1016/j.biochi.2018.10.014.

    Article  CAS  PubMed  Google Scholar 

  22. Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev. 1996;76(3):839–85. https://doi.org/10.1152/physrev.1996.76.3.839.

    Article  CAS  PubMed  Google Scholar 

  23. Toragall V, Muzaffar JC, Baskaran V. Lutein loaded double-layered polymer nanocarrier modulate H(2)O(2) and CoCl(2) induced oxidative and hypoxia damage and angiogenic markers in ARPE-19 cells. Int J Biol Macromol. 2023;240:124378. https://doi.org/10.1016/j.ijbiomac.2023.124378.

    Article  CAS  PubMed  Google Scholar 

  24. Ruaro B, Salton F, Braga L, Wade B, Confalonieri P, Volpe MC, et al. The history and mystery of alveolar epithelial type II cells: focus on their physiologic and pathologic role in lung. Int J Mol Sci. 2021;22(5):2566. https://doi.org/10.3390/ijms22052566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Verkman AS, Matthay MA, Song Y. Aquaporin water channels and lung physiology. Am J Physiol Lung Cell Mol Physiol. 2000;278(5):867–79. https://doi.org/10.1152/ajplung.2000.278.5.L867.

    Article  Google Scholar 

  26. Yadav E, Yadav N, Hus A, Yadav JS. Aquaporins in lung health and disease: emerging roles, regulation, and clinical implications. Respir Med. 2020;174:106193. https://doi.org/10.1016/j.rmed.2020.106193.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Urner M, Herrmann IK, Booy C, Graggen BR, Maggiorini M, Beck-Schimmer B. Effect of hypoxia and dexamethasone on inflammation and ion transporter function in pulmonary cells. Clin Exp Immunol. 2012;169(2):119–28. https://doi.org/10.1111/j.1365-2249.2012.04595.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu J, Su X, Burley SK, Zheng XFS. Nuclear SOD1 in growth control, oxidative stress response, amyotrophic lateral sclerosis, and cancer. Antioxidants. 2022;11(2). https://doi.org/10.3390/antiox11020427.

  29. Sharma Kandel R, Mishra R, Gautam J, Alaref A, Hassan A, Jahan N. Patchy vasoconstriction versus inflammation: a debate in the pathogenesis of high altitude pulmonary edema. Cureus. 2020;12:10371. https://doi.org/10.7759/cureus.10371.

    Article  Google Scholar 

  30. Xu D, Hu YH, Gou X, Li FY, Yang XY, Li YM, et al. Oxidative stress and antioxidative therapy in pulmonary arterial hypertension. Molecules. 2022;27(12):3724. https://doi.org/10.3390/molecules27123724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sydykov A, Mishra R, Gautam J, Alaref A, Hassan A, Jahan N. Pulmonary hypertension in acute and chronic high altitude maladaptation disorders. Int J Environ Res Public Health. 2021;18(4). https://doi.org/10.3390/ijerph18041692.

  32. Kostov K, Halacheva L .Role of magnesium deficiency in promoting atherosclerosis, endothelial dysfunction, and arterial stiffening as risk factors for hypertension. Int J Mol Sci. 2018;19(6). https://doi.org/10.3390/ijms19061724.

  33. Emerson M, Momi S, Paul W, Alberti PF, Page C, Gresele P. Endogenous nitric oxide acts as a natural antithrombotic agent in vivo by inhibiting platelet aggregation in the pulmonary vasculature. Thromb Haemost. 1999;81(6):961–6.

    Article  CAS  PubMed  Google Scholar 

  34. Rubin LJ, Mendoza J, Hood M, McGoon M, Barst R, Williams WB. Treatment of primary pulmonary hypertension with continuous intravenous prostacyclin (epoprostenol). Results of a randomized trial. Ann Intern Med. 1990;112(7):485–91. https://doi.org/10.7326/0003-4819-112-7-485.

    Article  CAS  PubMed  Google Scholar 

  35. Pollock DM. Endothelin, angiotensin, and oxidative stress in hypertension. Hypertension. 2005;45(4):477–80. https://doi.org/10.1161/01.HYP.0000158262.11935.d0.

    Article  CAS  PubMed  Google Scholar 

  36. Rucker D, Dhamoon AS. Physiology, Thromboxane A2[M]. 2022 Sep 12. In StatPearls[Internet]. Treasure Island (FL): StatPearls Publishing. 2023 Jan.PMID: 30969639

  37. Michel RP, Hakim TS, Smith TT, Poulsen RS. Quantitative morphology of permeability lung edema in dogs induced by alpha-naphthylthiourea. Lab Investig. 1983;49(4):412–9.

    CAS  PubMed  Google Scholar 

  38. Briot R, Bayat S, Anglade D, Martiel J, Grimbert F. Monitoring the capillary-alveolar leakage in an A.R.D.S. model using broncho-alveolar lavage. Microcirculation. 2008;15(3): https://doi.org/10.1080/10739680701647410.

  39. Kubo K, Hanaoka M, Hayano T, Miyahara T, Hachiya T, Hayasaka M. Inflammatory cytokines in BAL fluid and pulmonary hemodynamics in high-altitude pulmonary edema. Respir Physiol. 1998;111(3):301–10. https://doi.org/10.1016/s0034-5687(98)00006-1.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou L, Aon MA, Almas T, Cortassa S, Winslow RL, O’Rourke B. A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network. PLoS Comput Biol. 2010;6(1):1000657. https://doi.org/10.1371/journal.pcbi.1000657.

    Article  CAS  Google Scholar 

  41. Nordberg J, Arnér ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 2001;31(11):1287–312. https://doi.org/10.1016/s0891-5849(01)00724-9.

    Article  CAS  PubMed  Google Scholar 

  42. Klimova T, Chandel NS. Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ. 2008;15(4):660–6. https://doi.org/10.1038/sj.cdd.4402307.

    Article  CAS  PubMed  Google Scholar 

  43. Gong G, Yin L, Yuan L, Sui D, Sun Y, Fu H. Ganglioside GM1 protects against high altitude cerebral edema in rats by suppressing the oxidative stress and inflammatory response via the PI3K/AKT-Nrf2 pathway. Mol Immunol. 2018;95:91–8. https://doi.org/10.1016/j.molimm.2018.02.001.

    Article  CAS  PubMed  Google Scholar 

  44. Wang J, Lu Q, Cai J, Wang Y, Lai X, Qiu Y. Nestin regulates cellular redox homeostasis in lung cancer through the Keap1-Nrf2 feedback loop. Nat Commun. 2019;10(1):5043. https://doi.org/10.1038/s41467-019-12925-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to professor Rili Ge, Feng Tang and Haijie Wang for suggestions on establishing the HAPE model. We thank AJE for language polishing.

Author information

Authors and Affiliations

Authors

Contributions

ZM, TW, and HW, conception and design of the work; ZM, CW, and JL, the acquisition, analysis, and interpretation of data; XL, HD, YY, LL, and ZH, acquisition of data; HL and GX, the creation of new software used in the work; ZM and HW, have draughted the work and substantively revised it. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Tana Wuren or Hua Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All animal experiments were approved by the Institutional Animal Care and Use Committee of Laboratory Animal Centre (IACUC-DWZX-2021-714).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Z., Wang, C., Liu, J. et al. Superoxide dismutase 1-modified dental pulp stem cells alleviate high-altitude pulmonary edema by inhibiting oxidative stress through the Nrf2/HO-1 pathway. Gene Ther (2024). https://doi.org/10.1038/s41434-024-00457-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41434-024-00457-x

Search

Quick links