Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphorylation of USP27X by PIM2 promotes glycolysis and breast cancer progression via deubiquitylation of MYC

Abstract

Aberrant cell proliferation is a hallmark of cancer, including breast cancer. Here, we show that USP27X is required for cell proliferation and tumorigenesis in breast cancer. We identify a PIM2-USP27X regulator of MYC signaling axis whose activity is an important contributor to the tumor biology of breast cancer. PIM2 phosphorylates USP27X, and promotes its deubiquitylation activity for MYC, which promotes its protein stability and leads to increase HK2-mediated aerobic glycolysis in breast cancer. Moreover, the PIM2-USP27X-MYC axis is also validated in PIM2-knockout mice. Taken together, these findings show a PIM2-USP27X-MYC signaling axis as a new potential target for breast cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: USP27X is crucial for breast tumorigenesis.
Fig. 2: PIM2 phosphorylates USP27X at S71.
Fig. 3: USP27X S71 phosphorylation enhances MYC protein stability.
Fig. 4: USP27X S71 phosphorylation reduces the MYC ubiquitination.
Fig. 5: USP27X S71 phosphorylation promotes breast cancer cell glycolysis via MYC induced HK2 expression.
Fig. 6: USP27X S71 phosphorylation contributes to breast tumor growth.
Fig. 7: The protein expressions of PIM2, pS71-USP27X, and MYC positively correlate with each other in human breast cancer tissues.

Similar content being viewed by others

Data availability

The data and code underlying the findings of this study are available from the corresponding author on reasonable request. Raw sequencing data generated in this study was deposited at the Gene Expression Omnibus (GEO) under accession number GSE218202.

References

  1. Martinez-Ferriz A, Ferrando A, Fathinajafabadi A, Farras R. Ubiquitin-mediated mechanisms of translational control. Semin Cell Dev Biol. 2022;132:146–54.

    Article  CAS  PubMed  Google Scholar 

  2. Roberts JZ, Crawford N, Longley DB. The role of ubiquitination in apoptosis and necroptosis. Cell Death Differ. 2022;29:272–84.

    Article  CAS  PubMed  Google Scholar 

  3. Weber A, Heinlein M, Dengjel J, Alber C, Singh PK, Häcker G. The deubiquitinase Usp27x stabilizes the BH3-only protein Bim and enhances apoptosis. EMBO Rep. 2016;17:724–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dong L, Yu L, Bai C, Liu L, Long H, Shi L, et al. USP27-mediated Cyclin E stabilization drives cell cycle progression and hepatocellular tumorigenesis. Oncogene. 2018;37:2702–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lambies G, Miceli M, Martinez-Guillamon C, Olivera-Salguero R, Pena R, Frias CP, et al. TGFbeta-activated USP27X deubiquitinase regulates cell migration and chemoresistance via stabilization of Snail1. Cancer Res. 2019;79:33–46.

    Article  CAS  PubMed  Google Scholar 

  6. Alam S, Zunic A, Venkat S, Feigin ME, Atanassov BS. Regulation of Cyclin D1 degradation by ubiquitin-specific protease 27X is critical for cancer cell proliferation and tumor growth. Mol Cancer Res. 2022;20:1751–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zou T, Wang Y, Dong L, Che T, Zhao H, Yan X, et al. Stabilization of SETD3 by deubiquitinase USP27 enhances cell proliferation and hepatocellular carcinoma progression. Cell Mol Life Sci. 2022;79:70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dold MN, Ng X, Alber C, Gentle IE, Häcker G, Weber A. The deubiquitinase Usp27x as a novel regulator of cFLIP(L) protein expression and sensitizer to death-receptor-induced apoptosis. Apoptosis. 2022;27:112–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Das SK, Lewis BA, Levens D. MYC: a complex problem. Trends Cell Biol. 2022;33:235–46.

  10. Donati G, Amati BMYC. and therapy resistance in cancer: risks and opportunities. Mol Oncol. 2022;16:3828–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW. The MYC oncogene - the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol. 2022;19:23–36.

    Article  CAS  PubMed  Google Scholar 

  12. Hsieh AL, Walton ZE, Altman BJ, Stine ZE, Dang CV. MYC and metabolism on the path to cancer. Semin Cell Dev Biol. 2015;43:11–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zimmerli D, Brambillasca CS, Talens F, Bhin J, Linstra R, Romanens L, et al. MYC promotes immune-suppression in triple-negative breast cancer via inhibition of interferon signaling. Nat Commun. 2022;13:6579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N. Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27 at the transcriptional and posttranscriptional levels. Cancer Res. 2008;68:5076–85.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Wang Z, Li X, Magnuson NS. Pim kinase-dependent inhibition of c-Myc degradation. Oncogene. 2008;27:4809–19.

    Article  CAS  PubMed  Google Scholar 

  16. Wu KJ, Grandori C, Amacker M, Simon-Vermot N, Polack A, Lingner J, et al. Direct activation of TERT transcription by c-MYC. Nat Genet. 1999;21:220–4.

    Article  CAS  PubMed  Google Scholar 

  17. Tsuneoka M, Nakano F, Ohgusu H, Mekada E. c-myc activates RCC1 gene expression through E-box elements. Oncogene. 1997;14:2301–11.

    Article  CAS  PubMed  Google Scholar 

  18. Li C, Hong S, Hu H, Liu T, Yan G, Sun D. MYC-induced upregulation of Lncrna ELFN1-AS1 contributes to tumor growth in colorectal cancer via epigenetically silencing TPM1. Mol Cancer Res. 2022;20:1697–708.

    Article  CAS  PubMed  Google Scholar 

  19. Hao YH, Lafita-Navarro MC, Zacharias L, Borenstein-Auerbach N, Kim M, Barnes S, et al. Induction of LEF1 by MYC activates the WNT pathway and maintains cell proliferation. Cell Commun Signal. 2019;17:129.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yue M, Jiang J, Gao P, Liu H, Qing G. Oncogenic MYC activates a feedforward regulatory loop promoting essential amino acid metabolism and tumorigenesis. Cell Rep. 2017;21:3819–32.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Q, Zhou Y, Rychahou P, Harris JW, Zaytseva YY, Liu J, et al. Deptor is a novel target of Wnt/beta-Catenin/c-Myc and contributes to colorectal cancer cell growth. Cancer Res. 2018;78:3163–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dong Y, Tu R, Liu H, Qing G. Regulation of cancer cell metabolism: oncogenic MYC in the driver’s seat. Signal Transduct Target Ther. 2020;5:124.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Harrington CT, Sotillo E, Dang CV, Thomas-Tikhonenko A. Tilting MYC toward cancer cell death. Trends Cancer. 2021;7:982–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lourenco C, Resetca D, Redel C, Lin P, MacDonald AS, Ciaccio R, et al. MYC protein interactors in gene transcription and cancer. Nat Rev Cancer. 2021;21:579–91.

    Article  CAS  PubMed  Google Scholar 

  25. Wang C, Zhang J, Yin J, Gan Y, Xu S, Gu Y, et al. Alternative approaches to target Myc for cancer treatment. Signal Transduct Target Ther. 2021;6:117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lange SM, Armstrong LA, Kulathu Y. Deubiquitinases: from mechanisms to their inhibition by small molecules. Mol Cell. 2022;82:15–29.

    Article  CAS  PubMed  Google Scholar 

  27. Basar MA, Beck DB, Werner A. Deubiquitylases in developmental ubiquitin signaling and congenital diseases. Cell Death Differ. 2021;28:538–56.

    Article  CAS  PubMed  Google Scholar 

  28. Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE, Vucic D. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ. 2021;28:591–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 2020;5:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xing Y, Ba-Tu J, Dong C, Cao X, Li B, Jia X, et al. Phosphorylation of USP27X by GSK3β maintains the stability and oncogenic functions of CBX2. Cell Death Dis. 2023;14:023–06304.

    Article  Google Scholar 

  31. Szydłowski M, Garbicz F, Jabłońska E, Górniak P, Komar D, Pyrzyńska B, et al. Inhibition of PIM kinases in DLBCL targets MYC transcriptional program and augments the efficacy of anti-CD20 antibodies. Cancer Res. 2021;81:6029–43.

    Article  PubMed  Google Scholar 

  32. Ciscato F, Ferrone L, Masgras I, Laquatra C, Rasola A. Hexokinase 2 in cancer: a prima donna playing multiple characters. Int J Mol Sci. 2021;22:4716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu S, Herschman HR. A tumor agnostic therapeutic strategy for hexokinase 1-Null/Hexokinase 2-positive cancers. Cancer Res. 2019;79:5907–14.

    Article  CAS  PubMed  Google Scholar 

  34. Guo D, Tong Y, Jiang X, Meng Y, Jiang H, Du L, et al. Aerobic glycolysis promotes tumor immune evasion by hexokinase2-mediated phosphorylation of IkappaBalpha. Cell Metab. 2022;34:1312–24.e6.

    Article  CAS  PubMed  Google Scholar 

  35. Han X, Ren C, Lu C, Qiao P, Yang T, Yu Z. Deubiquitination of MYC by OTUB1 contributes to HK2 mediated glycolysis and breast tumorigenesis. Cell Death Differ. 2022;29:1864–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ren C, Han X, Lu C, Yang T, Qiao P, Sun Y, et al. Ubiquitination of NF-kappaB p65 by FBXW2 suppresses breast cancer stemness, tumorigenesis, and paclitaxel resistance. Cell Death Differ. 2022;29:381–92.

    Article  CAS  PubMed  Google Scholar 

  37. Han X, Ren C, Jiang A, Sun Y, Lu J, Ling X, et al. Arginine methylation of ALKBH5 by PRMT6 promotes breast tumorigenesis via LDHA-mediated glycolysis. Front Med. 2024;18:344–56.

    Article  PubMed  Google Scholar 

  38. Lu C, Ren C, Yang T, Sun Y, Qiao P, Han X, et al. Fructose-1, 6-bisphosphatase 1 interacts with NF-kappaB p65 to regulate breast tumorigenesis via PIM2 induced phosphorylation. Theranostics. 2020;10:8606–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu C, Ren C, Yang T, Sun Y, Qiao P, Wang D, et al. A noncanonical role of fructose-1, 6-bisphosphatase 1 is essential for inhibition of Notch1 in breast cancer. Mol Cancer Res. 2020;18:787–96.

    Article  CAS  PubMed  Google Scholar 

  40. Lu C, Qiao P, Sun Y, Ren C, Yu Z. Positive regulation of PFKFB3 by PIM2 promotes glycolysis and paclitaxel resistance in breast cancer. Clin Transl Med. 2021;11:e400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Han X, Ren C, Yang T, Qiao P, Wang L, Jiang A, et al. Negative regulation of AMPKalpha1 by PIM2 promotes aerobic glycolysis and tumorigenesis in endometrial cancer. Oncogene. 2019;38:6537–49.

    Article  CAS  PubMed  Google Scholar 

  42. Yang T, Ren C, Qiao P, Han X, Wang L, Lv S, et al. PIM2-mediated phosphorylation of hexokinase 2 is critical for tumor growth and paclitaxel resistance in breast cancer. Oncogene. 2018;37:5997–6009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by research grants from the National Natural Science Foundation of China (Grant nos. 81972489 and 82003201), the National Natural Science Foundation of Shandong Province (Grant nos. ZR2020YQ58 and ZR2020QH255), Shandong Province College Science and Technology Plan Project (Grant no. J17KA254).

Author information

Authors and Affiliations

Authors

Contributions

XH, CER, CL, and AFJ performed experiments and analyzed data. XYW and LL provided access to material and facilities and contributed reagents. ZHY designed, supervised the project, and wrote the manuscript.

Corresponding author

Correspondence to Zhenhai Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All animal protocols were performed according to the guidelines and approved by the Institutional Animal Care and Use Committee of Weifang Medical University (Approval number: 2023SDL093). An informed consent form was signed by all patients in accordance with the Declaration of Helsinki, and the study was approved by the Affiliated Hospital of Weifang Medical University (Approval number: wyfy-2023-ky-030).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Ren, C., Lu, C. et al. Phosphorylation of USP27X by PIM2 promotes glycolysis and breast cancer progression via deubiquitylation of MYC. Oncogene (2024). https://doi.org/10.1038/s41388-024-03097-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03097-y

Search

Quick links