Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Phase diagram for the gelation of temperature-responsive and biocompatible poly(oligo ethylene glycol methyl ether methacrylate) polymers in aqueous free-radical polymerization reactions

Abstract

In this study, gel-phase diagrams of temperature-responsive and biocompatible polymers were obtained, and the characteristic gelation behaviors of the polymers were examined. The polymers are based on three oligoethylene glycol methyl ether methacrylate (OEGMA) monomers with different numbers of ethylene oxide (EO) units, i.e., with side chains that differ in length. The gelation thresholds depend on the OEGMA and crosslinker concentrations as well as the side chain length. Long EO side chains fill the polymerization system and reduce the concentration of polymer overlap, resulting in a high ability to occupy the system. Furthermore, the EO side chains may engage in self-crosslinking, i.e., polymers can branch and grow from the side chains depending on their length, resulting in a high bond probability. Based on these unique behavior patterns, gelation occurs more readily as the length of the side chains increases. We also synthesized ultralow crosslinked pOEGMA gels by tuning the gelation conditions; these gels exhibited improved swelling capacity and temperature responsiveness. These results should facilitate the development of a synthesis strategy to control the physical properties and structures of these materials for advanced applications, such as biofilms, actuators, and carriers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64:18–23.

    Article  Google Scholar 

  2. Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X, Sapir L, et al. Molecular characterization of polymer networks. Chem Rev. 2021;121:5042–92.

    Article  CAS  PubMed  Google Scholar 

  3. Tamate R, Ueki T. Adaptive ion-gel: stimuli-responsive, and self-healing ion gels. Chem Rec. 2023;23:8.

    Google Scholar 

  4. Petelinšek N, Mommer S. Tough hydrogels for load-bearing applications. Adv Sci. 2024;11:2307404.

    Article  Google Scholar 

  5. Teshima R, Osawa S, Yoshikawa M, Kawano Y, Otsuka H, Hanawa T.Low-adhesion and low-swelling hydrogel based on alginate and carbonated water to prevent temporary dilation of wound sites Int J Biol Macromol. 2024;254:127928

    Article  CAS  PubMed  Google Scholar 

  6. Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Materials. 2013;6:1285–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang Y, Yang M, Zhao Z. Facile fabrication of self-healing, injectable and antimicrobial cationic guar gum hydrogel dressings driven by hydrogen bonds. Carbohydr Polym. 2023;310:120723.

    Article  CAS  PubMed  Google Scholar 

  8. Chen J, Wu J, Raffa P, Picchioni F, Koning CE. Superabsorbent polymers: from long-established, microplastics generating systems, to sustainable, biodegradable and future proof alternatives. Prog Polym Sci. 2022;125:101475.

    Article  CAS  Google Scholar 

  9. Szymaszek P, Tomal W, Świergosz T, Kamińska-Borek I, Popielarz R, Ortyl J. Review of quantitative and qualitative methods for monitoring photopolymerization reactions. Polym Chem. 2023;14:1690–717.

    Article  CAS  Google Scholar 

  10. Lutz JF, Andrieu J, Üzgün S, Rudolph C, Agarwal S. Biocompatible, thermoresponsive, and biodegradable: simple preparation of “all-in-one” biorelevant polymers. Macromolecules. 2007;40:8540–3.

    Article  CAS  Google Scholar 

  11. Lutz JF. Polymerization of oligo(ethylene glycol) (meth)acrylates: toward new generations of smart biocompatible materials. J Polym Sci Part A Polym Chem. 2008;46:3459–70.

    Article  CAS  Google Scholar 

  12. Wisherhoff E, Badi N, Laschewsky A, Lutz JF. Smart polymer surfaces: concepts and applications in biosciences. Adv Polym Sci. 2010;240:1–33.

    Article  Google Scholar 

  13. Liu M, Leroux JC, Gauthier MA. Conformation–function relationships for the comb-shapedpolymer pOEGMA. Prog Polym Sci. 2015;48:111–21.

    Article  Google Scholar 

  14. Badi N. Non-linear PEG-based thermoresponsive polymer systems. Prog Polym Sci. 2017;66:54–79.

    Article  CAS  Google Scholar 

  15. Kureha T, Hayashi K, Ohira M, Li X, Shibayama M. Dynamic fluctuations of thermoresponsive poly(oligo-ethylene glycol methyl ether methacrylate)-based hydrogels investigated by dynamic light scattering. Macromolecules. 2018;51:8932–9.

    Article  CAS  Google Scholar 

  16. Kureha T, Hayashi K, Li X, Shibayama M. Mechanical properties of temperature-responsive gels containing ethylene glycol in their side chains. Soft Matter. 2020;16:10946–53.

    Article  CAS  PubMed  Google Scholar 

  17. Kureha T, Ohira M, Takahashi Y, Li X, Gilbert EP, Shibayama M. Nanoscale structures of poly(oligo ethylene glycol methyl ether methacrylate) hydrogels revealed by small-angle neutron scattering. Macromolecules. 2022;55:1844–54.

    Article  CAS  Google Scholar 

  18. Kureha T, Takahashi K, Kino M, Kida H, Hirayama T. Controlling the mechanical properties of hydrogels via modulating the side-chain length. Soft Matter. 2023;19:2878–82.

    Article  CAS  PubMed  Google Scholar 

  19. Lutz JF, Weichenhan K, Akdemir Ö, Hoth A. About the phase transitions in aqueous solutions of thermoresponsive copolymers and hydrogels based on 2-(2-methoxyethoxy) ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules. 2007;40:2503–8.

    Article  CAS  Google Scholar 

  20. Badi N, Lutz JF. PEG-based thermogels: applicability in physiological media. J Control Release. 2009;140:224–9.

    Article  CAS  PubMed  Google Scholar 

  21. Piechocki K, Kozanecki M, Kadlubowski S, Pacholczyk-Sienicka B, Ulanski P, Biela T. Controlling the properties of radiation-synthesized thermoresponsive oligoether methacrylate hydrogels by varying the monomer sidechain length; self-composite network containing crystalline phase. Polymer. 2018;150:275–88.

    Article  CAS  Google Scholar 

  22. Czaderna-Lekka A, Kozanecki M, Matusiak M, Kadlubowski S. Phase transitions of poly(oligo(ethylene glycol) methyl ether methacrylate)-water systems. Polymer. 2021;212:123247.

    Article  CAS  Google Scholar 

  23. Piechocki K, Koynov K, Piechocka J, Chamerski K, Filipecki J, Maczugowska P, et al. Small molecule diffusion in poly-(olygo ethylene glycol methacrylate) based hydrogels studied by fluorescence correlation spectroscopy. Polymer. 2022;244:124628.

    Article  CAS  Google Scholar 

  24. Sadowski LP, Singh A, Luo DH, Majcher MJ, Urosev I, Rothenbroker M, et al. Functionalized poly(oligo(lactic acid) methacrylate)-block-poly(oligo(ethylene glycol) methacrylate) block copolymers: a synthetically tunable analogue to PLA-PEG for fabricating drug-loaded nanoparticles. Eur Polym J. 2022;177:111443.

    Article  CAS  Google Scholar 

  25. Gilbert T, Campea MA, Rivera NP, Majcher M, Alsop R, Babi M, et al. Injectable poly(N-isopropylacrylamide)/poly(vinylpyrrolidone) interpenetrating network hydrogels formed via hydrazone/disulfide cross-linking. Macromolecules. 2023;56:6679–91.

    Article  CAS  Google Scholar 

  26. Xu F, Dawson C, Hoare T. Multicellular layered nanofibrous poly(oligo ethyleneglycol methacrylate) (POEGMA)-based hydrogel scaffolds via reactive cell electrospinning. Adv Biol. 2023;7:2300052

    Article  CAS  Google Scholar 

  27. Li Q, Wang R, Lee J, Correia JS, Constantinou AP, Krell J, et al. Thermogels based on biocompatible OEGMA-MEGMA diblock copolymers. Eur Polym J. 2023;194:112144.

    Article  CAS  Google Scholar 

  28. Flory PJ. Molecular size distribution in three dimensional polymers. I. Gelation. J Am Chem Soc. 1941;63:3083–90.

    Article  CAS  Google Scholar 

  29. Flory PJ. Molecular size distribution in three dimensional polymers. II. Trifunctional branching units. J Am Chem Soc. 1941;63:3091–6.

    Article  CAS  Google Scholar 

  30. Flory PJ. Molecular size distribution in three dimensional polymers. III. Tetrafunctional branching units. J Am Chem Soc. 1941;63:3096–100.

    Article  CAS  Google Scholar 

  31. Stockmayer WH. Theory of molecular size distribution and gel formation in branched-chain polymers. J Chem Phys. 1943;11:45–55.

    Article  CAS  Google Scholar 

  32. Stockmayer WH. Theory of molecular size distribution and gel formation in branched polymers II. J Chem Phys. 1944;12:125–31.

    Article  CAS  Google Scholar 

  33. Stockmayer WH. Molecular distribution in condensation polymers. J Polym Sci. 1953;11:424.

    Article  CAS  Google Scholar 

  34. Coniglio A, Stanley HE, Klein W. Site-bond correlated-percolation problem: a statistical mechanical model of polymer gelation. Phys Rev Lett. 1979;42:518–22.

    Article  CAS  Google Scholar 

  35. Pekcan Ö, Kara S. Gelation mechanisms. Mod Phys Lett B. 2012;26:1230019.

    Article  Google Scholar 

  36. Santra A, Dünweg B, Prakash JR. Universal scaling and characterization of gelation in associative polymer solutions. J Rheol. 2021;65:549–81.

    Article  CAS  Google Scholar 

  37. Chiu YY, Lee LJ. Microgel formation in the free radical crosslinking polymerization of ethylene glycol dimethacrylate (EGDMA). II. Simulation. J Polym Sci A. 1995;33:269–83.

    Article  CAS  Google Scholar 

  38. Bueno C, Liman J, Schafer NP, Cheung MS, Wolynes PG. A generalized Flory-Stockmayer kinetic theory of connectivity percolation and rigidity percolation of cytoskeletal networks. PLoS Comput Biol. 2022;18:1010105.

    Article  Google Scholar 

  39. Dawson F, Jafari H, Rimkevicius V, Kopeć M. Gelation in photoinduced ATRP with tuned dispersity of the primary chains. Macromolecules. 2023;56:2009–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pekcan Ö, Yılmaz Y, Okay O. In situ fluorescence experiments to test the reliability of random bond and site bond percolation models during sol-gel transition in free-radical crosslinking copolymerization. Polymer. 1996;37:2049–53.

    Article  CAS  Google Scholar 

  41. Takeda M, Norisuye T, Shibayama M. Critical dynamics of cross-linked polymer chains near the gelation threshold. Macromolecules. 2000;33:2909–15.

    Article  CAS  Google Scholar 

  42. Jia F, Kubiak JM, Onoda M, Wang Y, Macfarlane RJ. Design and synthesis of quick setting nonswelling hydrogels via brush polymers. Adv Sci. 2021;8:2100968.

    Article  CAS  Google Scholar 

  43. Sakai T, Katashima T, Matsushita T, Chung U. Sol-gel transition behavior near critical concentration and connectivity. Polym J. 2016;48:629–34.

    Article  CAS  Google Scholar 

  44. Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, et al. Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly(acrylic acid). J Mater Chem. 2012;22:22467–80.

    Article  CAS  Google Scholar 

  45. Kanokwijitsilp T, Körner M, Prucker O, Anton A, Lübke J, Rühe J. Kinetics of photocrosslinking and surface attachment of thick polymer films. Macromolecules. 2021;54:6238–46.

    Article  CAS  Google Scholar 

  46. Hoffmann M, Lang M, Sommer JU. Gelation threshold of cross-linked polymer brushes. Phys Rev E. 2011;83:021803.

    Article  Google Scholar 

  47. Jia F, Song J, Kubiak JM, Onoda M, Santos PJ, Sano K, et al. Brush polymers as nanoscale building blocks for hydrogel synthesis. Chem Mater. 2021;33:5748–5756.

    Article  CAS  Google Scholar 

  48. Polanowski P, Jeszka JK, Matyjaszewski K. Crosslinking and gelation of polymer brushes and free polymer chains in a confined space during controlled radical polymerization─a computer simulation study. Macromolecules. 2023;56:2608–18.

    Article  CAS  Google Scholar 

  49. Flory PJ. Principles of Polymer Chemistry. Ithaca: Cornell University Press; 1953.

  50. Drozdov AD. Equilibrium swelling of biocompatible thermo-responsive copolymer gels. Gels. 2021;7:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bae YH, Okano T, Kim SW. Temperature dependence of swelling of crosslinked poly(N,N’-alkyl substituted acrylamides) in water. J Polym Sci B Polym Phys. 1990;28:923–36.

    Article  CAS  Google Scholar 

  52. Norisuye T, Shibayama M, Nomura S. Time-resolved light scattering study on the gelation process of poly(N-isopropyl acrylamide). Polymer. 1998;39:2769–75.

    Article  CAS  Google Scholar 

  53. Kureha T, Minato H, Suzuki D, Urayama K, Shibayama M. Concentration dependence of the dynamics of microgel suspensions investigated by dynamic light scattering. Soft Matter. 2019;15:5390–9.

    Article  CAS  PubMed  Google Scholar 

  54. Zainuddin Z, Albinska J, Ulański P, Rosiak JM. Radiation-induced degradation and crosslinking of poly(ethylene oxide) in solid state. J Radioanal Nucl Chem. 2002;253:339–44.

    Article  CAS  Google Scholar 

  55. Aymes-Chodur C, Dannoux A, Dauvois V, Esnouf S. Radiation effects on a linear model compound for polyethers. Polym Degrad Stable. 2011;96:1225–35.

    Article  CAS  Google Scholar 

  56. Welsch N, Lyon LA. Oligo(ethylene glycol)-sidechain microgels prepared in absence of cross-linking agent: Polymerization, characterization and variation of particle deformability. PLoS ONE. 2017;12:0181369.

    Article  Google Scholar 

  57. Magami SM, Williams RL. Gelation studies on acrylic acid-based hydrogels via in situ photo-crosslinking and rheology. J Appl Polym Sci. 2018;135:46691.

    Article  Google Scholar 

  58. Matsunaga T, Shibayama M. Gel point determination of gelatin hydrogels by dynamic light scattering and rheological measurements. Phys Rev E. 2007;76:03041.

    Article  Google Scholar 

  59. Hennink WE, Nostrum CFV. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev. 2002;54:13–36.

    Article  CAS  PubMed  Google Scholar 

  60. Appel EA, Barrio JD, Loh XJ, Scherman OA. Supramolecular polymeric hydrogels. Chem Soc Rev. 2012;41:6195–214.

    Article  CAS  PubMed  Google Scholar 

  61. Perera MM, Ayres N. Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels. Polym Chem. 2020;11:1410–23.

    Article  CAS  Google Scholar 

  62. Žugić D, Spasojević P, Petrović Z, Djonlagić J. Semi-interpenetrating networks based on poly(N-isopropyl acrylamide) and poly(N-vinylpyrrolidone). J Appl Polym Sci. 2009;113:1593–603.

    Article  Google Scholar 

  63. Bueno VB, Bentini R, Catalani LH, Petri DFS. Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr Polym. 2013;92:1091–9.

    Article  CAS  PubMed  Google Scholar 

  64. Cai T, Marquez M, Hu Z. Monodisperse thermoresponsive microgels of poly(ethylene glycol) analogue-based biopolymers. Langmuir. 2007;23:8663–6.

    Article  CAS  PubMed  Google Scholar 

  65. Yoon JA, Kowalewski T, Matyjaszewski K. Comparison of thermoresponsive deswelling kinetics of poly(oligo(ethylene oxide) methacrylate)-based thermoresponsive hydrogels prepared by “Graft-from” ATRP. Macromolecules. 2011;44:2261–8.

    Article  CAS  Google Scholar 

  66. Murdoch TJ, Humphreys BA, Johnson EC, Prescott SW, Nelson A, Wanless EJ, et al. The role of copolymer composition on the specific ion and thermoresponse of ethylene glycol-based brushes. Polymer. 2018;138:229–41.

    Article  CAS  Google Scholar 

  67. Ishizone T, Seki A, Hagiwara M, Han S, Yokoyama H, Oyane A, et al. Anionic polymerizations of oligo(ethylene glycol) alkyl ether methacrylates: effect of side chain length and ω-alkyl group of side chain on cloud point in water. Macromolecules. 2008;41:2963–7.

    Article  CAS  Google Scholar 

  68. Frazar EM, Shah RA, Dziubla TD, Hilt JZ. Multifunctional temperature-responsive polymers as advanced biomaterials and beyond. Appl Polym Sci. 2020;137:48770.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a CREST Grant-in-Aid (JPMJCR21L2) from the Japan Science and Technology Agency (JST). T.K. gratefully acknowledges JSPS KAKENHI grant JP22K14730, an Exploratory Research Grant for Young Scientists from Hirosaki University, and the FUSO Innovative Technology Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuma Kureha.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kureha, T., Hirayama, T. & Nishi, T. Phase diagram for the gelation of temperature-responsive and biocompatible poly(oligo ethylene glycol methyl ether methacrylate) polymers in aqueous free-radical polymerization reactions. Polym J (2024). https://doi.org/10.1038/s41428-024-00929-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-024-00929-2

Search

Quick links