Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Advances in injectable hydrogels with biological and physicochemical functions for cell delivery

Abstract

Injectable hydrogels that can be administered via syringes have enormous potential as cell delivery carriers for cell transplantation therapy. Owing to their beneficial properties, including biocompatibility, biodegradability, tissue adhesion, and scaffold functions, injectable hydrogels can be used to improve the delivery efficacy and survival of transplanted cells posttransplantation. Moreover, delivery via injection does not require culture or invasive surgical procedures, leading to reduced costs, processing time, and patient burden. To develop injectable hydrogels for clinical translation, hydrogels have been functionalized using various biological and physicochemical engineering approaches to induce angiogenesis, suppress immune rejection, provide viscoelasticity, and allow pore formation for cell infiltration. This focus review discusses the design of optimal injectable hydrogels for cell delivery. Moreover, this focus review summarizes the different approaches available to improve the biological and physicochemical features of hydrogels, lists their impacts on cellular functions, and highlights their therapeutic efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Levy O, Kuai R, Siren EMJ, Bhere D, Milton Y, Nissar N et al. Shattering barriers toward clinically meaningful MSC therapies. Sci Adv. 2020;6:eaba6884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aijaz A, Li M, Smith D, Khong D, LeBlon C, Fenton OS et al. Biomanufacturing for clinically advanced cell therapies. Nat Biomed Eng. 2018;2:362–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005;111:2198–202.

    Article  PubMed  Google Scholar 

  4. Eggenhofer E, Benseler V, Kroemer A, Popp FC, Geissler EK, Schlitt HJ et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol. 2012;3:297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sortwell CE, Pitzer MR, Collier TJ. Time course of apoptotic cell death within Mesencephalic cell suspension grafts: Implications for improving grafted dopamine neuron survival. Exp Neurol. 2000;165:268–77.

    Article  CAS  PubMed  Google Scholar 

  6. Mitrousis N, Fokina A, Shoichet MS. Biomaterials for cell transplantation. Nat Rev Mater. 2018;3:441–56.

    Article  CAS  Google Scholar 

  7. Taboada GM, Yang K, Pereira MJN, Liu SS, Hu Y, Karp JM et al. Overcoming the translational barriers of tissue adhesives. Nat Rev Mater. 2020;5:310–29.

    Article  Google Scholar 

  8. Wu Z, Zhang S, Zhou L, Cai J, Tan J, Gao X et al. Thromboembolism Induced by Umbilical Cord Mesenchymal Stem Cell Infusion: A Report of Two Cases and Literature Review. Transpl Proc. 2017;49:1656–8.

    Article  CAS  Google Scholar 

  9. Moll G, Ankrum JA, Kamhieh-Milz J, Bieback K, Ringdén O, Volk HD et al. Intravascular Mesenchymal Stromal/Stem Cell Therapy Product Diversification: Time for New Clinical Guidelines. Trends Mol Med. 2019;25:149–63.

    Article  PubMed  Google Scholar 

  10. Cai L, Dewi RE, Heilshorn SC. Injectable Hydrogels with In Situ Double Network Formation Enhance Retention of Transplanted Stem Cells. Adv Funct Mater. 2015;25:1344–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Madl CM, Heilshorn SC, Blau HM. Bioengineering strategies to accelerate stem cell therapeutics. Nature. 2018;557:335–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nam S, Mooney D. Polymeric Tissue Adhesives. Chem. Rev. 2021;121:11336–11384.

  13. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability andhemolysis. Biomaterials. 2003;24:1121–31.

    Article  CAS  PubMed  Google Scholar 

  14. Wei Z, Gerecht S. A self-healing hydrogel as an injectable instructive carrier for cellular morphogenesis. Biomaterials. 2018;185:86–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nagahama K, Kimura Y, Takemoto A. Living functional hydrogels generated by bioorthogonal cross-linking reactions of azide-modified cells with alkyne-modified polymers. Nat Commun. 2018;9:2195.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wong Po Foo CT, Lee JS, Mulyasasmita W, Parisi-Amon A, Heilshorn SC. Two-component protein-engineered physical hydrogels for cell encapsulation. Proc Natl Acad Sci USA 2009;106:22067–72.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Koh J, Griffin DR, Archang MM, Feng AC, Horn T, Margolis M et al. Enhanced In Vivo Delivery of Stem Cells using Microporous Annealed Particle Scaffolds. Small. 2019;15:e1903147.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Paige KT, Cima LG, Yaremchuk MJ, Vacanti JP, Vacanti CA. Injectable Cartilage. Plast Reconstructive Surg. 1995;96:1390–8.

    Article  CAS  Google Scholar 

  19. Silverman RP, Passaretti D, Huang W, Randolph MA, Yaremchuk MJ. Injectable Tissue-Engineered Cartilage Using a Fibrin Glue Polymer. Plast Reconstructive Surg. 1999;103:1809–18.

    Article  CAS  Google Scholar 

  20. Mori D, Miyagawa S, Yajima S, Saito S, Fukushima S, Ueno T et al. Cell spray transplantation of adipose-derived mesenchymal stem cell recovers ischemic cardiomyopathy in a porcine model. Transplantation. 2018;102:2012–24.

    Article  PubMed  Google Scholar 

  21. Radosevich M, Goubran HA, Burnouf T. Fibrin sealant: Scientific rationale, production methods, properties, and current clinical use. Vox Sang. 1997;72:133–43.

    Article  CAS  PubMed  Google Scholar 

  22. Hidas G, Kastin A, Mullerad M, Shental J, Moskovitz B, Nativ O. Sutureless nephron-sparing surgery: use of albumin glutaraldehyde tissue adhesive (BioGlue). Urology. 2006;67:697–700.

    Article  CAS  PubMed  Google Scholar 

  23. Glickman M, Gheissari A, Money S, Martin J, Ballard JL, Group, f. t. C. M. V. S. S. A polymeric sealant inhibits anastomotic suture hole bleeding more rapidly than gelfoam/thrombin: Results of a randomized controlled trial. Arch Surg. 2002;137:326–31.

    Article  CAS  PubMed  Google Scholar 

  24. Wallace DG, Cruise GM, Rhee WM, Schroeder JA, Prior JJ, Ju J et al. A tissue sealant based on reactive multifunctional polyethylene glycol. J Biomed Mater Res. 2001;58:545–55.

    Article  CAS  PubMed  Google Scholar 

  25. Yoshizaki Y, Nagata T, Fujiwara S, Takai S, Jin D, Kuzuya A et al. Postoperative adhesion prevention using a biodegradable temperature-responsive injectable polymer system and concomitant effects of the chymase inhibitor. ACS Appl Bio Mater. 2021;4:3079–88.

    Article  CAS  PubMed  Google Scholar 

  26. Ito T, Yeo Y, Highley CB, Bellas E, Benitez CA, Kohane DS. The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials. 2007;28:975–83.

    Article  CAS  PubMed  Google Scholar 

  27. Mizuta R, Mizuno Y, Chen X, Kurihara Y, Taguchi T. Evaluation of an octyl group-modified Alaska pollock gelatin-based surgical sealant for prevention of postoperative adhesion. Acta Biomater. 2021;121:328–38.

    Article  CAS  PubMed  Google Scholar 

  28. Brubaker CE, Messersmith PB. Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules. 2011;12:4326–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matsuda M, Inoue M, Taguchi T. Adhesive properties and biocompatibility of tissue adhesives composed of various hydrophobically modified gelatins and disuccinimidyl tartrate. J Bioact Compat Polym. 2012;27:481–98.

    Article  Google Scholar 

  30. Zhang E, Song B, Shi Y, Zhu H, Han X, Du H et al. Fouling-resistant zwitterionic polymers for complete prevention of postoperative adhesion. Proc Natl Acad Sci USA 2020;117:32046–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-healing injectable hydrogels for tissue regeneration. Chem Rev. 2022. https://doi.org/10.1021/acs.chemrev.2c00179.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nishiguchi A, Taguchi T. Engineering thixotropic supramolecular gelatin-based hydrogel as an injectable scaffold for cell transplantation. Biomed. Mater. 2023;18:015012.

  33. Gaffey AC, Chen MH, Venkataraman CM, Trubelja A, Rodell CB, Dinh PV et al. Injectable shear-thinning hydrogels used to deliver endothelial progenitor cells, enhance cell engraftment, and improve ischemic myocardium. J Thorac Cardiovasc Surg. 2015;150:1268–76.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhao L, Weir MD, Xu HH. An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials. 2010;31:6502–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Akhilesh K. Gaharwar, Reginald K. Avery, Alexander Assmann, Arghya Paul, Gareth H. McKinley, Ali Khademhosseini & Olsen, B. D. Shear-Thinning Nanocomposite Hydrogels for the Treatment of Hemorrhage. ACS Nano. 2014;8:9833–42.

    Google Scholar 

  36. Nagahama K, Ouchi T, Ohya Y. Temperature-Induced Hydrogels Through Self-Assembly of Cholesterol-Substituted Star PEG-b-PLLA Copolymers: An Injectable Scaffold for Tissue Engineering. Adv Funct Mater. 2008;18:1220–31.

    Article  CAS  Google Scholar 

  37. Yoshizaki Y, Takai H, Mayumi N, Fujiwara S, Kuzuya A, Ohya Y. Cellular therapy for myocardial ischemia using a temperature-responsive biodegradable injectable polymer system with adipose-derived stem cells. Sci Technol Adv Mater. 2021;22:627–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nishiguchi A, Ichimaru H, Ito S, Nagasaka K, Taguchi T. Hotmelt tissue adhesive with supramolecularly-controlled sol-gel transition for preventing postoperative abdominal adhesion. Acta Biomater. 2022;146:80–93.

    Article  CAS  PubMed  Google Scholar 

  39. Assmann A, Vegh A, Ghasemi-Rad M, Bagherifard S, Cheng G, Sani ES et al. A highly adhesive and naturally derived sealant. Biomaterials. 2017;140:115–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin RZ, Chen YC, Moreno-Luna R, Khademhosseini A, Melero-Martin JM. Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Biomaterials. 2013;34:6785–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science. 2001;294:1708–12.

    Article  CAS  PubMed  Google Scholar 

  42. Vachon PH. Integrin signaling, cell survival, and anoikis: distinctions, differences, and differentiation. J Signal Transduct. 2011;2011:738137.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zustiak SP, Durbal R, Leach JB. Influence of cell-adhesive peptide ligands on poly(ethylene glycol) hydrogel physical, mechanical and transport properties. Acta Biomater. 2010;6:3404–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater. 2018;3:159–73.

    Article  CAS  Google Scholar 

  45. Boer U, Lohrenz A, Klingenberg M, Pich A, Haverich A, Wilhelmi M. The effect of detergent-based decellularization procedures on cellular proteins and immunogenicity in equine carotid artery grafts. Biomaterials. 2011;32:9730–7.

    Article  PubMed  Google Scholar 

  46. Fernandez-Perez J, Ahearne M. The impact of decellularization methods on extracellular matrix derived hydrogels. Sci Rep. 2019;9:14933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Funamoto S, Nam K, Kimura T, Murakoshi A, Hashimoto Y, Niwaya K et al. The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials. 2010;31:3590–5.

    Article  CAS  PubMed  Google Scholar 

  48. Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 2010;16:814–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee JS, Roh YH, Choi YS, Jin Y, Jeon EJ, Bong KW, et al. Tissue Beads: Tissue‐Specific Extracellular Matrix Microbeads to Potentiate Reprogrammed Cell‐Based Therapy. Adv. Functional Mater. 2019;29:1807803.

  50. Folkman J, Hochberg M. Self-regulation of growth in three dimensions. J Exp Med. 1973;138:745–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thomas D, O’Brien T, Pandit A. Toward customized extracellular niche engineering: Progress in cell-entrapment technologies. Adv Mater. 2018;30:1703948.

    Article  Google Scholar 

  52. Razavi M, Primavera R, Kevadiya BD, Wang J, Buchwald P, Thakor AS. A Collagen Based Cryogel Bioscaffold that Generates Oxygen for Islet Transplantation. Adv. Funct. Mater. 2020;30:1902463.

  53. Weaver JD, Headen DM, Aquart J, Johnson CT, Shea LD, Shirwan H et al. Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Sci Adv. 2017;3:e1700184.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Briquez PS, Clegg LE, Martino MM, Gabhann FM, Hubbell JA. Design principles for therapeutic angiogenic materials. Nat Rev Mater. 2016:1.

  55. Hill E, Boontheekul T, Mooney DJ. Regulating activation of transplanted cells controls tissue regeneration. Proc Natl Acad Sci USA 2006;103:2494–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sasagawa T, Shimizu T, Sekiya S, Haraguchi Y, Yamato M, Sawa Y et al. Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials. 2010;31:1646–54.

    Article  CAS  PubMed  Google Scholar 

  57. Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499:481–4.

    Article  CAS  PubMed  Google Scholar 

  58. Mao AS, Mooney DJ. Regenerative medicine: Current therapies and future directions. Proc Natl Acad Sci USA 2015;112:14452–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Korsgren O, Nilsson B, Berne C, Felldin M, Foss A, Kallen R et al. Current status of clinical islet transplantation. Transplantation. 2005;79:1289–93.

    Article  PubMed  Google Scholar 

  60. Shapiro AMJ, Pokrywczynska M, Ricordi C. Clinical pancreatic islet transplantation. Nat Rev Endocrinol. 2017;13:268–77.

    Article  CAS  PubMed  Google Scholar 

  61. Dang TT, Thai AV, Cohen J, Slosberg JE, Siniakowicz K, Doloff JC et al. Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug. Biomaterials. 2013;34:5792–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lim F, Sun AM. Microencapsulated Islets as Bioartificial Endocrine Pancreas. Science. 1980;210:908–10.

    Article  CAS  PubMed  Google Scholar 

  63. Teramura Y, Kaneda Y, Iwata H. Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)-lipids in the cell membrane. Biomaterials. 2007;28:4818–25.

    Article  CAS  PubMed  Google Scholar 

  64. Headen DM, Woodward KB, Coronel MM, Shrestha P, Weaver JD, Zhao H et al. Local immunomodulation with Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. Nat Mater. 2018;17:732–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Graham JG, Zhang X, Goodman A, Pothoven K, Houlihan J, Wang S et al. PLG scaffold delivered antigen-specific regulatory T cells induce systemic tolerance in autoimmune diabetes. Tissue Eng Part A. 2013;19:1465–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ingber DE. Mechanical control of tissue morphogenesis during embryological development. Int J Dev Biol. 2006;50:255–66.

    Article  PubMed  Google Scholar 

  67. Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nat Rev Mol Cell Biol. 2009;10:63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  CAS  PubMed  Google Scholar 

  69. Abdeen AA, Weiss JB, Lee J, Kilian KA. Matrix composition and mechanics direct proangiogenic signaling from mesenchymal stem cells. Tissue Eng Part A. 2014;20:2737–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huebsch N, Lippens E, Lee K, Mehta M, Koshy ST, Darnell MC et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat Mater. 2015;14:1269–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chaudhuri O, Gu L, Darnell M, Klumpers D, Bencherif SA, Weaver JC et al. Substrate stress relaxation regulates cell spreading. Nat Commun. 2015;6:6364.

    Article  PubMed  Google Scholar 

  72. Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater. 2016;15:326–34.

    Article  CAS  PubMed  Google Scholar 

  73. Elosegui-Artola A, Gupta A, Najibi AJ, Seo BR, Garry R, Tringides CM, de Lazaro I, Darnell M, Gu W, Zhou Q, Weitz DA, Mahadevan L, Mooney DJ. Matrix viscoelasticity controls spatiotemporal tissue organization. Nat Mater. 2023;22:117–127.

  74. Wang KY, Jin XY, Ma YH, Cai WJ, Xiao WY, Li ZW et al. Injectable stress relaxation gelatin-based hydrogels with positive surface charge for adsorption of aggrecan and facile cartilage tissue regeneration. J Nanobiotechnol. 2021;19:214.

    Article  CAS  Google Scholar 

  75. Chan V, Zorlutuna P, Jeong JH, Kong H, Bashir R. Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip. 2010;10:2062–70.

    Article  CAS  PubMed  Google Scholar 

  76. Han LH, Conrad B, Chung MT, Deveza L, Jiang X, Wang A et al. Microribbon-based hydrogels accelerate stem cell-based bone regeneration in a mouse critical-size cranial defect model. J Biomed Mater Res A. 2016;104:1321–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang X, Yang B, Deng Y, Xie X, Qi Y, Yan G et al. Coacervation-mediated cytocompatible formation of supramolecular hydrogels with self-evolving macropores for 3D multicellular spheroid culture. Adv Mater. 2023;35:e2300636.

    Article  PubMed  Google Scholar 

  78. Rommel D, Mork M, Vedaraman S, Bastard C, Guerzoni LPB, Kittel Y et al. Functionalized Microgel Rods Interlinked into Soft Macroporous Structures for 3D Cell Culture. Ad Sci. 2022;9:2103554.

    Article  CAS  Google Scholar 

  79. Sleep E, Cosgrove BD, McClendon MT, Preslar AT, Chen CH, Sangji MH et al. Injectable biomimetic liquid crystalline scaffolds enhance muscle stem cell transplantation. Proc Natl Acad Sci USA 2017;114:E7919–928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bai F, Wang Z, Lu J, Liu J, Chen G, Lv R et al. The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: a quantitative study. Tissue Eng Part A. 2010;16:3791–803.

    Article  CAS  PubMed  Google Scholar 

  81. Brauker JH, Carr-Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC. Neovascularization of synthetic membranes directed by membrane microarchitecture. J Biomed Mater Res. 1995;29:1517–24.

    Article  CAS  PubMed  Google Scholar 

  82. Nishiguchi A, Ito S, Nagasaka K, Komatsu H, Uto K, Taguchi T. Injectable microcapillary network hydrogels engineered by liquid-liquid phase separation for stem cell transplantation. Biomaterials. 2024;305:122451.

    Article  CAS  PubMed  Google Scholar 

  83. Bracha D, Walls MT, Brangwynne CP. Probing and engineering liquid-phase organelles. Nat Biotechnol 2019;37:1435–45.

    Article  CAS  PubMed  Google Scholar 

  84. Paterson SM, Shadforth AMA, Brown DH, Madden PW, Chirila TV, Baker MV. The synthesis and degradation of collagenase-degradable poly(2-hydroxyethyl methacrylate)-based hydrogels and sponges for potential applications as scaffolds in tissue engineering. Mater Sci Eng C. 2012;32:2536–44.

    Article  CAS  Google Scholar 

  85. Marquardt LM, Heilshorn SC. Design of injectable materials to improve stem cell transplantation. Curr Stem Cell Rep. 2016;2:207–20.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank Dr. Tetsushi Taguchi (National Institute for Materials Science) and my group members for their assistance with this work. This work was partly supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (grant nos. 22H03962 and 23K25216), the Uehara Memorial Foundation, Medical Technology from the Japan Agency for Medical Research and Development, and Inamori Research Grants from the Inamori Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Nishiguchi.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishiguchi, A. Advances in injectable hydrogels with biological and physicochemical functions for cell delivery. Polym J (2024). https://doi.org/10.1038/s41428-024-00934-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-024-00934-5

Search

Quick links