Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epstein-Barr virus causes vascular abnormalities in epithelial malignancies through upregulating ANXA3-HIF-1α-VEGF pathway

Abstract

Angiogenesis is one of the characteristics of malignant tumors, and persistent generation of abnormal tumor blood vessels is an important factor contributing to tumor treatment resistance. Epstein-Barr virus (EBV) is a highly prevalent DNA oncogenic virus that is associated with the development of various epithelial malignancies. However, the relationship between EBV infection and tumor vascular abnormalities as well as its underlying mechanisms is still unclear. In this study, we found that compared to EBV-uninfected tumors, EBV-infected tumors were more angiogenic, but the neovascularization was mostly immature vessels without pericyte attachment in both clinical patient tumor samples and mouse xenograft models; These immature vessels exhibited aberrant functionality, characterized by poor blood perfusion and increased vascular permeability. The vascular abnormalities caused by EBV infection exacerbated tumor hypoxia and was responsible for accelerated tumor growth. Mechanistically, EBV infection upregulated ANXA3-HIF-1α-VEGF pathway. Silencing the ANXA3 gene or neutralizing ANXA3 with an antibody can diminish vascular abnormalities, thereby increasing immune cell infiltration and alleviating treatment resistance. Finally, a new therapy combining ANXA3 blockade and NK cell + PD1 antibody significantly inhibited the growth of EBV-infected xenografts in mice. In conclusion, our study identified a previously unrecognized role for EBV infection in tumor vascular abnormalities and revealed its underlying mechanism that upregulated the ANXA3-HIF-1α-VEGF pathway. ANXA3 is a potential therapeutic target for EBV-infected tumors and ANXA3 blockade to improve vascular conditions, in combination with NK cell + PD1 antibody therapy, holds promise as an effective treatment strategy for EBV-associated epithelial malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vascular morphology, number and pericyte attachment in EBV-infected and EBV-uninfected nasopharyngeal carcinoma.
Fig. 2: Effect of EBV infection on nasopharyngeal carcinoma vessels in vitro.
Fig. 3: EBV infection leads to abnormal vascular function and tumor hypoxia in nasopharyngeal carcinoma xenografts.
Fig. 4: Identification of ANXA3 as a key molecule in tumor vascular abnormalities caused by EBV infection.
Fig. 5: ANXA3 upregulates PI3K-HIF-1α-VEGF pathway associated with vascular abnormalities in EBV-infected tumor.
Fig. 6: Knockdown of ANXA3 promotes vascular normalization in EBV-infected tumors.
Fig. 7: AntiANXA3 antibody synergizes with NK cell + PD1 antibody to inhibit the growth of HK1-EBV xenografts.

Similar content being viewed by others

Data availability

The raw data of this study would be available from corresponding author TX (email: xiangtong@sysucc.org.cn) upon reasonable request.

References

  1. Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964;1:702–3.

    Article  CAS  PubMed  Google Scholar 

  2. Young LS, Yap LF, Murray PG. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer. 2016;16:789–802.

    Article  CAS  PubMed  Google Scholar 

  3. Farrell PJ. Epstein-Barr virus and cancer. Annu Rev Pathol. 2019;14:29–53.

    Article  CAS  PubMed  Google Scholar 

  4. Lin C, Zong J, Lin W, Wang M, Xu Y, Zhou R, et al. EBV-miR-BART8-3p induces epithelial-mesenchymal transition and promotes metastasis of nasopharyngeal carcinoma cells through activating NF-κB and Erk1/2 pathways. J Exp Clin Cancer Res. 2018;37:283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheng S, Li Z, He J, Fu S, Duan Y, Zhou Q, et al. Epstein-Barr virus noncoding RNAs from the extracellular vesicles of nasopharyngeal carcinoma (NPC) cells promote angiogenesis via TLR3/RIG-I-mediated VCAM-1 expression. Biochim Biophys Acta Mol Basis Dis. 2019;1865:1201–13.

    Article  CAS  PubMed  Google Scholar 

  6. Xiang T, Lin Y-X, Ma W, Zhang H-J, Chen K-M, He G-P, et al. Vasculogenic mimicry formation in EBV-associated epithelial malignancies. Nat Commun. 2018;9:5009.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Westhoff Smith D, Sugden B. Potential cellular functions of Epstein-Barr nuclear antigen 1 (EBNA1) of Epstein-Barr Virus. Viruses. 2013;5:226–40.

    Article  PubMed  Google Scholar 

  8. Tsao S-W, Tsang CM, To K-F, Lo K-W. The role of Epstein-Barr virus in epithelial malignancies. J Pathol. 2015;235:323–33.

    Article  CAS  PubMed  Google Scholar 

  9. Chang ET, Adami H-O. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 2006;15:1765–77.

    Article  CAS  PubMed  Google Scholar 

  10. Dawson CW, Port RJ, Young LS. The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol. 2012;22:144–53.

    Article  CAS  PubMed  Google Scholar 

  11. Elgui de Oliveira D, Müller-Coan BG, Pagano JS. Viral carcinogenesis beyond malignant transformation: EBV in the Progression of human cancers. Trends Microbiol. 2016;24:649–64.

    Article  CAS  PubMed  Google Scholar 

  12. Naseem M, Barzi A, Brezden-Masley C, Puccini A, Berger MD, Tokunaga R, et al. Outlooks on Epstein-Barr virus associated gastric cancer. Cancer Treat Rev. 2018;66:15–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Ge J, Wang Y, Xiong F, Guo J, Jiang X, et al. EBV miRNAs BART11 and BART17-3p promote immune escape through the enhancer-mediated transcription of PD-L1. Nat Commun. 2022;13:866.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rivera-Soto R, Damania B. Modulation of angiogenic processes by the human gammaherpesviruses, epstein-barr virus and Kaposi’s sarcoma-associated herpesvirus. Front Microbiol. 2019;10:1544.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  16. Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017;20:409–26.

    Article  CAS  PubMed  Google Scholar 

  17. Raza A, Franklin MJ, Dudek AZ. Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol. 2010;85:593–8.

    Article  CAS  PubMed  Google Scholar 

  18. Mussunoor S, Murray GI. The role of annexins in tumour development and progression. J Pathol. 2008;216:131–40.

    Article  CAS  PubMed  Google Scholar 

  19. Moss SE, Morgan RO. The annexins. Genome Biol. 2004;5:219.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tong M, Fung T-M, Luk ST, Ng K-Y, Lee TK, Lin C-H, et al. ANXA3/JNK signaling promotes self-renewal and tumor growth, and its blockade provides a therapeutic target for hepatocellular carcinoma. Stem Cell Reports. 2015;5:45–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pan Q-Z, Pan K, Weng D-S, Zhao J-J, Zhang X-F, Wang D-D, et al. Annexin A3 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma. Mol Carcinog. 2015;54:598–607.

    Article  CAS  PubMed  Google Scholar 

  22. Kim J-Y, Jung EJ, Park HJ, Lee J-H, Song EJ, Kwag S-J, et al. Tumor-suppressing effect of silencing of annexin A3 expression in breast cancer. Clin Breast Cancer. 2018;18:e713–e9.

    Article  CAS  PubMed  Google Scholar 

  23. Jung E-J, Moon H-G, Park S-T, Cho B-I, Lee S-M, Jeong C-Y, et al. Decreased annexin A3 expression correlates with tumor progression in papillary thyroid cancer. Proteomics Clin Appl. 2010;4:528–37.

    Article  CAS  PubMed  Google Scholar 

  24. Ruan L, Wang G-L, Chen Y, Yi H, Tang C-E, Zhang P-F, et al. Identification of tyrosine phosphoproteins in signaling pathway triggered TGF-a by using functional proteomics technology. Med Oncol. 2010;27:1407–14.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang H-J, Tian J, Qi X-K, Xiang T, He G-P, Zhang H, et al. Epstein-Barr virus activates F-box protein FBXO2 to limit viral infectivity by targeting glycoprotein B for degradation. PLoS Pathog. 2018;14:e1007208.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 2017;544:250–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang J-C, Li G-Y, Wang B, Han S-X, Sun X, Jiang Y-N, et al. Metformin inhibits metastatic breast cancer progression and improves chemosensitivity by inducing vessel normalization via PDGF-B downregulation. J Exp Clin Cancer Res. 2019;38:235.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Goel S, Wong AH-K, Jain RK. Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb Perspect Med. 2012;2:a006486.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jayson GC, Kerbel R, Ellis LM, Harris AL. Antiangiogenic therapy in oncology: current status and future directions. Lancet. 2016;388:518–29.

    Article  CAS  PubMed  Google Scholar 

  30. Park JE, Lee DH, Lee JA, Park SG, Kim N-S, Park BC, et al. Annexin A3 is a potential angiogenic mediator. Biochem Biophys Res Commun. 2005;337:1283–7.

    Article  CAS  PubMed  Google Scholar 

  31. Guo C, Li N, Dong C, Wang L, Li Z, Liu Q, et al. 33-kDa ANXA3 isoform contributes to hepatocarcinogenesis via modulating ERK, PI3K/Akt-HIF and intrinsic apoptosis pathways. J Adv Res. 2021;30:85–102.

  32. Sivori S, Pende D, Quatrini L, Pietra G, Della Chiesa M, Vacca P, et al. NK cells and ILCs in tumor immunotherapy. Mol Aspects Med. 2021;80:100870.

    Article  CAS  PubMed  Google Scholar 

  33. Khan M, Arooj S, Wang H. NK cell-based immune checkpoint inhibition. Front Immunol. 2020;11:167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu N, Shi F, Yang L, Liao W, Cao Y. Oncogenic viral infection and amino acid metabolism in cancer progression: molecular insights and clinical implications. Biochim Biophys Acta Rev Cancer. 2022;1877:188724.

    Article  CAS  PubMed  Google Scholar 

  35. Shi F, Zhou M, Shang L, Du Q, Li Y, Xie L, et al. EBV(LMP1)-induced metabolic reprogramming inhibits necroptosis through the hypermethylation of the RIP3 promoter. Theranostics. 2019;9:2424–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rühl J, Leung CS, Münz C. Vaccination against the Epstein-Barr virus. Cell Mol Life Sci. 2020;77:4315–24.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tsang CM, Lui VWY, Bruce JP, Pugh TJ, Lo KW. Translational genomics of nasopharyngeal cancer. Semin Cancer Biol. 2020;61:84–100.

  38. Chen Z-H, Yan S-M, Chen X-X, Zhang Q, Liu S-X, Liu Y, et al. The genomic architecture of EBV and infected gastric tissue from precursor lesions to carcinoma. Genome Med. 2021;13:146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang L, Lu P, Yang X, Li K, Qu S. Annexin A3, a calcium-dependent phospholipid-binding protein: implication in cancer. Front Mol Biosci. 2021;8:716415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meadows SM, Cleaver O. Annexin A3 regulates early blood vessel formation. PLoS One. 2015;10:e0132580.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jain RK, Martin JD, Stylianopoulos T. The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng. 2014;16:321–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reymond N, d'Água BB, Ridley AJ. Crossing the endothelial barrier during metastasis. Nat Rev Cancer. 2013;13:858–70.

    Article  CAS  PubMed  Google Scholar 

  43. Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2023;8:70.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 2011;91:1071–121.

    Article  CAS  PubMed  Google Scholar 

  45. Ouarné M, Bouvard C, Boneva G, Mallet C, Ribeiro J, Desroches-Castan A, et al. BMP9, but not BMP10, acts as a quiescence factor on tumor growth, vessel normalization and metastasis in a mouse model of breast cancer. J Exp Clin Cancer Res. 2018;37:209.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 2014;26:605–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Han Y, Pan Q, Guo Z, Du Y, Zhang Y, Liu Y, et al. BMP9-induced vascular normalisation improves the efficacy of immunotherapy against hepatitis B virus-associated hepatocellular carcinoma. Clin Transl Med. 2023;13:e1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhu Q, Pan Q-Z, Zhong A-L, Hu H, Zhao J-J, Tang Y, et al. Annexin A3 upregulates the infiltrated neutrophil-lymphocyte ratio to remodel the immune microenvironment in hepatocellular carcinoma. Int Immunopharmacol. 2020;89:107139.

    Article  CAS  PubMed  Google Scholar 

  49. Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol. 2021;18:85��100.

  50. Zhang Q, Bi J, Zheng X, Chen Y, Wang H, Wu W, et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol. 2018;19:723–32.

    Article  CAS  PubMed  Google Scholar 

  51. Melaiu O, Lucarini V, Cifaldi L, Fruci D. Influence of the tumor microenvironment on NK cell function in solid tumors. Front Immunol. 2019;10:3038.

    Article  CAS  PubMed  Google Scholar 

  52. Merino A, Maakaron J, Bachanova V. Advances in NK cell therapy for hematologic malignancies: NK source, persistence and tumor targeting. Blood Rev. 2023;60:101073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank Yulong Han for providing guidance on vascular leakage and perfusion assay methods; we also thank Chaopin Yang for providing technical support on multiplex immunohistochemistry. This work was financially supported by funding from the National Natural Science Foundation of China (No. 82172795, No. 82272790, No. 82273305 and No. 81402560), Guangdong Basic and Applied Basic Research Foundation (No. 2024B1515020001, 2023A1515012981, 2023A1515030013, 2021A1515010443 and 2023A1515012467), the Guangdong Province Science and Technology Plan Project (No. 2017A020215029), and Guangdong Esophageal Cancer Institute Science and Technology Program (No. Q201802).

Author information

Authors and Affiliations

Authors

Contributions

Yuanyuan Chen designed the study and performed most of the experiments and wrote the article. Muping Di and Yan Tang collected the pathology specimens for immunohistochemical staining and analyzed the data. Jingjing Zhao and Qijing Wang revised the article. Zhixing Guo performed the experiments to measure blood perfusion in mouse xenografts using Brightness-mode ultrasound. Yongqiang Li, Dijun Ouyang, and Jieying Yang analyzed the Brightness-mode ultrasound results. Hao Chen and Yan Wang participated in the animal experiments. Qiuzhong Pan, Tong Xiang, and Jianchuan Xia participated in the design of the experiments, provided theoretical guidance, and analyzed the results.

Corresponding authors

Correspondence to Qiuzhong Pan, Tong Xiang or Jianchuan Xia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Di, M., Tang, Y. et al. Epstein-Barr virus causes vascular abnormalities in epithelial malignancies through upregulating ANXA3-HIF-1α-VEGF pathway. Oncogene 43, 2143–2159 (2024). https://doi.org/10.1038/s41388-024-03061-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-03061-w

Search

Quick links