Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

Establishment of a trastuzumab-resistant extramammary Paget disease model: loss of PTEN as a potential mechanism

Abstract

Background/objectives

Extramammary Paget disease (EMPD) is a rare, cutaneous intraepithelial adenocarcinoma typically treated with wide local excision. Unfortunately, a number of patients with metastases show poor responses to chemotherapy. While some studies have explored trastuzumab’s effectiveness against EMPD positive for human epidermal growth factor receptor 2 (HER2), trastuzumab resistance (TR) may emerge after anti-HER2 therapy.

Methods/subjects

In this study, we established TR EMPD patient-derived xenografts (PDX) that replicated the histological and HER2 expression traits of naive EMPD tumours.

Results

Cancer gene analyses revealed a loss of the PTEN gene in TR tumours, which was further confirmed by immunohistochemical staining and immunoblotting to test for protein expression levels. Reduced PTEN levels correlated with increased protein kinase B (Akt) phosphorylation and p27 downregulation, suggesting a potential mechanism for trastuzumab resistance in EMPD cells. In the trastuzumab-sensitive EMPD-PDX mouse model, PTEN inhibitors partially restored trastuzumab-mediated tumour regression. The TR EMPD-PDX responded favourably to targeted therapy (lapatinib, abemaciclib, palbociclib) and chemotherapy (eribulin, docetaxel, trastuzumab deruxtecan).

Conclusions

This study demonstrates an innovative TR EMPD-PDX model and introduces promising antineoplastic effects with various treatments for TR EMPD tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the establishment of the trastuzumab-resistant EMPD-PDX mouse model and the treatment experiment.
Fig. 2: Comparison between trastuzumab-sensitive (TS) and several trastuzumab-resistant (TR) EMPD tumours based on the next-generation sequencing-based multiplex gene assay (PleSSision-160).
Fig. 3: Histology and immunoblot analysis of trastuzumab-sensitive (TS) and several trastuzumab-resistant (TR) EMPD-PDX tumours.
Fig. 4: Trastuzumab-resistant (TR) EMPD-PDX tumours show loss of PTEN, increased Akt phosphorylation and p27 downregulation.
Fig. 5: HER2-targeted therapies, cyclin‐dependent kinase 4/6 inhibitors and cytotoxic agents suppress tumour growth in the trastuzumab-resistant EMPD-PDX mouse model.
Fig. 6: Schematic illustration of the pathogenic mechanisms involved in trastuzumab-resistant EMPD-PDX.

Similar content being viewed by others

Data availability

Derived data supporting the findings of this study are available from the corresponding author (TY) on request.

References

  1. Ghazawi FM, Iga N, Tanaka R, Fujisawa Y, Yoshino K, Yamashita C, et al. Demographic and clinical characteristics of extramammary Paget’s disease patients in Japan from 2000 to 2019. J Eur Acad Dermatol Venereol. 2021;35:e133–e135.

    Article  CAS  PubMed  Google Scholar 

  2. Cohen JM, Granter SR, Werchniak AE. Risk stratification in extramammary Paget disease. Clin Exp Dermatol. 2015;40:473–8.

    Article  CAS  PubMed  Google Scholar 

  3. Ishizuki S, Nakamura Y. Extramammary Paget’s disease: diagnosis, pathogenesis, and treatment with focus on recent developments. Curr Oncol. 2021;28:2969–86.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr., et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421:756–60.

    Article  CAS  PubMed  Google Scholar 

  5. Fukuda K, Funakoshi T. Metastatic extramammary Paget’s disease: pathogenesis and novel therapeutic approach. Front Oncol. 2018;8:38.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tanaka R, Sasajima Y, Tsuda H, Namikawa K, Takahashi A, Tsutsumida A, et al. Concordance of the HER2 protein and gene status between primary and corresponding lymph node metastatic sites of extramammary Paget disease. Clin Exp Metastasis. 2016;33:687–97.

    Article  CAS  PubMed  Google Scholar 

  7. Zhu H, Lewis DJ. Efficacy of trastuzumab in HER-2-positive advanced extramammary Paget’s disease. Expert Opin Biol Ther. 2022;22:673–4.

    Article  CAS  PubMed  Google Scholar 

  8. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet. 2020;396:635–48.

    Article  CAS  PubMed  Google Scholar 

  9. Marty M, Cognetti F, Maraninchi D, Snyder R, Mauriac L, Tubiana-Hulin M, et al. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol. 2005;23:4265–74.

    Article  CAS  PubMed  Google Scholar 

  10. Nordmann TM, Messerli-Odermatt O, Meier L, Micaletto S, Coppetti T, Nägeli M, et al. Sequential somatic mutations upon secondary anti-HER2 treatment resistance in metastatic ERBB2(S310F) mutated extramammary Paget’s disease. Oncotarget. 2019;10:6647–50.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Maeda T, Kitamura S, Nishihara H, Yanagi T. Extramammary Paget’s disease patient-derived xenografts harboring ERBB2 S310F mutation show sensitivity to HER2-targeted therapies. Oncogene. 2020;39:5867–75.

    Article  CAS  PubMed  Google Scholar 

  12. Irie H, Kawabata R, Fujioka Y, Nakagawa F, Itadani H, Nagase H, et al. Acquired resistance to trastuzumab/pertuzumab or to T-DM1 in vivo can be overcome by HER2 kinase inhibition with TAS0728. Cancer Sci. 2020;111:2123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yanagi T, Krajewska M, Matsuzawa S, Reed JC. PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells. Cancer Res. 2014;74:5795–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takeichi T, Okuno Y, Matsumoto T, Tsunoda N, Suzuki K, Tanahashi K, et al. Frequent FOXA1-activating mutations in extramammary Paget’s disease. Cancers. 2020;12:820.

  15. Mai R, Zhou S, Zhou S, Zhong W, Hong L, Wang Y, et al. Transcriptome analyses reveal FOXA1 dysregulation in mammary and extramammary Paget’s disease. Hum Pathol. 2018;77:152–8.

    Article  CAS  PubMed  Google Scholar 

  16. Sumitomo C, Iwata Y, Arima M, Sugiura K. A clinicopathological analysis of forkhead box A1 (FOXA1) and estrogen receptor alpha expression in extramammary Paget’s disease. Fujita Med J. 2023;9:236–9.

    PubMed  PubMed Central  Google Scholar 

  17. Yoshino K, Fujisawa Y, Kiyohara Y, Kadono T, Murata Y, Uhara H, et al. Usefulness of docetaxel as first-line chemotherapy for metastatic extramammary Paget’s disease. J Dermatol. 2016;43:633–7.

    Article  CAS  PubMed  Google Scholar 

  18. Kato M, Yoshino K, Maeda T, Nagai K, Oaku S, Hiura A, et al. Single-agent taxane is useful in palliative chemotherapy for advanced extramammary Paget disease: a case series. Br J Dermatol. 2019;181:831–2.

    Article  CAS  PubMed  Google Scholar 

  19. Karam A, Berek JS, Stenson A, Rao J, Dorigo O. HER-2/neu targeting for recurrent vulvar Paget’s disease A case report and literature review. Gynecol Oncol. 2008;111:568–71.

    Article  CAS  PubMed  Google Scholar 

  20. Kitamura S, Yanagi T, Maeda T, Ujiie H. Cyclin-dependent kinase 4/6 inhibitors suppress tumor growth in extramammary Paget’s disease. Cancer Sci. 2022;113:802–7.

    Article  CAS  PubMed  Google Scholar 

  21. Tokuchi K, Maeda T, Kitamura S, Yanagi T, Ujiie H. HER2-targeted antibody-drug conjugates display potent antitumor activities in preclinical extramammary Paget’s disease models: in vivo and immunohistochemical analyses. Cancers. 2022;14:3519.

  22. Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov. 2023;22:101–26.

    Article  CAS  PubMed  Google Scholar 

  23. Fleeman N, Bagust A, Duarte R, Richardson M, Nevitt S, Boland A, et al. Eribulin for treating locally advanced or metastatic breast cancer after one chemotherapy regimen: an evidence review group perspective of a NICE single technology appraisal. Pharmacoecon Open. 2019;3:293–302.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tanaka R, Sasajima Y, Tsuda H, Namikawa K, Tsutsumida A, Otsuka F, et al. Human epidermal growth factor receptor 2 protein overexpression and gene amplification in extramammary Paget disease. Br J Dermatol. 2013;168:1259–66.

    Article  CAS  PubMed  Google Scholar 

  25. Kiniwa Y, Yasuda J, Saito S, Saito R, Motoike IN, Danjoh I, et al. Identification of genetic alterations in extramammary Paget disease using whole exome analysis. J Dermatol Sci. 2019;94:229–35.

    Article  CAS  PubMed  Google Scholar 

  26. Vornicova O, Hershkovitz D, Yablonski-Peretz T, Ben-Itzhak O, Keidar Z, Bar-Sela G. Treatment of metastatic extramammary Paget’s disease associated with adnexal adenocarcinoma, with anti-HER2 drugs based on genomic alteration ERBB2 S310F. Oncologist. 2014;19:1006–7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gustafson S, Zbuk KM, Scacheri C, Eng C. Cowden syndrome. Semin Oncol. 2007;34:428–34.

    Article  CAS  PubMed  Google Scholar 

  28. Gammon A, Jasperson K, Champine M. Genetic basis of Cowden syndrome and its implications for clinical practice and risk management. Appl Clin Genet. 2016;9:83–92.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014;13:140–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Álvarez-Garcia V, Tawil Y, Wise HM, Leslie NR. Mechanisms of PTEN loss in cancer: It’s all about diversity. Semin Cancer Biol. 2019;59:66–79.

    Article  PubMed  Google Scholar 

  31. Angelico G, Santoro A, Inzani F, Straccia P, Arciuolo D, Mulè A, et al. Hormonal environment and HER2 status in extra-mammary Paget’s disease (eMPD): a systematic literature review and meta-analysis with clinical considerations. Diagnostics. 2020;10:1040.

  32. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004;6:117–27.

    Article  CAS  PubMed  Google Scholar 

  33. Ebbesen SH, Scaltriti M, Bialucha CU, Morse N, Kastenhuber ER, Wen HY, et al. Pten loss promotes MAPK pathway dependency in HER2/neu breast carcinomas. Proc Natl Acad Sci USA. 2016;113:3030–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nahta R, Takahashi T, Ueno NT, Hung MC, Esteva FJ. P27(kip1) down-regulation is associated with trastuzumab resistance in breast cancer cells. Cancer Res. 2004;64:3981–6.

    Article  CAS  PubMed  Google Scholar 

  35. Shi W, Jiang T, Nuciforo P, Hatzis C, Holmes E, Harbeck N, et al. Pathway level alterations rather than mutations in single genes predict response to HER2-targeted therapies in the neo-ALTTO trial. Ann Oncol. 2019;30:1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barth P, Dulaimi Al-Saleem E, Edwards KW, Millis SZ, Wong YN, Geynisman DM. Metastatic extramammary Paget’s disease of scrotum responds completely to single agent trastuzumab in a hemodialysis patient: case report, molecular profiling and brief review of the literature. Case Rep Oncol Med. 2015;2015:895151.

    PubMed  PubMed Central  Google Scholar 

  37. Zhang G, Zhou S, Zhong W, Hong L, Wang Y, Lu S, et al. Whole-exome sequencing reveals frequent mutations in chromatin remodeling genes in mammary and extramammary Paget’s diseases. J Invest Dermatol. 2019;139:789–95.

    Article  CAS  PubMed  Google Scholar 

  38. Gallardo A, Lerma E, Escuin D, Tibau A, Muñoz J, Ojeda B, et al. Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br J Cancer. 2012;106:1367–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Liu Y, Du Y, Yin W, Lu J. The predictive role of phosphatase and tensin homolog (PTEN) loss, phosphoinositol-3 (PI3) kinase (PIK3CA) mutation, and PI3K pathway activation in sensitivity to trastuzumab in HER2-positive breast cancer: a meta-analysis. Curr Med Res Opin. 2013;29:633–42.

    Article  CAS  PubMed  Google Scholar 

  40. Kim C, Lee CK, Chon HJ, Kim JH, Park HS, Heo SJ, et al. PTEN loss and level of HER2 amplification is associated with trastuzumab resistance and prognosis in HER2-positive gastric cancer. Oncotarget. 2017;8:113494–501.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pohlmann PR, Mayer IA, Mernaugh R. Resistance to trastuzumab in breast cancer. Clin Cancer Res. 2009;15:7479–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rusnak DW, Affleck K, Cockerill SG, Stubberfield C, Harris R, Page M, et al. The characterization of novel, dual ErbB-2/EGFR, tyrosine kinase inhibitors: potential therapy for cancer. Cancer Res. 2001;61:7196–203.

    CAS  PubMed  Google Scholar 

  43. Dave B, Migliaccio I, Gutierrez MC, Wu MF, Chamness GC, Wong H, et al. Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2-overexpressing locally advanced breast cancers. J Clin Oncol. 2011;29:166–73.

    Article  CAS  PubMed  Google Scholar 

  44. Imran M, Saleem S, Chaudhuri A, Ali J, Baboota S. Docetaxel: an update on its molecular mechanisms, therapeutic trajectory and nanotechnology in the treatment of breast, lung and prostate cancer. J Drug Deliv Sci Technol. 2020;60:101959.

    Article  CAS  Google Scholar 

  45. Swain SM, Miles D, Kim SB, Im YH, Im SA, Semiglazov V, et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 2020;21:519–30.

    Article  CAS  PubMed  Google Scholar 

  46. Hatta N, Ogata D, Asai J, Maekawa T, Ito T, Takenouchi T, et al. Recent treatment and prognosis in 643 patients with extramammary Paget’s disease. Exp Dermatol. 2024;33:e15030.

    Article  CAS  PubMed  Google Scholar 

  47. Fernández-Laguna CL, Maray I, Macia-Rivas L, Álvarez-Asteinza C, Fernández-Lastras S, Velasco Durántez V, et al. Eribulin in metastatic breast cancer: real world data. Breast Dis. 2023;42:349–60.

    Article  PubMed  Google Scholar 

  48. Lutrino ES, Orlando L, Febbraro A, Giampaglia M, Zamagni C, Schiavone P, et al. Eribulin plus trastuzumab in pretreated HER2-positive advanced breast cancer patients: safety and efficacy. An Italian experience. Tumori. 2020;106:301–5.

    Article  CAS  PubMed  Google Scholar 

  49. Nakada T, Masuda T, Naito H, Yoshida M, Ashida S, Morita K, et al. Novel antibody drug conjugates containing exatecan derivative-based cytotoxic payloads. Bioorg Med Chem Lett. 2016;26:1542–5.

    Article  CAS  PubMed  Google Scholar 

  50. Wang ZH, Zheng ZQ, Jia SC, Liu SN, Xiao XF, Chen GY, et al. Trastuzumab resistance in HER2-positive breast cancer: mechanisms, emerging biomarkers and targeting agents. Front Oncol. 2022;12:1006429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu X, Yang H, Yu X, Qin JJ. Drug-resistant HER2-positive breast cancer: molecular mechanisms and overcoming strategies. Front Pharm. 2022;13:1012552.

    Article  CAS  Google Scholar 

  52. Thomas A, Teicher BA, Hassan R. Antibody-drug conjugates for cancer therapy. Lancet Oncol. 2016;17:e254–e262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Allred DC, Harvey JM, Berardo M, Clark GM. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol. 1998;11:155–68.

    CAS  PubMed  Google Scholar 

  54. Nonagase Y, Yonesaka K, Kawakami H, Watanabe S, Haratani K, Takahama T, et al. Heregulin-expressing HER2-positive breast and gastric cancer exhibited heterogeneous susceptibility to the anti-HER2 agents lapatinib, trastuzumab and T-DM1. Oncotarget. 2016;7:84860–71.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov. 2016;6:740–53.

    Article  CAS  PubMed  Google Scholar 

  56. Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004;3:1427–38.

    Article  CAS  PubMed  Google Scholar 

  57. Feng Q, Li X, Qin X, Yu C, Jin Y, Qian X. PTEN inhibitor improves vascular remodeling and cardiac function after myocardial infarction through PI3k/Akt/VEGF signaling pathway. Mol Med. 2020;26:111.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yue C, Bai Y, Piao Y, Liu H. DOK7 inhibits cell proliferation, migration, and invasion of breast cancer via the PI3K/PTEN/AKT pathway. J Oncol. 2021;2021:4035257.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Hokkaido University DX Doctoral Fellowship (to C-YH).

Funding

This work was supported by JSPS KAKENHI Grant Number JP22K0839702 (to TY), Takagi Research Grant (to TY), Nakatomi Foundation grant (to TY), and the project of junior scientist promotion in Hokkaido University (to HU).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation: TY. Methodology: C-YH, TY, HN and TF. Validation: TM, KM and RI. Formal analysis: HU. Investigation: C-YH, TM and TY. Resources: TY, KT and HU. Data curation: TM and KT. Writing—original draft preparation: C-YH. Writing—review and editing: TY and HU. Visualisation: TM. Supervision: HU. Project administration: TY and HU. Funding acquisition: TY.

Corresponding author

Correspondence to Teruki Yanagi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study protocol complied with the Declaration of Helsinki and was approved by the Institutional Review Board of Keio University (IRB approval number: 20110159). The 73-year-old Japanese male EMPD patient provided written informed consent prior to enrollment. The animal study protocol was approved by the Institutional Animal Care and Use Committee (IACUC) of Hokkaido University (approval number 19-0093) and the Committee on Animal Experiments of the University of the Ryukyus (approval number A2023052), and all experiments were performed in accordance with the regulations of IACUC. All methods are reported in accordance with ARRIVE guidelines (https://arriveguidelines.org) for the reporting of animal experiments under ethics approval and consent to participate.

Consent for publication

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, CY., Yanagi, T., Maeda, T. et al. Establishment of a trastuzumab-resistant extramammary Paget disease model: loss of PTEN as a potential mechanism. Br J Cancer (2024). https://doi.org/10.1038/s41416-024-02788-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-024-02788-3

Search

Quick links