Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal Models

Paternal obesity induces subfertility in male offspring by modulating the oxidative stress-related transcriptional network

Abstract

Background/objective

The effects of fathers’ high-fat diet (HFD) on the reproductive health of their male offspring (HFD- F1) remain to be elucidated. Parental obesity is known to have a negative effect on offspring fertility, but there are few relevant studies on the effects of HFD-F1 on reproductive function.

Methods

We first succeeded in establishing the HFD model, which provides a scientific basis in the analysis of HFD-F1 reproductive health. Next, we assessed biometric indices, intratesticular cellular status, seminiferous tubules and testicular transcriptomic homeostasis in HFD-F1. Finally, we examined epididymal (sperm-containing) apoptosis, as well as antioxidant properties, motility, plasma membrane oxidation, DNA damage, and sperm-egg binding in the epididymal sperm.

Results

Our initial results showed that HFD-F1 mice had characteristics similar to individuals with obesity, including higher body weight and altered organ size. Despite no major changes in the types of testicular cells, we found decreased activity of important genes and noticed the presence of abnormally shaped sperm at seminiferous tubule lumen. Further analysis of HFD-F1 testes suggests that these changes might be caused by increased vulnerability to oxidative stress. Finally, we measured several sperm parameters, these results presented HFD-F1 offspring exhibited a deficiency in antioxidant properties, resulting in damaged sperm mitochondrial membrane potential, insufficient ATP content, increased DNA fragmentation, heightened plasma membrane oxidation, apoptosis-prone and decreased capacity for sperm-oocyte binding during fertilization.

Conclusion

HFD- F1 subfertility arises from the susceptibility of the transcriptional network to oxidative stress, resulting in reduced antioxidant properties, motility, sperm-egg binding, and elevated DNA damage.

Schematic representation of the HFD-F1 oxidative stress susceptibility to subfertility. Notably, excessive accumulation of ROS surpasses the physiological threshold, thereby damaging PUFAs within the sperm plasma membrane. This oxidative assault affects crucial components such as mitochondria and DNA. Consequently, the sperm’s antioxidant defense mechanisms become compromised, leading to a decline in vitality, motility, and fertility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Detection of biological characteristics of HFD mice.
Fig. 2: Assessment of biological features of mouse.
Fig. 3: Detection of different cell populations and antioxidant markers in the testis.
Fig. 4: Transcriptome data of testis of HFD-F1 and NC-F1.
Fig. 5: Evaluation of sperm oxidation index and oxidation properties index.
Fig. 6: CASA assesses sperm motility.
Fig. 7: Detection of sperm DNA damage by 8-OHdG and γ‐H2AX.
Fig. 8: Evaluate the expression of BAX, BCL2, CASP3 apoptosis-related proteins.
Fig. 9: Evaluation of sperm plasma membrane oxidation, phosphorylation and sperm-egg binding.

Similar content being viewed by others

Data availability

All data will be made available on request.

References

  1. Ferro-Luzzi A, James WP, Kafatos A. The high-fat Greek diet: a recipe for all? Eur J Clin Nutr. 2002;56:796–809. https://doi.org/10.1038/sj.ejcn.1601393

    Article  CAS  PubMed  Google Scholar 

  2. Hartmann H, Janssen LK, Herzog N, Morys F, Fängström D, Fallon SJ, et al. Self-reported intake of high-fat and high-sugar diet is not associated with cognitive stability and flexibility in healthy men. Appetite. 2023;183:106477 https://doi.org/10.1016/j.appet.2023.106477

    Article  PubMed  Google Scholar 

  3. Cai L, Xia X, Gu Y, Hu L, Li C, Ma X, et al. Opposite effects of low-carbohydrate high-fat diet on metabolism in humans and mice. Lipids Health Dis. 2023;22:191 https://doi.org/10.1186/s12944-023-01956-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roth J, Qiang X, Marbán SL, Redelt H, Lowell BC. The obesity pandemic: where have we been and where are we going? Obes Res. 2004;12:88s–101s. https://doi.org/10.1038/oby.2004.273

    Article  PubMed  Google Scholar 

  5. Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011;378:804–14. https://doi.org/10.1016/s0140-6736(11)60813-1

    Article  PubMed  Google Scholar 

  6. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60. https://doi.org/10.1016/s0140-6736(12)61766-8

    Article  PubMed  PubMed Central  Google Scholar 

  7. Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev. 2012;70:3–21. https://doi.org/10.1111/j.1753-4887.2011.00456.x

    Article  PubMed  Google Scholar 

  8. Ghosh S, Mukherjee S. Testicular germ cell apoptosis and sperm defects in mice upon long-term high fat diet feeding. J Cell Physiol. 2018;233:6896–909. https://doi.org/10.1002/jcp.26581

    Article  CAS  PubMed  Google Scholar 

  9. Bouchard C. Childhood obesity: are genetic differences involved? Am J Clin Nutr. 2009;89:1494s–501s. https://doi.org/10.3945/ajcn.2009.27113C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Csete J, Kamarulzaman A, Kazatchkine M, Altice F, Balicki M, Buxton J, et al. Public health and international drug policy. Lancet. 2016;387:1427–80. https://doi.org/10.1016/s0140-6736(16)00619-x

    Article  PubMed  PubMed Central  Google Scholar 

  11. NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet. 2016;387:1377–96. https://doi.org/10.1016/s0140-6736(16)30054-x

    Article  Google Scholar 

  12. Peng Y, Zhao W, Qu F, Jing J, Hu Y, Liu Y, et al. Proteomic alterations underlie an association with teratozoospermia in obese mice sperm. Reprod Biol Endocrinol. 2019;17:82 https://doi.org/10.1186/s12958-019-0530-7

    Article  PubMed  PubMed Central  Google Scholar 

  13. Niederberger CJU. WHO Man Standardized Investig, Diagnosis Manag Infertile Male. 2000;57:208.

    Google Scholar 

  14. Lamb DJ, Lipshultz LI. Male infertility: recent advances and a look towards the future. Curr Opin Urol. 2000;10:359–62. https://doi.org/10.1097/00042307-200007000-00011

    Article  CAS  PubMed  Google Scholar 

  15. Fall CH. Evidence for the intra-uterine programming of adiposity in later life. Ann Hum Biol. 2011;38:410–28. https://doi.org/10.3109/03014460.2011.592513

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature. 2010;467:963–6. https://doi.org/10.1038/nature09491

    Article  CAS  PubMed  Google Scholar 

  17. Fullston T, Palmer NO, Owens JA, Mitchell M, Bakos HW, Lane M. Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum Reprod. 2012;27:1391–400. https://doi.org/10.1093/humrep/des030

    Article  CAS  PubMed  Google Scholar 

  18. Deshpande SS, Nemani H, Pothani S, Balasinor NH. Altered endocrine, cytokine signaling and oxidative stress: A plausible reason for differential changes in testicular cells in diet-induced and genetically-inherited - obesity in adult rats. Reprod Biol. 2019;19:303–8. https://doi.org/10.1016/j.repbio.2019.06.005

    Article  PubMed  Google Scholar 

  19. Tarquini B, Tarquini R, Perfetto F, Cornélissen G, Halberg F. Genetic and environmental influences on human cord blood leptin concentration. Pediatrics. 1999;103:998–1006. https://doi.org/10.1542/peds.103.5.998

    Article  CAS  PubMed  Google Scholar 

  20. Power C, Li L, Manor O, Davey Smith G. Combination of low birth weight and high adult body mass index: at what age is it established and what are its determinants? J Epidemiol Community Health. 2003;57:969–73. https://doi.org/10.1136/jech.57.12.969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dupont C, Faure C, Sermondade N, Boubaya M, Eustache F, Clément P, et al. Obesity leads to higher risk of sperm DNA damage in infertile patients. Asian J Androl. 2013;15:622–5. https://doi.org/10.1038/aja.2013.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aitken RJ, Baker MA. Causes and consequences of apoptosis in spermatozoa; contributions to infertility and impacts on development. Int J Dev Biol. 2013;57:265–72. https://doi.org/10.1387/ijdb.130146ja

    Article  CAS  PubMed  Google Scholar 

  23. McPherson NO, Lane M. Male obesity and subfertility, is it really about increased adiposity? Asian J Androl. 2015;17:450–8. https://doi.org/10.4103/1008-682x.148076

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hammiche F, Laven JS, Twigt JM, Boellaard WP, Steegers EA, Steegers-Theunissen RP. Body mass index and central adiposity are associated with sperm quality in men of subfertile couples. Hum Reprod. 2012;27:2365–72. https://doi.org/10.1093/humrep/des177

    Article  PubMed  Google Scholar 

  25. Beygi Z, Forouhari S, Mahmoudi E, Hayat SMG, Nourimand F. Role of Oxidative Stress and Antioxidant Supplementation in Male Fertility. Curr Mol Med. 2021;21:265–82. https://doi.org/10.2174/1566524020999200831123553

    Article  CAS  PubMed  Google Scholar 

  26. Evans EPP, Scholten JTM, Mzyk A, Reyes-San-Martin C, Llumbet AE, Hamoh T, et al. Male subfertility and oxidative stress. Redox Biol. 2021;46:102071 https://doi.org/10.1016/j.redox.2021.102071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lane M, McPherson NO, Fullston T, Spillane M, Sandeman L, Kang WX, et al. Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring. PLoS One. 2014;9:e100832 https://doi.org/10.1371/journal.pone.0100832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aitken J, Fisher H. Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. Bioessays. 1994;16:259–67. https://doi.org/10.1002/bies.950160409

    Article  CAS  PubMed  Google Scholar 

  29. Aitken RJ, Baker MA. Reactive oxygen species generation by human spermatozoa: a continuing enigma. Int J Androl. 2002;25:191–4. https://doi.org/10.1046/j.1365-2605.2002.03521.x

    Article  PubMed  Google Scholar 

  30. Gluckman PD, Hanson MA, Bateson P, Beedle AS, Law CM, Bhutta ZA, et al. Towards a new developmental synthesis: adaptive developmental plasticity and human disease. Lancet. 2009;373:1654–7. https://doi.org/10.1016/s0140-6736(09)60234-8

    Article  PubMed  Google Scholar 

  31. Guo YF, Shen H, Liu YJ, Wang W, Xiong DH, Xiao P, et al. Assessment of genetic linkage and parent-of-origin effects on obesity. J Clin Endocrinol Metab. 2006;91:4001–5. https://doi.org/10.1210/jc.2006-0549

    Article  CAS  PubMed  Google Scholar 

  32. Le Stunff C, Fallin D, Bougnères P. Paternal transmission of the very common class I INS VNTR alleles predisposes to childhood obesity. Nat Genet. 2001;29:96–9. https://doi.org/10.1038/ng707

    Article  CAS  PubMed  Google Scholar 

  33. Youngson NA, Whitelaw E. The effects of acquired paternal obesity on the next generation. Asian J Androl. 2011;13:195–6. https://doi.org/10.1038/aja.2010.163

    Article  PubMed  Google Scholar 

  34. Slyvka Y, Zhang Y, Nowak FV. Epigenetic effects of paternal diet on offspring: emphasis on obesity. Endocrine. 2015;48:36–46. https://doi.org/10.1007/s12020-014-0328-5

    Article  CAS  PubMed  Google Scholar 

  35. Wei Y, Schatten H, Sun QY. Environmental epigenetic inheritance through gametes and implications for human reproduction. Hum Reprod Update. 2015;21:194–208. https://doi.org/10.1093/humupd/dmu061

    Article  CAS  PubMed  Google Scholar 

  36. Schagdarsurengin U, Steger K. Epigenetics in male reproduction: effect of paternal diet on sperm quality and offspring health. Nat Rev Urol. 2016;13:584–95. https://doi.org/10.1038/nrurol.2016.157

    Article  CAS  PubMed  Google Scholar 

  37. Wang B, Xia L, Zhu D, Zeng H, Wei B, Lu L, et al. Paternal high-fat diet altered sperm 5’tsRNA-Gly-GCC is associated with enhanced gluconeogenesis in the offspring. Front Mol Biosci. 2022;9:857875 https://doi.org/10.3389/fmolb.2022.857875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. King SE, Skinner MK. Epigenetic transgenerational inheritance of obesity susceptibility. Trends Endocrinol Metab. 2020;31:478–94. https://doi.org/10.1016/j.tem.2020.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van der Horst G. Computer Aided Sperm Analysis (CASA) in domestic animals: Current status, three D tracking and flagellar analysis. Anim Reprod Sci. 2020;220:106350 https://doi.org/10.1016/j.anireprosci.2020.106350

    Article  PubMed  Google Scholar 

  40. Fullston T, McPherson NO, Owens JA, Kang WX, Sandeman LY, Lane M Paternal obesity induces metabolic and sperm disturbances in male offspring that are exacerbated by their exposure to an “obesogenic” diet. Physiol Rep. 2015;3. https://doi.org/10.14814/phy2.12336

  41. Crisóstomo L, Videira RA, Jarak I, Starčević K, Mašek T, Rato L, et al. Inherited metabolic memory of high-fat diet impairs testicular fatty acid content and sperm parameters. Mol Nutr Food Res. 2022;66:e2100680 https://doi.org/10.1002/mnfr.202100680

    Article  CAS  PubMed  Google Scholar 

  42. Thankamony A, Pasterski V, Ong KK, Acerini CL, Hughes IA. Anogenital distance as a marker of androgen exposure in humans. Andrology. 2016;4:616–25. https://doi.org/10.1111/andr.12156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sertorio MN, César H, de Souza EA, Mennitti LV, Santamarina AB, De Souza Mesquita LM, et al. Parental high-fat high-sugar diet intake programming inflammatory and oxidative parameters of reproductive health in male offspring. Front Cell Dev Biol. 2022;10:867127 https://doi.org/10.3389/fcell.2022.867127

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chang AY, Skirbekk VF, Tyrovolas S, Kassebaum NJ, Dieleman JL. Measuring population ageing: an analysis of the Global Burden of Disease Study 2017. Lancet Public Health. 2019;4:e159–e67. https://doi.org/10.1016/s2468-2667(19)30019-2

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fang EF, Scheibye-Knudsen M, Jahn HJ, Li J, Ling L, Guo H, et al. A research agenda for aging in China in the 21st century. Ageing Res Rev. 2015;24:197–205. https://doi.org/10.1016/j.arr.2015.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  46. Alcalá M, Calderon-Dominguez M, Bustos E, Ramos P, Casals N, Serra D, et al. Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice. Sci Rep. 2017;7:16082 https://doi.org/10.1038/s41598-017-16463-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ding N, Zhang X, Zhang XD, Jing J, Liu SS, Mu YP, et al. Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut. 2020;69:1608–19. https://doi.org/10.1136/gutjnl-2019-319127

    Article  CAS  PubMed  Google Scholar 

  48. Zheng X, Sawalha AH. The role of oxidative stress in epigenetic changes underlying autoimmunity. Antioxid Redox Signal. 2022;36:423–40. https://doi.org/10.1089/ars.2021.0066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Snell LM, McGaha TL, Brooks DG. Type I interferon in chronic virus infection and cancer. Trends Immunol. 2017;38:542–57. https://doi.org/10.1016/j.it.2017.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chambers TJG, Morgan MD, Heger AH, Sharpe RM, Drake AJ. High-fat diet disrupts metabolism in two generations of rats in a parent-of-origin specific manner. Sci Rep. 2016;6:31857 https://doi.org/10.1038/srep31857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Löhn M, Jessner W, Fürstenau M, Wellner M, Sorrentino V, Haller H, et al. Regulation of calcium sparks and spontaneous transient outward currents by RyR3 in arterial vascular smooth muscle cells. Circ Res. 2001;89:1051–7. https://doi.org/10.1161/hh2301.100250

    Article  PubMed  Google Scholar 

  52. Mata-Martínez E, Sánchez-Cárdenas C, Chávez JC, Guerrero A, Treviño CL, Corkidi G, et al. Role of calcium oscillations in sperm physiology. Biosystems. 2021;209:104524 https://doi.org/10.1016/j.biosystems.2021.104524

    Article  CAS  PubMed  Google Scholar 

  53. Zheng W, Zhang S, Jiang S, Huang Z, Chen X, Guo H, et al. Evaluation of immune status in testis and macrophage polarization associated with testicular damage in patients with nonobstructive azoospermia. Am J Reprod Immunol. 2021;86:e13481 https://doi.org/10.1111/aji.13481

    Article  CAS  PubMed  Google Scholar 

  54. Buffone MG, Ijiri TW, Cao W, Merdiushev T, Aghajanian HK, Gerton GL. Heads or tails? Structural events and molecular mechanisms that promote mammalian sperm acrosomal exocytosis and motility. Mol Reprod Dev. 2012;79:4–18. https://doi.org/10.1002/mrd.21393

    Article  CAS  PubMed  Google Scholar 

  55. Panner Selvam MK, Agarwal A, Henkel R, Finelli R, Robert KA, Iovine C, et al. The effect of oxidative and reductive stress on semen parameters and functions of physiologically normal human spermatozoa. Free Radic Biol Med. 2020;152:375–85. https://doi.org/10.1016/j.freeradbiomed.2020.03.008

    Article  CAS  PubMed  Google Scholar 

  56. Yu B, Huang Z. Variations in antioxidant genes and male infertility. Biomed Res Int. 2015;2015:513196 https://doi.org/10.1155/2015/513196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fleming TP, Watkins AJ, Velazquez MA, Mathers JC, Prentice AM, Stephenson J, et al. Origins of lifetime health around the time of conception: causes and consequences. Lancet. 2018;391:1842–52. https://doi.org/10.1016/s0140-6736(18)30312-x

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rodriguez I, Ody C, Araki K, Garcia I, Vassalli P. An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. Embo j. 1997;16:2262–70. https://doi.org/10.1093/emboj/16.9.2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vorilhon S, Brugnon F, Kocer A, Dollet S, Bourgne C, Berger M, et al. Accuracy of human sperm DNA oxidation quantification and threshold determination using an 8-OHdG immuno-detection assay. Hum Reprod. 2018;33:553–62. https://doi.org/10.1093/humrep/dey038

    Article  CAS  PubMed  Google Scholar 

  60. Zhong HZ, Lv FT, Deng XL, Hu Y, Xie DN, Lin B, et al. Evaluating γH2AX in spermatozoa from male infertility patients. Fertil Steril. 2015;104:574–81. https://doi.org/10.1016/j.fertnstert.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  61. Bansal AK, Bilaspuri GS. Oxidative stress alters membrane sulfhydryl status, lipid and phospholipid contents of crossbred cattle bull spermatozoa. Anim Reprod Sci. 2008;104:398–404. https://doi.org/10.1016/j.anireprosci.2007.06.017

    Article  CAS  PubMed  Google Scholar 

  62. Martin-Hidalgo D, Hurtado de Llera A, Calle-Guisado V, Gonzalez-Fernandez L, Garcia-Marin L, Bragado MJ. AMPK function in mammalian spermatozoa. Int J Mol Sci. 2018;19. https://doi.org/10.3390/ijms19113293

Download references

Acknowledgements

We acknowledge the assisted by the Northwest A&F University, the reproductive biology and cell engineering team at college of animal science and technology, and Ankang R&D Center of Se-enriched Products. This work was supported by grant from National Natural Science Foundation of China (Grant No. C1704-32172737) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

The completion of this study is mainly divided into four parts, and all the authors undertake the corresponding tasks in one or more parts. Part I, experimental design (LL and WZD), and part II, the collection and specific execution of experimental materials (YXM, YL, HRC, ZFW, TQJ, and YW); Part III, statistical analysis of data and manuscript writing (LL and YXM); The fourth part IV, final proofreading of the article (LL, ZC, SXC, and WZD). The authors read and agreed with the eventual manuscript for publication.

Corresponding author

Correspondence to Wuzi Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Ma, Y., Zhu, C. et al. Paternal obesity induces subfertility in male offspring by modulating the oxidative stress-related transcriptional network. Int J Obes (2024). https://doi.org/10.1038/s41366-024-01562-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41366-024-01562-y

Search

Quick links