Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting AURKA to induce synthetic lethality in CREBBP-deficient B-cell malignancies via attenuation of MYC expression

Abstract

Loss-of-function mutations in CREBBP, which encodes for a histone acetyltransferase, occur frequently in B-cell malignancies, highlighting CREBBP deficiency as an attractive therapeutic target. Using established isogenic cell models, we demonstrated that CREBBP-deficient cells are selectively vulnerable to AURKA inhibition. Mechanistically, we found that co-targeting CREBBP and AURKA suppressed MYC transcriptionally and post-translationally to induce replication stress and apoptosis. Inhibition of AURKA dramatically decreased MYC protein level in CREBBP-deficient cells, implying a dependency on AURKA to sustain MYC stability. Furthermore, in vivo studies showed that pharmacological inhibition of AURKA was efficacious in delaying tumor progression in CREBBP-deficient cells and was synergistic with CREBBP inhibitors in CREBBP-proficient cells. Our study sheds light on a novel synthetic lethal interaction between CREBBP and AURKA, indicating that targeting AURKA represents a potential therapeutic strategy for high-risk B-cell malignancies harboring CREBBP inactivating mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: B-cell lymphoma cells with shRNA induced CREBBP knockdown exhibit increased sensitivity to AURKA inhibition.
Fig. 2: Cell lines of B-cell malignancies with CREBBP inactivation shows higher sensitivity to AURKA inhibitors.
Fig. 3: The synthetic interaction of CREBBP and AURKA/AURKB can be recapitulated genetically and pharmacologically.
Fig. 4: MYC target genes were deregulated with the treatment of SGC-CBP30 and alisertib.
Fig. 5: CREBBP-deficient cells are more dependent on AURKA to maintain MYC stability.
Fig. 6: AURKA inhibitor reduced tumor growth of CREBBP-mutated B-cell malignancies.
Fig. 7: Schematic model for the synthetic lethal interaction between CREBBP and AURKA in B-cell malignancies.

Similar content being viewed by others

Data availability

RNA-seq and ChIP-seq data has been deposited in GEO database under project accession number: GSE211451 and GSE232330.

References

  1. Sehn LH, Salles G. Diffuse large B-cell lymphoma. N Engl J Med. 2021;384:842–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roschewski M, Staudt LM, Wilson WH. Diffuse large B-cell lymphoma - treatment approaches in the molecular era. Nat Rev Clin Oncol. 2014;11:12–23.

    Article  CAS  PubMed  Google Scholar 

  3. Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al. Genetics and pathogenesis of diffuse large B-Cell lymphoma. N Engl J Med. 2018;378:1396–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pasqualucci L, Dalla-Favera R. SnapShot: diffuse large B cell lymphoma. Cancer Cell. 2014;25:132.e1.

    Article  CAS  PubMed  Google Scholar 

  5. Italiano A, Soria J-C, Toulmonde M, Michot J-M, Lucchesi C, Varga A, et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 2018;19:649–59.

    Article  CAS  PubMed  Google Scholar 

  6. Attar N, Kurdistani SK. Exploitation of EP300 and CREBBP lysine acetyltransferases by cancer. Cold Spring Harb Perspect. Med. 2017;7:a026534.

  7. Pasqualucci L, Dominguez-sola D, Chiarenza A, Fabbri G, Trifonov V, Kasper LH, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011;471:189–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D, Phillips LA, et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011;471:235–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang J, Vlasevska S, Wells VA, Nataraj S, Holmes AB, Duval R, et al. The CREBBP acetyltransferase is a haploinsufficient tumor suppressor in B-cell lymphoma. Cancer Discov. 2017;7:323–37.

    Article  Google Scholar 

  10. Jiang Y, Ortega-Molina A, Geng H, Ying HY, Hatzi K, Parsa S, et al. CREBBP inactivation promotes the development of HDAC3-dependent lymphomas. Cancer Discov. 2017;7:38–53.

    Article  CAS  PubMed  Google Scholar 

  11. Juskevicius D, Jucker D, Klingbiel D, Mamot C, Dirnhofer S, Tzankov A. Mutations of CREBBP and SOCS1 are independent prognostic factors in diffuse large B cell lymphoma: mutational analysis of the SAKK 38/07 prospective clinical trial cohort. J Hematol Oncol. 2017;10:70.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer. 2016;16:110–20.

    Article  CAS  PubMed  Google Scholar 

  13. Höpken UE. Targeting HDAC3 in CREBBP -mutant lymphomas counterstrikes unopposed enhancer deacetylation of B-cell signaling and immune response genes. Cancer Discov. 2017;7:14–16.

    Article  PubMed  Google Scholar 

  14. Ogiwara H, Sasaki M, Mitachi T, Oike T, Higuchi S, Tominaga Y, et al. Targeting p300 addiction in CBP-deficient cancers causes synthetic lethality by apoptotic cell death due to abrogation of MYC expression. Cancer Discov. 2016;6:430–45.

    Article  CAS  PubMed  Google Scholar 

  15. Veazey KJ, Cheng D, Lin K, Villarreal OD, Gao G, Perez-Oquendo M, et al. CARM1 inhibition reduces histone acetyltransferase activity causing synthetic lethality in CREBBP/EP300-mutated lymphomas. Leukemia. 2020;34:3269–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun Y, Gao Y, Chen J, Huang L, Deng P, Chen J, et al. CREBBP cooperates with the cell cycle machinery to attenuate chidamide sensitivity in relapsed/refractory diffuse large B-cell lymphoma. Cancer Lett. 2021;521:268–80.

    Article  CAS  PubMed  Google Scholar 

  17. Friedberg JW, Mahadevan D, Cebula E, Persky D, Lossos I, Agarwal AB, et al. Phase II study of alisertib, a selective Aurora A kinase inhibitor, in relapsed and refractory aggressive B- and T-cell non-Hodgkin lymphomas. J Clin Oncol. 2014;32:44–50.

    Article  CAS  PubMed  Google Scholar 

  18. Ozcan M, Jacobsen ED, Roncero JM, Trotman J, Pereira J, Ramchandren R, et al. Randomized Phase III Study of Alisertib or Investigator’s Choice (Selected Single Agent) in Patients with Relapsed Or Refractory Peripheral T-Cell Lymphoma original report abstract. J Clin Oncol. 2020;37:613–24.

    Google Scholar 

  19. Mountzios G, Terpos E, Dimopoulos M-A. Aurora kinases as targets for cancer therapy. Cancer Treat Rev. 2008;34:175–82.

    Article  CAS  PubMed  Google Scholar 

  20. Lasko LM, Jakob CG, Edalji RP, Qiu W, Montgomery D, Digiammarino EL, et al. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature. 2017;550:128–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marxer M, Ma HT, Man WY, Poon RYC. p53 deficiency enhances mitotic arrest and slippage induced by pharmacological inhibition of Aurora kinases. Oncogene. 2014;33:3550–60.

  22. Hoar K, Chakravarty A, Rabino C, Wysong D, Bowman D, Roy N, et al. MLN8054, a small-molecule inhibitor of Aurora A, causes spindle pole and chromosome congression defects leading to aneuploidy. Mol Cell Biol. 2007;27:4513–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meyer SN, Scuoppo C, Vlasevska S, Bal E, Holmes AB, Holloman M, et al. Unique and shared epigenetic programs of the CREBBP and EP300 acetyltransferases in germinal center B cells reveal targetable dependencies in lymphoma. Immunity. 2019;51:535–47.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bannister AJ, Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature. 1996;384:641–3.

    Article  CAS  PubMed  Google Scholar 

  25. Gustafson WC, Meyerowitz JG, Nekritz EA, Chen J, Benes C, Charron E, et al. Drugging MYCN through an Allosteric Transition in Aurora Kinase A. Cancer Cell. 2014;26:414–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang J, Wang J, Yue M, Cai X, Wang T, Wu C, et al. Direct Phosphorylation and stabilization of MYC by aurora B kinase promote T-cell leukemogenesis. Cancer Cell. 2020;37:200–15.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dauch D, Rudalska R, Cossa G, Nault J-C, Kang T-W, Wuestefeld T, et al. A MYC–aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer. Nat Med. 2016;22:744–53.

    Article  CAS  PubMed  Google Scholar 

  28. Faiola F, Liu X, Lo S, Pan S, Zhang K, Lymar E, et al. Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription. Mol Cell Biol. 2005;25:10220–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang YH, Cai K, Xu PP, Wang L, Huang CX, Fang Y, et al. CREBBP/EP300 mutations promoted tumor progression in diffuse large B-cell lymphoma through altering tumor-associated macrophage polarization via FBXW7-NOTCH-CCL2/CSF1 axis. Signal Transduct Target Ther. 2021;6:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pasqualucci L, Dalla-Favera R. Genetics of diffuse large b-cell lymphoma. Blood. 2018;131:2307–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. García-Ramírez I, Tadros S, González-Herrero I, Martín-Lorenzo A, Rodríguez-Hernández G, Moore D, et al. Crebbp loss cooperates with Bcl2 overexpression to promote lymphoma in mice. Blood. 2017;129:2645–56.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hashwah H, Schmid CA, Kasser S, Bertram K, Stelling A, Manz MG. Inactivation of CREBBP expands the germinal center B cell compartment, down-regulates MHCII expression and promotes DLBCL growth. Proc Natl Acad Sci USA. 2017;114:9701–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nie M, Du L, Ren W, Joung J, Ye X, Shi X, et al. Genome-wide CRISPR screens reveal synthetic lethal interaction between CREBBP and EP300 in diffuse large B-cell lymphoma. Cell Death Dis. 2021;12:419.

  34. Jia D, Augert A, Kim DW, Eastwood E, Wu N, Ibrahim AH, et al. Crebbp loss drives small cell lung cancer and increases sensitivity to HDAC inhibition. Cancer Discov. 2018;8:1422–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mondello P, Tadros S, Teater M, Fontan L, Chang AY, Jain N, et al. Selective inhibition of Hdac3 targets synthetic vulnerabilities and activates immune surveillance in lymphoma. Cancer Discov. 2020;10:440–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Du R, Huang C, Liu K, Li X, Dong Z. Targeting AURKA in cancer: molecular mechanisms and opportunities for cancer therapy. Mol Cancer. 2021;20:1–27.

    Article  Google Scholar 

  37. van Gijn SE, Wierenga E, van den Tempel N, Kok YP, Heijink AM, Spierings DCJ, et al. TPX2/Aurora kinase A signaling as a potential therapeutic target in genomically unstable cancer cells. Oncogene. 2019;38:852–67.

    Article  PubMed  Google Scholar 

  38. Ochi T, Fujiwara H, Suemori K, Azuma T, Yakushijin Y, Hato T, et al. Aurora-A kinase: a novel target of cellular immunotherapy for leukemia. Blood. 2009;113:66–74.

    Article  CAS  PubMed  Google Scholar 

  39. Ait-Si-Ali S, Polesskaya A, Filleur S, Ferreira R, Duquet A, Robin P, et al. CBP/p300 histone acetyl-transferase activity is important for the G1/S transition. Oncogene. 2000;19:2430–7.

    Article  CAS  PubMed  Google Scholar 

  40. Bowers EM, Yan G, Mukherjee C, Orry A, Wang L, Holbert MA, et al. Virtual ligand screening of the p300/CBP histone acetyltransferase: Identification of a selective small molecule inhibitor. Chem Biol. 2010;17:471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hammitzsch A, Tallant C, Fedorov O, O’Mahony A, Brennan PE, Hay DA, et al. CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc Natl Acad Sci USA. 2015;112:10768–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brockmann M, Poon E, Berry T, Carstensen A, Deubzer HE, Rycak L, et al. Small molecule inhibitors of aurora-A induce proteasomal degradation of N-Myc in childhood neuroblastoma. Cancer Cell. 2013;24:75–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Den Hollander J, Rimpi S, Doherty JR, Rudelius M, Buck A, Hoellein A, et al. Aurora kinases A and B are up-regulated by Myc and are essential for maintenance of the malignant state. Blood. 2010;116:1498–505.

    Article  Google Scholar 

  44. Mollaoglu G, Guthrie MR, Böhm S, Brägelmann J, Can I, Ballieu PM, et al. MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition. Cancer Cell. 2017;31:270–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oser MG, Fonseca R, Chakraborty AA, Brough R, Spektor A, Jennings RB, et al. Cells lacking the RB1 tumor suppressor gene are hyperdependent on aurora B kinase for survival. Cancer Discov. 2019;9:230–47.

    Article  CAS  PubMed  Google Scholar 

  46. Gong X, Du J, Parsons SH, Merzoug FF, Webster Y, Iversen PW, et al. Aurora a kinase inhibition is synthetic lethal with loss of the RB1 tumor suppressor gene. Cancer Discov. 2019;9:248–63.

    Article  CAS  PubMed  Google Scholar 

  47. Tagal V, Wei S, Zhang W, Brekken RA, Posner BA, Peyton M, et al. SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. Nat Commun. 2017;8:14098.

  48. Wu C, Lyu J, Yang EJ, Liu Y, Zhang B, Shim JS. Targeting AURKA-CDC25C axis to induce synthetic lethality in ARID1A-deficient colorectal cancer cells. Nat Commun. 2018;9:3212.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ding H, Zhao J, Zhang Y, Yu J, Liu M, Li X, et al. Systematic analysis of drug vulnerabilities conferred by tumor suppressor loss. Cell Rep. 2019;27:3331–44.e6.

    Article  CAS  PubMed  Google Scholar 

  50. Li W, Gupta SK, Han W, Kundson RA, Nelson S, Knutson D, et al. Targeting MYC activity in double-hit lymphoma with MYC and BCL2 and/or BCL6 rearrangements with epigenetic bromodomain inhibitors. J Hematol Oncol. 2019;12:1–13.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81972596, 81772963, 82073391, 81970176, 82170188), Guangdong Innovative and Entrepreneurial Research Team Program (2016ZT06S638, 2016ZT06S252), the Natural Science Foundation of Guangdong Province (2021A1515011131), Guangzhou Municipal Science and Technology Project (2023A04J1272), The Singapore Ministry of Health’s National Medical Research Council (NMRC-ORIRG16nov090 and NMRC-OFLCG18May0028), Tanoto Foundation Professorship in Medical Oncology, New Century International Pte Ltd and Ling Foundation. We thank Dr. Laura Pasqualucci for the human CREBBP plasmid. The key raw data generated and/or analyzed during the current study are available at Research Data Deposit public platform (www.researchdata.org.cn), with the approval number of RDDB2024933413.

Author information

Authors and Affiliations

Authors

Contributions

YS and JT conceived, designed, and supervised the study; YS performed the experiments; JC analyzed and interpreted the data (e.g., biostatistics, computational analysis); RX, YT, PW, LP and KXYC supported animal work; PD, YW, LL, SL and JG provided suggestions and technical support for experiments. ZY, STL, WL and BX provided key reagents for the experiments. YS and JT wrote, reviewed, and revised the manuscript. JHH, JYC, BTT, QY and CKO provided kind suggestions for the manuscript writing. All the authors have given their consent to publish this study.

Corresponding author

Correspondence to Jing Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All animal studies were conducted in compliance with animal protocols approved by the Institutional Animal Care and Use Committee (IACUC) of Sun Yat-sen University Cancer Center.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Chen, J., Hong, J.H. et al. Targeting AURKA to induce synthetic lethality in CREBBP-deficient B-cell malignancies via attenuation of MYC expression. Oncogene 43, 2172–2183 (2024). https://doi.org/10.1038/s41388-024-03065-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-03065-6

Search

Quick links