Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Exclusive formation of stereocomplex crystallites in PLLA/PDLA (50/50) blends by the addition of a plasticizer

Subjects

Abstract

This study examined the effects of loading amounts of a biobased plasticizer, namely, organic acid monoglyceride (OMG), on the formation of homocrystals (HCs) and stereocomplex crystals (SCs) in PLLA/PDLA (50/50) blends by means of differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and polarized optical microscopy (POM) observations. OMG at different concentrations was added to the PLLA/PDLA (50/50) blend from 0.5 to 5% in 0.5% increments. The addition of OMG was found to enhance SC formation while suppressing HC formation in both nonisothermal and isothermal experiments. The total suppression of HC formation and exclusive SC formation was achieved in the specimens with OMG contents higher than 3% after isothermal crystallization at 170 °C for 5 h. This result was confirmed by WAXD measurements of the specimens with 4 and 5% OMG, where only SC diffraction peaks were observed. In addition, the degree of crystallinity was found to be the same for the specimens with 0 and 5% OMG crystallized at 170 °C for 5 h. These findings imply that not only did the SC form exclusively but also that the presence of OMG actively accelerated its crystallization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jiménez, A, Peltzer, M and Ruseckaite, R. Poly(lactic acid) Science and Technology Processing, Properties, Additives and Applications, Cambridge, UK: The Royal Society of Chemistry, 2015.

  2. Klauss, M, Degradation of biologically degradable packaging items in home or backyard composting systems: with a special focus on the pilot scale field test for compostable packing in Kassel, Germany, Berlin, Germant: Rhombos-Verlag, 2004.

  3. Saeidlou S, Huneault MA, Li H, Sammut P, Park CB. Evidence of a dual network/spherulitic crystalline morphology in PLA stereocomplexes, Polymer. Polymer. 2012;53:5816–24. https://doi.org/10.1016/j.progpolymsci.2012.07.005

    Article  CAS  Google Scholar 

  4. Li Y, Wang Y, Liu L, Han L, Xiang F, Zhou Z. Crystallization improvement of poly(L-lactide) induced by functionalized multiwalled carbon nanotubes. J Polym Sci Part B: Polym Phys. 2009;47:326–39. https://doi.org/10.1002/polb.21645

    Article  CAS  Google Scholar 

  5. Gámez-Pérez J, Velazquez-Infante JC, Franco-Urquiza EA, Carrasco F, Santana OO, Ll Maspoch M. Fracture behavior of quenched poly (lactic acid). Express Polym Lett. 2011;5:82–91. https://doi.org/10.3144/expresspolymlett.2011.9

    Article  CAS  Google Scholar 

  6. Ikada Y, Jamshidi K, Tsuji H, Hyon SH. Stereocomplex formation between enantiomeric poly(lactides. Macromolecules. 1987;20:904–6. https://doi.org/10.1021/ma00170a034

  7. Sin LT, Tueen BS. Polylactic Acid A Practical Guide for the Processing. Manufacturing, and Applications of PLA. Chennai, India: William Andrew; 2019.

    Google Scholar 

  8. Shao J, Sun J, Bian X, Cui Y, Zhou Y, Li G, et al. Modified PLA homochiral crystallites facilitated by the confinement of PLA stereocomplexes. Macromolecules. 2013;46:6963–71. https://doi.org/10.1021/ma400938v

    Article  CAS  Google Scholar 

  9. Na B, Zhu J, Lv R, Ju Y, Tian R, Chen B. Stereocomplex formation in enantiomeric polylactides by melting recrystallization of homocrystals: crystallization kinetics and crystal morphology. Macromolecules. 2014;47:347–52. https://doi.org/10.1021/ma402405c

    Article  CAS  Google Scholar 

  10. Song Y, Wang D, Jiang N, Gan Z. Role of PEG segment in stereocomplex crystallization for PLLA/PDLA-b-PEG-b-PDLA blends. ACS Sustain Chem Eng. 2015;3:1492–1500. https://doi.org/10.1021/acssuschemeng.5b00214

    Article  CAS  Google Scholar 

  11. Gupta A, Katiyar V. Cellulose functionalized high molecular weight stereocomplex polylactic acid biocomposite films with improved gas barrier, thermomechanical properties. ACS Sustain Chem Eng. 2017;5:6835–44. https://doi.org/10.1021/acssuschemeng.7b01059

    Article  CAS  Google Scholar 

  12. Li Y, Zhao L, Han C, Xiao L. Thermal and mechanical properties of stereocomplex polylactide enhanced by nanosilica. Colloid Polym Sci. 2021;299:1161–72. https://doi.org/10.1007/s00396-021-04839-0

    Article  CAS  Google Scholar 

  13. Samuel C, Cayuela J, Barakat I, Müller AJ, Raquez J-M, Dubois P. Stereocomplexation of polylactide enhanced by poly(methyl methacrylate): improved processability and thermomechanical properties of stereocomplexable polylactide-based materials. ACS Appl Mater Interfaces. 2013;5:11797–807. https://doi.org/10.1021/am403443m

    Article  CAS  PubMed  Google Scholar 

  14. Mahmoud NHM, Takagi H, Shimizu N, Igarashi N, Sakurai S. Significantly high melting temperature of homopolymer crystals obtained in a Poly(l-Lactic Acid)/Poly(d-Lactic Acid) (50/50) Blend. ACS Omega. 2023;8:40482–93. https://doi.org/10.1021/acsomega.3c05165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu S, Zhang Y, Hu H, Li J, Zhou W, Zhao X, et al. Effect of maleic anhydride grafted poly(lactic acid) on rheological behaviors and mechanical performance of poly(lactic acid)/poly(ethylene glycol) (PLA/PEG) blends. RSC Adv. 2022;12:31629–38. https://doi.org/10.1039/d2ra03513h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kulinski Z, Piorkowska E, Gadzinowska K, Stasiak M. Plasticization of Poly(l-lactide) with Poly(propylene glycol. Biomacromolecules. 2006;7:2128–35. https://doi.org/10.1021/bm060089m

  17. Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E. Aging of poly(lactide)/poly(ethylene glycol) blends. Part 2. Poly(lactide) with high stereoregularity. Polymer. 2003;44:5711–20. https://doi.org/10.1016/S0032-3861(03)00615-3

    Article  CAS  Google Scholar 

  18. Ljungberg N, Wesslén B. The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid. Journal of Applied Polymer Science. 2022;86:1227–34. https://doi.org/10.1002/app.11077

  19. Jacobsen S, Fritz HG. Plasticizing polylactide-the effect of different plasticizers on the mechanical properties. Polym Eng Sci. 1999;39:1153–343. https://doi.org/10.1002/pen.11517

    Article  Google Scholar 

  20. Li H, Huneault MA. Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer. 2007;48:6855–66. https://doi.org/10.1016/j.polymer.2007.09.020

  21. Diep PTN, Masatsugu M, Doi M, Takagi H, Shimizu N, Igarashi N, et al. Effects of a special diluent as an agent of improving the crystallizability of poly(L-lactic acid). Polym J. 2019;51:283–94. https://doi.org/10.1038/s41428-018-0152-5

  22. Diep PTN, Takagi H, Shimizu N, Igarashi N, Sasaki S, Sakurai S. Effects of loading amount of plasticizers on improved crystallization of poly (L-lactic acid). J Fiber Sci Technol. 2019;75:99–111. https://doi.org/10.2115/fiberst.2019-0013

  23. L Taiyo Kagaku Co., What is Chirabasol, Taiyo Kagaku Co.,Ltd., 2018. [Online]. Available: https://www.taiyokagaku.com/lab/cosmetics_chemical/chirabasol/. [Accessed 7 December 2023].

  24. Xie Q, Guo G, W Lu, Sun C, Zhou J, Zheng Y, et al., Polymorphic homocrystallization and phase behavior of high-molecular-weight Poly(L-lactic acid)/poly(D-lactic acid) racemic mixture with intentionally enhanced stereocomplexation ability via miscible blending, Polymer, 201, 2020. https://doi.org/10.1016/j.polymer.2020.122597

  25. Tsuji H, Ikada Y. Properties and morphologies of poly(l-lactide): 1. Annealing condition effects on properties and morphologies of poly(l-lactide). Polymer. 1995;36:2709–16. https://doi.org/10.1016/0032-3861(95)93647-5

    Article  CAS  Google Scholar 

  26. Tsuji H, Horii F, Nakagawa M, Ikada Y, Odani H, Kitamaru R. Stereocomplex formation between enantiomeric poly(lactic acid)s. 7. Phase structure of the stereocomplex crystallized from a dilute acetonitrile solution as studied by high-resolution solid-state carbon-13 NMR spectroscopy. Macromolecules. 1992;26:4114–8. https://doi.org/10.1021/ma00042a011

    Article  Google Scholar 

  27. Garlotta D. A literature review of Poly(Lactic Acid). J Polym Environ. 2001;9:63–84. 10.1023/A:1020200822435

    Article  CAS  Google Scholar 

  28. Tsuji H, Tezuka Y. Stereocomplex Formation between Enantiomeric Poly(lactic acid)s. 12. Spherulite Growth of Low-Molecular-Weight Poly(lactic acid)s from the Melt. Biomacromolecules. 2004;5:1181–6. https://doi.org/10.1021/bm049835i

    Article  CAS  PubMed  Google Scholar 

  29. Yin Y, Liu G, Song Y, Zhang X, de Vos S, Wang R, et al. Formation of stereocomplex in enantiomeric poly(lactide)s via recrystallization of homocrystals: An in-situ X-ray scattering study. Eur Polym J. 2016;82:46–56. https://doi.org/10.1016/j.eurpolymj.2016.05.033

    Article  CAS  Google Scholar 

  30. Shirai MA, Müller CMO, Grossmann MVE, Yamashita F. Adipate and citrate esters as plasticizers for poly(lactic acid)/thermoplastic starch sheets. J Polym Environ. 2015;23:54–61. https://doi.org/10.1007/s10924-014-0680-9

    Article  CAS  Google Scholar 

  31. Xu Y, Wang Y, Xu T, Zhang J, Liu C, Shen C. Crystallization kinetics and morphology of partially melted poly(lactic acid). Polym Test. 2014;37:179–85.

    Article  CAS  Google Scholar 

  32. Abe H, Kikkawa Y, Inoue Y, Doi Y. Morphological and kinetic analyses of regime transition for poly[(s)-lactide] crystal growth. Biomacromolecules. 2001;2:1007–14. https://doi.org/10.1021/bm015543v

    Article  CAS  PubMed  Google Scholar 

  33. Sánchez FH, Mateo JM, Romero Colomer FJ, Sánchez MS, Gómez Ribelles JL, Mano JF. Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide. Biomacromolecules. 2005;6:3283–90. https://doi.org/10.1021/bm050323t

  34. Pandey AK, Takagi H, Igarashi N, Shimizu N and Sakurai S, Enhanced formation of stereocomplex crystallites in Poly(L-lactic acid)/ Poly(D-lactic acid) blends by silk fibroin nanodisc, Polymer, 229, 2021. https://doi.org/10.1016/j.polymer.2021.124001

  35. Ma B, Wang X, He Y, Dong Z, Zhang X, Chen X, et al. Effect of poly(lactic acid) crystallization on its mechanical and heat resistance performances. Polymer. 2021;212:123280 https://doi.org/10.1016/j.polymer.2020.123280

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The WAXD experiments were performed under the approval of the Photon Factory (High Energy Research Organization, Tsukuba, Japan) Program Advisory Committee (Proposal No: 2022G623 and Proposal No: 2021G569).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Sakurai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, N.H.M., Takagi, H., Shimizu, N. et al. Exclusive formation of stereocomplex crystallites in PLLA/PDLA (50/50) blends by the addition of a plasticizer. Polym J (2024). https://doi.org/10.1038/s41428-024-00919-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-024-00919-4

Search

Quick links