Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plexin D1 emerges as a novel target in the development of neural lineage plasticity in treatment-resistant prostate cancer

Abstract

Treatment-induced neuroendocrine prostate cancer (t-NEPC) often arises from adenocarcinoma via lineage plasticity in response to androgen receptor signaling inhibitors, such as enzalutamide. However, the specific regulators and targets involved in the transition to NEPC are not well understood. Plexin D1 (PLXND1) is a cellular receptor of the semaphorin (SEMA) family that plays important roles in modulating the cytoskeleton and cell adhesion. Here, we found that PLXND1 was highly expressed and positively correlated with neuroendocrine markers in patients with NEPC. High PLXND1 expression was associated with poorer prognosis in prostate cancer patients. Additionally, PLXND1 was upregulated and negatively regulated by androgen receptor signaling in enzalutamide-resistant cells. Knockdown or knockout of PLXND1 inhibited neural lineage pathways, thereby suppressing NEPC cell proliferation, patient derived xenograft (PDX) tumor organoid viability, and xenograft tumor growth. Mechanistically, the heat shock protein 70 (HSP70) regulated PLXND1 protein stability through degradation, and inhibition of HSP70 decreased PLXND1 expression and NEPC organoid growth. In summary, our findings indicate that PLXND1 could serve as a promising therapeutic target and molecular marker for NEPC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PLXND1 is upregulated in NEPC and prostate cancer cells showing neural lineage plasticity.
Fig. 2: AR signaling negatively regulates the expression of PLXND1 in enzalutamide-resistant prostate cancer.
Fig. 3: Knockdown of PLXND1 represses the cell proliferation and improves enzalutamide treatment.
Fig. 4: Knockdown of PLXND1 decreases the neuroendocrine traits.
Fig. 5: Knockout of PLXND1 by CRISPR/Cas9 inhibits the NEPC cells in vitro, organoids viability, and tumor growth in vivo.
Fig. 6: HSP70 inhibition affects the protein stability of PLXND1.

Similar content being viewed by others

Data availability

The RNA sequence data in the present study have been deposited in Gene Expression Omnibus (GEO) with the accession number GSE267961. The data obtained in this study are available upon reasonable request from the corresponding authors.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    Article  PubMed  Google Scholar 

  2. Saha A, Kolonin MG, DiGiovanni J. Obesity and prostate cancer - microenvironmental roles of adipose tissue. Nat Rev Urol. 2023;20:579–96.

    Article  PubMed  Google Scholar 

  3. Siegel DA, O’Neil ME, Richards TB, Dowling NF, Weir HK. Prostate Cancer Incidence and Survival, by Stage and Race/Ethnicity - United States, 2001-7. MMWR Morb Mortal Wkly Rep. 2020;69:1473–80.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aparicio A, Logothetis CJ, Maity SN. Understanding the lethal variant of prostate cancer: power of examining extremes. Cancer Discov. 2011;1:466–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sternberg CN, Fizazi K, Saad F, Shore ND, De Giorgi U, Penson DF, et al. Enzalutamide and Survival in Nonmetastatic, Castration-Resistant Prostate Cancer. N Engl J Med. 2020;382:2197–206.

    Article  CAS  PubMed  Google Scholar 

  6. Small EJ, Saad F, Chowdhury S, Oudard S, Hadaschik BA, Graff JN, et al. Apalutamide and overall survival in non-metastatic castration-resistant prostate cancer. Ann Oncol. 2019;30:1813–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang Y, Chen J, Wu Z, Ding W, Gao S, Gao Y, et al. Mechanisms of enzalutamide resistance in castration-resistant prostate cancer and therapeutic strategies to overcome it. Br J Pharmacol. 2021;178:239–61.

    Article  CAS  PubMed  Google Scholar 

  8. Liu S, Alabi BR, Yin Q, Stoyanova T. Molecular mechanisms underlying the development of neuroendocrine prostate cancer. Semin Cancer Biol. 2022;86:57–68.

    Article  CAS  PubMed  Google Scholar 

  9. Alumkal JJ, Sun D, Lu E, Beer TM, Thomas GV, Latour E, et al. Transcriptional profiling identifies an androgen receptor activity-low, stemness program associated with enzalutamide resistance. Proc Natl Acad Sci USA. 2020;117:12315–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang HT, Yao YH, Li BG, Tang Y, Chang JW, Zhang J. Neuroendocrine Prostate Cancer (NEPC) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis-a systematic review and pooled analysis. J Clin Oncol. 2014;32:3383–90.

    Article  PubMed  Google Scholar 

  11. Wang Y, Wang Y, Ci X, Choi SYC, Crea F, Lin D, et al. Molecular events in neuroendocrine prostate cancer development. Nat Rev Urol. 2021;18:581–96.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Aggarwal R, Huang J, Alumkal JJ, Zhang L, Feng FY, Thomas GV, et al. Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study. J Clin Oncol. 2018;36:2492–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Z, Wang T, Hong D, Dong B, Wang Y, Huang H, et al. Single-cell transcriptional regulation and genetic evolution of neuroendocrine prostate cancer. iScience. 2022;25:104576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vivekanadhan S, Mukhopadhyay D. Divergent roles of Plexin D1 in cancer. Biochim Biophys Acta Rev Cancer. 2019;1872:103–10.

    Article  CAS  PubMed  Google Scholar 

  15. Roodink I, Verrijp K, Raats J, Leenders WP. Plexin D1 is ubiquitously expressed on tumor vessels and tumor cells in solid malignancies. BMC Cancer. 2009;9:297.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rehman M, Gurrapu S, Cagnoni G, Capparuccia L, Tamagnone L. PlexinD1 Is a Novel Transcriptional Target and Effector of Notch Signaling in Cancer Cells. PLoS One. 2016;11:e0164660.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22:298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brennen WN, Zhu Y, Coleman IM, Dalrymple SL, Antony L, Patel RA, et al. Resistance to androgen receptor signaling inhibition does not necessitate development of neuroendocrine prostate cancer. JCI Insight 2021;6:e146827.

  19. Labrecque MP, Coleman IM, Brown LG, True LD, Kollath L, Lakely B, et al. Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer. J Clin Invest. 2019;129:4492–505.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Asberry AM, Liu S, Nam HS, Deng X, Wan J, Hu CD. Reprogramming landscape highlighted by dynamic transcriptomes in therapy-induced neuroendocrine differentiation. Comput Struct Biotechnol J. 2022;20:5873–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Verma S, Shankar E, Chan ER, Gupta S. Metabolic Reprogramming and Predominance of Solute Carrier Genes during Acquired Enzalutamide Resistance in Prostate Cancer. Cells 2020;9:2535.

  22. Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA. 2019;116:11428–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J, Balbas MD, et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell. 2013;155:1309–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang JC, Xu PF, Ning S, Wasielewski LJ, Adomat H, Hwang SH, et al. Novel inhibition of AKR1C3 and androgen receptor axis by PTUPB synergizes enzalutamide treatment in advanced prostate cancer. Oncogene. 2023;42:693–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aggarwal RR, Quigley DA, Huang J, Zhang L, Beer TM, Rettig MB, et al. Whole-Genome and Transcriptional Analysis of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer Demonstrates Intraclass Heterogeneity. Mol Cancer Res. 2019;17:1235–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bery F, Cancel M, Chantome A, Guibon R, Bruyere F, Rozet F, et al. The Calcium-Sensing Receptor is A Marker and Potential Driver of Neuroendocrine Differentiation in Prostate Cancer. Cancers (Basel) 2020; 12:860.

  28. Wang J, Li J, Yin L, Pu T, Wei J, Karthikeyan V, et al. Neuropilin-2 promotes lineage plasticity and progression to neuroendocrine prostate cancer. Oncogene. 2022;41:4307–17.

    Article  CAS  PubMed  Google Scholar 

  29. Islam R, Mishra J, Polavaram NS, Bhattacharya S, Hong Z, Bodas S, et al. Neuropilin-2 axis in regulating secretory phenotype of neuroendocrine-like prostate cancer cells and its implication in therapy resistance. Cell Rep. 2022;40:111097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Patel GK, Chugh N, Tripathi M. Neuroendocrine Differentiation of Prostate Cancer-An Intriguing Example of Tumor Evolution at Play. Cancers (Basel) 2019;11:1405.

  31. Ning S, Zhao J, Lombard AP, D’Abronzo LS, Leslie AR, Sharifi M, et al. Activation of neural lineage networks and ARHGEF2 in enzalutamide-resistant and neuroendocrine prostate cancer and association with patient outcomes. Commun Med (Lond). 2022;2:118.

    Article  CAS  PubMed  Google Scholar 

  32. Zou M, Toivanen R, Mitrofanova A, Floch N, Hayati S, Sun Y, et al. Transdifferentiation as a Mechanism of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer. Cancer Discov. 2017;7:736–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ding JB, Oh WJ, Sabatini BL, Gu C. Semaphorin 3E-Plexin-D1 signaling controls pathway-specific synapse formation in the striatum. Nat Neurosci. 2011;15:215–23.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mehta V, Pang KL, Rozbesky D, Nather K, Keen A, Lachowski D, et al. The guidance receptor plexin D1 is a mechanosensor in endothelial cells. Nature. 2020;578:290–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pecho-Vrieseling E, Sigrist M, Yoshida Y, Jessell TM, Arber S. Specificity of sensory-motor connections encoded by Sema3e-Plxnd1 recognition. Nature. 2009;459:842–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jurcak NR, Rucki AA, Muth S, Thompson E, Sharma R, Ding D, et al. Axon Guidance Molecules Promote Perineural Invasion and Metastasis of Orthotopic Pancreatic Tumors in Mice. Gastroenterology. 2019;157:838–850.e836.

    Article  CAS  PubMed  Google Scholar 

  37. Casazza A, Finisguerra V, Capparuccia L, Camperi A, Swiercz JM, Rizzolio S, et al. Sema3E-Plexin D1 signaling drives human cancer cell invasiveness and metastatic spreading in mice. J Clin Invest. 2010;120:2684–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Luchino J, Hocine M, Amoureux MC, Gibert B, Bernet A, Royet A, et al. Semaphorin 3E suppresses tumor cell death triggered by the plexin D1 dependence receptor in metastatic breast cancers. Cancer Cell. 2013;24:673–85.

    Article  CAS  PubMed  Google Scholar 

  39. Cattrini C, Capaia M, Boccardo F, Barboro P. Etoposide and topoisomerase II inhibition for aggressive prostate cancer: Data from a translational study. Cancer Treat Res Commun. 2020;25:100221.

    Article  PubMed  Google Scholar 

  40. Flechon A, Pouessel D, Ferlay C, Perol D, Beuzeboc P, Gravis G, et al. Phase II study of carboplatin and etoposide in patients with anaplastic progressive metastatic castration-resistant prostate cancer (mCRPC) with or without neuroendocrine differentiation: results of the French Genito-Urinary Tumor Group (GETUG) P01 trial. Ann Oncol. 2011;22:2476–81.

    Article  CAS  PubMed  Google Scholar 

  41. Aparicio AM, Harzstark AL, Corn PG, Wen S, Araujo JC, Tu SM, et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res. 2013;19:3621–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Culine S, El Demery M, Lamy PJ, Iborra F, Avances C, Pinguet F. Docetaxel and cisplatin in patients with metastatic androgen independent prostate cancer and circulating neuroendocrine markers. J Urol. 2007;178:844–8.

    Article  CAS  PubMed  Google Scholar 

  43. Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B. The Hsp70 chaperone network. Nat Rev Mol Cell Biol. 2019;20:665–80.

    Article  CAS  PubMed  Google Scholar 

  44. Kampinga HH, Craig EA. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol. 2010;11:579–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu C, Lou W, Yang JC, Liu L, Armstrong CM, Lombard AP, et al. Proteostasis by STUB1/HSP70 complex controls sensitivity to androgen receptor targeted therapy in advanced prostate cancer. Nat Commun. 2018;9:4700.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fard D, Tamagnone L. Semaphorins in health and disease. Cytokine Growth Factor Rev. 2021;57:55–63.

    Article  CAS  PubMed  Google Scholar 

  47. Carretero-Ortega J, Chhangawala Z, Hunt S, Narvaez C, Menendez-Gonzalez J, Gay CM, et al. GIPC proteins negatively modulate Plexind1 signaling during vascular development. Elife 2019;8:e30454.

  48. Xu P, Yang JC, Ning S, Chen B, Nip C, Wei Q, et al. Allosteric inhibition of HSP70 in collaboration with STUB1 augments enzalutamide efficacy in antiandrogen resistant prostate tumor and patient-derived models. Pharmacol Res. 2023;189:106692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–87.

    Article  CAS  PubMed  Google Scholar 

  50. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cancer Genome Atlas Research N. The Molecular Taxonomy of Primary Prostate Cancer. Cell. 2015;163:1011–25.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Institutes of Health R37CA249108 (Liu), R01CA251253 (Liu), R21CA277171 (Liu), Department of Defense HT9425-23-1-0144 (Liu), HT9425-23-1-0325 (Liu), and a UC Davis Comprehensive Cancer Center Support Grant (CCSG) awarded by the National Cancer Institute (NCI P30CA093373). The maintenance and characterization of the LuCaP PDX models were supported by the Pacific Northwest Prostate Cancer SPORE (P50CA97186), Department of Defense Prostate Cancer Biorepository Network (W81XWH-14-2-0183), and National Institutes of Health P01-CA163227.

Funding

This work was supported in part by grants from NIH/NCI R37CA249108 (Liu), R01CA251253 (Liu), R21CA277171 (Liu), Department of Defense HT9425-23-1-0144 (Liu), HT9425-23-1-0325 (Liu), and UC Davis Comprehensive Cancer Center Support Grant (CCSG) awarded by the National Cancer Institute (NCI P30CA093373).

Author information

Authors and Affiliations

Authors

Contributions

BC and CL conceived of the project and designed the experiments. BC, PX, JCY, SN, and CL developed the methodology. BC, PX, JCY, CN, YQS, and YFS performed the experiments and acquired the data. CN, LW, LL, QW, ACG, EC, JEG, and CL provided the technical and material support. BC and SN performed bioinformatics analysis. BC, PX, JCY, and CL interpreted and analyzed the data. BC and JCY wrote the manuscript. CN and CL edited the manuscript. CL supervised the study.

Corresponding author

Correspondence to Chengfei Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Xu, P., Yang, J.C. et al. Plexin D1 emerges as a novel target in the development of neural lineage plasticity in treatment-resistant prostate cancer. Oncogene 43, 2325–2337 (2024). https://doi.org/10.1038/s41388-024-03081-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-03081-6

Search

Quick links