Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Environmental monobutyl phthalate exposure promotes liver cancer via reprogrammed cholesterol metabolism and activation of the IRE1α-XBP1s pathway

Abstract

Humans are widely exposed to phthalates, a major chemical plasticizer that accumulates in the liver. However, little is known about the impact of chronic phthalate exposure on liver cancer development. In this study, we applied a long-term cell culture model by treating the liver cancer cell HepG2 and normal hepatocyte L02 to environmental dosage of monobutyl phthalate (MBP), the main metabolite of phthalates. Interestingly, we found that long-term MBP exposure significantly accelerated the growth of HepG2 cells in vitro and in vivo, but barely altered the function of L02 cells. MBP exposure triggered reprogramming of lipid metabolism in HepG2 cells, where cholesterol accumulation subsequently activated the IRE1α-XBP1s axis of the unfolded protein response. As a result, the XBP1s-regulated gene sets and pathways contributed to the increased aggressiveness of HepG2 cells. In addition, we also showed that MBP-induced cholesterol accumulation fostered an immunosuppressive microenvironment by promoting tumor-associated macrophage polarization toward the M2 type. Together, these results suggest that environmental phthalates exposure may facilitate liver cancer progression, and alerts phthalates exposure to patients who already harbor liver tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chronic MBP exposure accelerates the growth of HepG2 cells in vitro and in vivo.
Fig. 2: RNA-seq and ATAC-seq analysis of liver cells chronically exposed to MBP.
Fig. 3: MBP exposure reprograms lipid metabolism in HepG2 cells.
Fig. 4: MBP exposure activates the IRE1α-XBP1s pathway in HepG2 cells.
Fig. 5: MBP-induced cholesterol accumulation is causal to the activation of IRE1α-XBP1s pathway.
Fig. 6: The molecular landscape regulated by XBP1s in HepG2 cells exposed to MBP.
Fig. 7: MBP-induced tumor cell cholesterol accumulation promotes macrophage infiltration and M2-polarization.
Fig. 8: Schematic summary of the study.

Similar content being viewed by others

Data availability

The RNA-seq, ATAC-seq and CUT & Tag seq data are archived in the GEO database (GSE248562) and available to all. Other data that support the findings of this study are available from the corresponding author upon request.

References

  1. Cogliano VJ, Baan R, Straif K, Grosse Y, Lauby-Secretan B, El Ghissassi F, et al. Preventable exposures associated with human cancers. J Natl Cancer Inst. 2011;103:1827–39.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7:6.

    Article  PubMed  Google Scholar 

  3. Mundt KA, Dell LD, Crawford L, Gallagher AE. Quantitative estimated exposure to vinyl chloride and risk of angiosarcoma of the liver and hepatocellular cancer in the US industry-wide vinyl chloride cohort: mortality update through 2013. Occup Environ Med. 2017;74:709–16.

    Article  PubMed  Google Scholar 

  4. Aylward LL, Kirman CR, Schoeny R, Portier CJ, Hays SM. Evaluation of biomonitoring data from the CDC National Exposure Report in a risk assessment context: perspectives across chemicals. Environ Health Perspect. 2013;121:287–94.

    Article  PubMed  Google Scholar 

  5. Wittassek M, Koch HM, Angerer J, Bruning T. Assessing exposure to phthalates—the human biomonitoring approach. Mol Nutr Food Res. 2011;55:7–31.

    Article  CAS  PubMed  Google Scholar 

  6. Jauregui EJ, Lock J, Rasmussen L, Craig ZR. Mono-n-butyl phthalate distributes to the mouse ovary and liver and alters the expression of phthalate-metabolizing enzymes in both tissues. Toxicol Sci. 2021;183:117–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lind PM, Roos V, Ronn M, Johansson L, Ahlstrom H, Kullberg J, et al. Serum concentrations of phthalate metabolites are related to abdominal fat distribution two years later in elderly women. Environ Health. 2012;11:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meeker JD, Sathyanarayana S, Swan SH. Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos Trans R Soc Lond B Biol Sci. 2009;364:2097–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mose T, Mortensen GK, Hedegaard M, Knudsen LE. Phthalate monoesters in perfusate from a dual placenta perfusion system, the placenta tissue and umbilical cord blood. Reprod Toxicol. 2007;23:83–91.

    Article  CAS  PubMed  Google Scholar 

  10. Yan X, Calafat A, Lashley S, Smulian J, Ananth C, Barr D, et al. Phthalates biomarker identification and exposure estimates in a population of pregnant women. Hum Ecol Risk Assess. 2009;15:565–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen X, Zhou QH, Leng L, Chen X, Sun ZR, Tang NJ. Effects of di(n-butyl) and monobutyl phthalate on steroidogenesis pathways in the murine Leydig tumor cell line MLTC-1. Environ Toxicol Pharmacol. 2013;36:332–8.

    Article  CAS  PubMed  Google Scholar 

  12. Cao WS, Zhao MJ, Chen Y, Zhu JY, Xie CF, Li XT, et al. Low-dose phthalates promote breast cancer stem cell properties via the oncogene DeltaNp63alpha and the Sonic hedgehog pathway. Ecotoxicol Environ Saf. 2023;252:114605.

    Article  CAS  PubMed  Google Scholar 

  13. Yin X, Ma T, Han R, Ding J, Zhang H, Han X, et al. MiR-301b-3p/3584-5p enhances low-dose mono-n-butyl phthalate (MBP)-induced proliferation by targeting Rasd1 in Sertoli cells. Toxicol In Vitro. 2018;47:79–88.

    Article  CAS  PubMed  Google Scholar 

  14. Cavalca AMB, Aquino AM, Mosele FC, Justulin LA, Delella FK, Flaws JA, et al. Effects of a phthalate metabolite mixture on both normal and tumoral human prostate cells. Environ Toxicol. 2022;37:2566–78.

    Article  CAS  PubMed  Google Scholar 

  15. Yue N, Deng C, Li C, Wang Q, Li M, Wang J, et al. Occurrence and distribution of phthalate esters and their major metabolites in porcine tissues. J Agric Food Chem. 2020;68:6910–8.

    Article  CAS  PubMed  Google Scholar 

  16. Jiao Y, Tao Y, Yang Y, Diogene T, Yu H, He Z, et al. Monobutyl phthalate (MBP) can dysregulate the antioxidant system and induce apoptosis of zebrafish liver. Environ Pollut. 2020;257:113517.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Jiao Y, Tao Y, Li Z, Yu H, Han S, et al. Monobutyl phthalate can induce autophagy and metabolic disorders by activating the ire1a-xbp1 pathway in zebrafish liver. J Hazard Mater. 2021;412:125243.

    Article  CAS  PubMed  Google Scholar 

  18. Melnick RL, Schiller CM. Effect of phthalate esters on energy coupling and succinate oxidation in rat liver mitochondria. Toxicology. 1985;34:13–27.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang T, Li N, Sun C, Jin Y, Sheng X. MYC and the unfolded protein response in cancer: synthetic lethal partners in crime? EMBO Mol Med. 2020;12:e11845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mori K, Ma W, Gething MJ, Sambrook J. A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell. 1993;74:743–56.

    Article  CAS  PubMed  Google Scholar 

  21. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107:881–91.

    Article  CAS  PubMed  Google Scholar 

  22. Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature. 2014;508:103–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sheng X, Nenseth HZ, Qu S, Kuzu OF, Frahnow T, Simon L, et al. IRE1alpha-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nat Commun. 2019;10:323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiao R, You L, Zhang L, Guo X, Guo E, Zhao F, et al. Inhibiting the IRE1alpha axis of the unfolded protein response enhances the antitumor effect of AZD1775 in TP53 mutant ovarian cancer. Adv Sci. 2022;9:e2105469.

    Article  Google Scholar 

  25. Zhang T, Zhao F, Zhang Y, Shi JH, Cui F, Ma W, et al. Targeting the IRE1alpha-XBP1s axis confers selective vulnerability in hepatocellular carcinoma with activated Wnt signaling. Oncogene. 2024;43:1233–48.

    Article  CAS  PubMed  Google Scholar 

  26. Wu S, Du R, Gao C, Kang J, Wen J, Sun T. The role of XBP1s in the metastasis and prognosis of hepatocellular carcinoma. Biochem Biophys Res Commun. 2018;500:530–7.

    Article  CAS  PubMed  Google Scholar 

  27. Wu Y, Shan B, Dai J, Xia Z, Cai J, Chen T, et al. Dual role for inositol-requiring enzyme 1alpha in promoting the development of hepatocellular carcinoma during diet-induced obesity in mice. Hepatology. 2018;68:533–46.

    Article  CAS  PubMed  Google Scholar 

  28. Marciniak SJ, Chambers JE, Ron D. Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov. 2022;21:115–40.

    Article  CAS  PubMed  Google Scholar 

  29. Paoli D, Pallotti F, Dima AP, Albani E, Alviggi C, Causio F, et al. Phthalates and bisphenol a: presence in blood serum and follicular fluid of Italian women undergoing assisted reproduction techniques. Toxics. 2020;8:91.

  30. Onipede OJ, Adewuyi GO, Ayede AI, Olayemi O, Bello FA, Osamor JO. Blood transfusion impact on levels of some phthalate esters in blood, urine and breast milk of some nursing mothers in Ibadan South-Western Nigeria. Int J Environ Anal Chem. 2021;101:702–18.

    Article  CAS  Google Scholar 

  31. Lee J, Sun C, Zhou Y, Lee J, Gokalp D, Herrema H, et al. p38 MAPK-mediated regulation of Xbp1s is crucial for glucose homeostasis. Nat Med. 2011;17:1251–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. El Manaa W, Duplan E, Goiran T, Lauritzen I, Vaillant Beuchot L, Lacas-Gervais S, et al. Transcription- and phosphorylation-dependent control of a functional interplay between XBP1s and PINK1 governs mitophagy and potentially impacts Parkinson disease pathophysiology. Autophagy. 2021;17:4363–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maurel M, Chevet E, Tavernier J, Gerlo S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci. 2014;39:245–54.

    Article  CAS  PubMed  Google Scholar 

  34. Iwao C, Shidoji Y. Polyunsaturated branched-chain fatty acid geranylgeranoic acid induces unfolded protein response in human hepatoma cells. PLoS ONE. 2015;10:e0132761.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ben-Dror K, Birk R. Oleic acid ameliorates palmitic acid-induced ER stress and inflammation markers in naive and cerulein-treated exocrine pancreas cells. Biosci Rep. 2019;39:BSR20190054.

  36. Sozen E, Ozer NK. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: an updated mini-review. Redox Biol. 2017;12:456–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang Z, Huo Y, Zhou S, Guo J, Ma X, Li T, et al. Cancer cell-intrinsic XBP1 drives immunosuppressive reprogramming of intratumoral myeloid cells by promoting cholesterol production. Cell Metab. 2022;34:2018–35.e8.

    Article  CAS  PubMed  Google Scholar 

  38. Lee AH, Scapa EF, Cohen DE, Glimcher LH. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science. 2008;320:1492–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moncan M, Mnich K, Blomme A, Almanza A, Samali A, Gorman AM. Regulation of lipid metabolism by the unfolded protein response. J Cell Mol Med. 2021;25:1359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. So JS, Hur KY, Tarrio M, Ruda V, Frank-Kamenetsky M, Fitzgerald K, et al. Silencing of lipid metabolism genes through IRE1alpha-mediated mRNA decay lowers plasma lipids in mice. Cell Metab. 2012;16:487–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pramanik J, Chen X, Kar G, Henriksson J, Gomes T, Park JE, et al. Genome-wide analyses reveal the IRE1a-XBP1 pathway promotes T helper cell differentiation by resolving secretory stress and accelerating proliferation. Genome Med. 2018;10:76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gao CJ, Liu LY, Ma WL, Ren NQ, Guo Y, Zhu NZ, et al. Phthalate metabolites in urine of Chinese young adults: concentration, profile, exposure and cumulative risk assessment. Sci Total Environ. 2016;543:19–27.

    Article  CAS  PubMed  Google Scholar 

  43. Amin MM, Parastar S, Ebrahimpour K, Shoshtari-Yeganeh B, Hashemi M, Mansourian M, et al. Association of urinary phthalate metabolites concentrations with body mass index and waist circumference. Environ Sci Pollut Res Int. 2018;25:11143–51.

    Article  CAS  PubMed  Google Scholar 

  44. Guo Y, Alomirah H, Cho HS, Minh TB, Mohd MA, Nakata H, et al. Occurrence of phthalate metabolites in human urine from several Asian countries. Environ Sci Technol. 2011;45:3138–44.

    Article  CAS  PubMed  Google Scholar 

  45. Paul B, Lewinska M, Andersen JB. Lipid alterations in chronic liver disease and liver cancer. JHEP Rep. 2022;4:100479.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol. 2012;56:952–64.

    Article  CAS  PubMed  Google Scholar 

  47. Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K, et al. Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. J Hematol Oncol. 2023;16:103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86:1065–73.

    Article  CAS  PubMed  Google Scholar 

  49. Huang J, Pan H, Sun J, Wu J, Xuan Q, Wang J, et al. TMEM147 aggravates the progression of HCC by modulating cholesterol homeostasis, suppressing ferroptosis, and promoting the M2 polarization of tumor-associated macrophages. J Exp Clin Cancer Res. 2023;42:286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou H, Zhang T, Chen L, Cui F, Xu C, Peng J, et al. The functional implication of ATF6alpha in castration-resistant prostate cancer cells. FASEB J. 2023;37:e22758.

    Article  CAS  PubMed  Google Scholar 

  51. Lu Y, Yang A, Quan C, Pan Y, Zhang H, Li Y, et al. A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat Commun. 2022;13:4594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang T, Zhao F, Lin Y, Liu M, Zhou H, Cui F, et al. Integrated analysis of single-cell and bulk transcriptomics develops a robust neuroendocrine cell-intrinsic signature to predict prostate cancer progression. Theranostics. 2024;14:1065–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Peng X, Chen Z, Farshidfar F, Xu X, Lorenzi PL, Wang Y, et al. Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers. Cell Rep. 2018;23:255–69.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by National Key R&D Program of China (2022YFA0807000) to XS, National Natural Science Foundation of China (81972752) to YJ, and Fundamental Research Funds for the Central Universities (YCJJ202201011) to TZ.

Author information

Authors and Affiliations

Authors

Contributions

TZ performed most of the experiments and wrote the manuscript. FZ performed bioinformatics analyses and wrote the manuscript. YH, JW, FC and YL contributed to experiments. YJ revised the manuscript. XS conceived the project, supervised the work, and wrote the manuscript.

Corresponding author

Correspondence to Xia Sheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zhao, F., Hu, Y. et al. Environmental monobutyl phthalate exposure promotes liver cancer via reprogrammed cholesterol metabolism and activation of the IRE1α-XBP1s pathway. Oncogene 43, 2355–2370 (2024). https://doi.org/10.1038/s41388-024-03086-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-03086-1

Search

Quick links